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Abstract We present a mobile device for the quantifica-
tion of the small-scale (a few square meters) spatial var-
iability in the surface energy balance components and
several auxiliary variables of short-statured (<1 m) cano-
pies. The key element of the mobile device is a handheld
four-component net radiometer for the quantification of
net radiation, albedo and infrared surface temperature,
which is complemented with measurements of air temper-
ature, wind speed, soil temperature and soil water content.
Data are acquired by a battery-powered data logger, which
is mounted on a backpack together with the auxiliary
sensors. The proposed device was developed to bridge
between the spatial scales of satellite/airborne remote
sensing and fixed, stationary tower-based measurements
with an emphasis on micrometeorological, catchment hy-
drological and landscape–ecological research questions.
The potential of the new device is demonstrated through
four selected case studies, which cover the issues of net
radiation heterogeneity within the footprint of eddy co-
variance flux measurements due to (1) land use and (2)
slope and aspect of the underlying surface, (3) controls on
landscape-scale variability in soil temperature and albedo
and (4) the estimation of evapotranspiration based exclu-
sively on measurements with the mobile device.
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Introduction

Based on the first law of thermodynamics, the energy balance,
Eq. 1, states that the net radiation (Rn) available to a patch of
land surface is consumed in the exchange of latent (λE) and
sensible (H) heat with the atmosphere and the change of heat
storage within the system (S):

Rn ¼ λEþ Hþ S ð1Þ

Rn depends on the net difference between down- (↓) and
up-welling (↑) short- (S) and long-wave (L) radiation, i.e.

Rn ¼ ↓S−↑Sþ ↓L−↑L ð2Þ

A key component of Rn is the ratio of up-welling to down-
welling shortwave radiation termed albedo (α):

α ¼ ↑S
.
↓S ð3Þ

Different types of land surfaces differ in their Rn which,
through Eq. 1, determines how much energy is available for
λE, H and S, which in turn critically affects the near-surface
climate (e.g. Stegehuis et al. 2013; Seneviratne et al. 2006).
For example, it was shown by Bonan (2008) and Bala et al.
(2007) that grasslands and croplands, as opposed to forests,
have a cooling effect at higher latitudes because the albedo of
grasslands and croplands is typically higher, in particular
when covered by snow, compared with forests, which absorb
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more solar energy. In contrast, in tropical regions, the differ-
ence in albedo between forests and grasslands is compensated
by the cooling through the large amount of water transpired by
(tropical) forests. In order to understand how past (e.g.
Brovkin et al. 2006) and potential future (e.g. Bala et al.
2007; Brovkin et al. 2009) changes in land use affect the
Earth’s climate, it is crucial to understand how changes in
land surface properties affect Rn and the partitioning into λE,
H and S. For example, it was shown by Chapin et al. (2005)
that warming-induced shorter periods of snow cover in the
Arctic and associated trends of shrub/tree expansion are likely
to cause local warming similar in magnitude to the warming
expected from a doubling of atmospheric carbon dioxide
concentrations.

The surface energy balance and its components can be
quantified by a hierarchy of methods across spatial scales:
At the largest scale, merging several satellite data streams with
models allows estimating all four components of the energy
balance (e.g. Diak et al. 2004; Kalma et al. 2008; Glenn et al.
2007) on a global scale. At the scale of catchments, evapo-
transpiration may be deduced on an annual basis by difference
between precipitation and discharge (e.g. Peel et al. 2010). At
the ecosystem-scale, i.e. typically a few hectares characterised
by similar vegetation and soil, micrometeorological methods,
such as the eddy covariance technique (Baldocchi et al. 1988;
Aubinet et al. 2000), allow the direct quantification of both H
and λE, with Rn and S typically being estimated on/from the
tower which supports the turbulence equipment (fast-response
sonic anemometer and hygrometer). Within the FLUXNET
network, the four terms of Eq. 1 are presently measured
continuously at >400 sites globally (Baldocchi et al. 2001;
Williams et al. 2012). Finally, at the plot, single plant and leaf
scale, sap flux (Wilson et al. 2001), various types of chambers
and lysimeters (Wohlfahrt et al. 2010a) can be used to quantify
(evapo)transpiration.

In this comprehensive hierarchy of methods, it is the lower
end of the microscale (Orlanski 1975), that is, spatial variabil-
ity at the scale of square meters, which is presently poorly
represented (e.g. Ahrends et al. 2012). Landscape variability
at this spatial scale is much smaller than the typical pixel size
of remote sensing-based approaches and also considerably
smaller than the typical footprint of micrometeorological mea-
surements. The only approaches suited for this spatial scale,
lysimeters and ecosystem chambers, on the other hand, are
generally impractical for surveying a large number of distrib-
uted samples within the footprint of eddy covariance flux
measurements or in a landscape context.

We thus argue that, in micrometeorological, catchment
hydrological and landscape ecological studies, there is the
need for the development of approaches for spatially distrib-
uted energy balancemeasurements which can be applied at the
lower end of the microscale and yet are portable enough to
allow making a large number of spatially distributed

measurements within short periods of time. To this end, we
propose a mobile device which allows quantifying the small-
scale (a few square meters) spatial heterogeneity of the energy
balance over short-statured (<1 m) canopies. In the following,
we first present the design of the mobile device, followed by
four case studies which are meant to illustrate its potential and
conclude with a discussion of its strengths and weaknesses, as
well as an outlook on potential future developments.

Material and methods

The mobile device, referred to as EcoBot, consists of a four-
component net radiometer (NR01, Hukseflux, The Nether-
lands) mounted on a handheld boom, an air temperature/
humidity sensor (HMP45C, Campbell Scientific, UK) in a
ventilated radiation shield, a two-dimensional sonic anemom-
eter (Windsonic, Gill, UK), a soil temperature (107, Campbell
Scientific, UK) and volumetric water content (SM300, Delta-
T, UK) sensor, a data logger (CR1000, Campbell Scientific,
UK) and a rechargeable battery (12 V, 10 Ah). The data logger
and the battery are mounted on a backpack consisting of an
aluminium frame, which also supports the radiation shield
with the air temperature/humidity sensor and the sonic ane-
mometer on a detachable vertical pole (Fig. 1). The length of
the vertical pole may be adjusted to the body size of the
operator to result in air temperature and wind speed measure-
ments being made 2.0 and 2.3 m above the ground, respec-
tively. The total weight of the backpack including all sensors
is ca. 15 kg. The pole to which the net radiometer is attached
features a bubble level for levelling the instrument, as well as
push button for triggering measurements. The height above
ground of the net radiometer depends somewhat on the body
size of the operator, but 1.0–1.1 m above ground have been
found to be practical in most cases (Fig. 1), which limits the
maximum canopy height to around 1 m. The operator makes
measurements with the pole pointing towards South (in the
Northern hemisphere), in order to avoid shading of the net
radiometer. Due to the field-of-view of the net radiometer
(180° and 150° for the pyranometers and pyrgeometers, re-
spectively), it is unavoidable that the operator, similar to
supporting structures in a fixed-point setup, affects the radia-
tion measurements. Given the directional response of the net
radiometer, this influence is however deemed negligible. In
order to reduce variability with different EcoBot operators
(e.g. due to differing clothing color), a field stop might be
added to the net radiometer for shielding the operator in the
future. The sonic anemometer is mounted such that the North
arrow points towards North when measurements are made
towards South, so that, in principle, the wind direction output
may also be used; however, the uncertainty of wind direction
(nominal 3°) is estimated to increase to at least 10° due to
variability in the position of the operator with respect to true
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North. The soil temperature and moisture sensors are carefully
pushed into the soil down to a depth of ca. 0.05m (Fig. 1). The
data logger is programmed to scan through the program every
5 s. Once the push button is pressed, a digital channel is short-
circuited and triggers the data logger to turn on the powered
sensors (air temperature and humidity sensor, soil moisture
probe, sonic anemometer), acquire a measurement from all
sensors and save the current data to the memory, followed,
after ca. 2 s, by a sound indicating a successful measurement
(see data logger program in the Electronic supplementary

material). In stand-by, the EcoBot consumes 55 mA (<1 mA
with the ventilation turned off), which increases to 110 mA
during the 2-s period when a measurement is taken, allowing
80 and 160 h of continuous measurements and standby with
the chosen battery capacity (imposing a residual capacity of
10 %), respectively.

In addition to the four components of Rn (up- and
down-welling short- and longwave radiation; W m–2),
the data logger outputs the net radiometer body and in-
frared surface temperature (°C), air and soil temperature

Fig. 1 Schematic of the EcoBot
design (top) and picture showing
its application in the field
(bottom). Indicated heights
aboveground in the sketch refer to
an operator body size of ca. 1.8 m.
See text for further details
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(°C), soil moisture (% volumetric soil moisture based on
general calibration for mineral soil and raw mV output),
wind speed (m s–1) and direction (°) as well as a digital
sonic data quality flag.

The protocol at each measurement point is the following:
First, soil temperature and moisture sensors are put into place.
Then the operator gets into position by pointing the net radi-
ometer horizontally (or slope-parallel; see below) towards
South and waits 2 min before taking three (pseudo-)replicate
measurements at the same spot. The 2-min delay accounts for
the time response of the various sensors. The soil moisture
sensor and the sonic anemometer have no quoted time re-
sponse, while the air temperature/humidity sensor and the net
radiometer have a quoted time response of <20 s (90 %
response). The soil temperature sensor has a quoted response
time of <80 s in air at a wind speed of 1m s−1 (63% response),
no indications are given for response times in soil, which are
likely to be longer. Following data acquisition, time and place
of the measurement and environmental conditions (e.g. cloud
cover) are noted in a field book, and any additional measure-
ments are made on the plot (see case study 3 below for an
example).

Results and discussion

In the following, we illustrate the potential of the EcoBot by
reference to four selected case studies:

Case study 1: within eddy covariance footprint heterogeneity
of Rn

In eddy covariance energy flux studies, Rn and S are typically
measured either on the tower which supports the turbulence
equipment or a nearby additional tower, and in the vast ma-
jority of cases, measurements are made at a single location
only. As the footprint of eddy covariance flux measurements
is typically orders of magnitude larger than the footprint of Rn

and S (Schmid 1997), any analyses ofH and λE that make use
of single-point Rn and S rely on the implicit assumption of
their values in the flux footprint being equal those measured
on the tower. Case study 1, shown in Figs. 2 and 3, was
selected as an example illustrating a situation where the
tower-based measurements of Rn differ from Rn in the foot-
print due to spatial heterogeneity in vegetation cover caused
by land use. Briefly, eddy covariance H and λE, Rn and soil
heat flux (G; assuming other heat storage to be negligible)
measurements were made from a 2-m tower above grassland
ca. 20 km to the East of Innsbruck (Austria). The site was
situated in the middle of the flat Inn Valley in an area domi-
nated by intensively used grasslands interspersed with various
crops (mostly vegetables; Fig. 2). In order to explore the
within footprint heterogeneity of Rn, mobile measurements

with the EcoBot were conducted on a sunny day (10 May
2012) at the seven dominant land use types within the eddy
covariance footprint. To this end, one representative plot was
selected within each of the seven land use types and revisited
every 30 min and between 8 and 16 UTC and three pseudo-
replicate EcoBot measurements made. Figure 3 shows that
mobile down-welling shortwave and longwave radiation
agreed with the flux tower to within their temporal variability
(data from the flux tower were saved as averages and standard
deviations over 30 min). In contrast, up-welling shortwave
(and thus albedo) and longwave (and thus infrared surface
temperature) radiation differed by up to 85 and 35 W m−2,
respectively, between the seven major land-use types and the
stationarymeasurements (Fig. 3). Due to compensating effects
between larger/smaller up-welling radiation fluxes, Rn at in-
dividual plots differed from the stationarymeasurements at the
flux tower by up to ±60 W m−2. Depending on the aerial
extent of the various land surface types and their contribution
to the flux footprint (Fig. 2), these differences may need to be
accounted for when relating Rn to latent and sensible energy
fluxes or when attempting to close the energy balance (Foken
2008). Doing so will require a two-dimensional footprint

Fig. 2 Layout of EcoBot measurements with respect to the eddy covari-
ance flux footprint in Case study 1. EcoBot measurements were made on
plots 1–7 referring to the following land uses: (1) freshly seeded grassland
with a large fraction of visible light brown dry soil, (2) densely planted
butterhead lettuce (Lactuca sativa), (3) butterhead lettuce covered with
white fleece, (4) sparsely planted butterhead lettuce, (5) lamb’s lettuce
(Valerianella locusta), (6) grassland similar to stationary tower surround-
ing, (7) grass-dominated grassland. Eddy covariance flux footprints (solid
lines) enclose the area which contributes more than 1 % of the footprint
maximum to the total flux footprint. Flux footprints were calculated with
the model by Detto et al. (2006) and refer to a morning situation (06:00–
06:30 UTC) with near-neutral stratification and moderate down-valley
winds (average horizontal wind speed 2.3 m s−1) from Southwest and a
situation in the early afternoon (14:30–15:00 UTC) with near-neutral
stratification and light up-valley winds (average horizontal wind speed
1.2 m s−1) from Northeast
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model (e.g. Detto et al. 2006; Kljun et al. 2002), which allows
weighting Rn of the various land use types with their flux
contribution.

Case study 2: estimating slope-parallel Rn

Measurements of Rn are typically made horizontally, as-
suming a horizontal underlying surface. However, in case
of measurements above sloping terrain, slope-parallel
measurements are required to be able to relate Rn to latent
and sensible heat fluxes (Whiteman et al. 1989). Algo-
rithms for correcting horizontal Rn measurements for
slope and aspect of the underlying non-horizontal surface
exist, but, however, usually account only for differences
between the angle of incident direct solar radiation and
the surface (e.g. Matzinger et al. 2003) and, similar to
case study 1, do not account for heterogeneity in slope
and aspect within the flux footprint (but see Hammerle
et al. 2007).

In case study 2, the EcoBot was used to investigate
differences between horizontally and slope-parallel mea-
sured Rn and to quantify the reliability of approaches to
correct for slope and aspect. The study site was again ca.
20 km to the East of Innsbruck (Austria), but this time on a
grassland site situated high up on a North facing slope with
an average inclination of 30°. EcoBot measurements were
made on a clear day (14 May 2013) for three times during

the day (morning, noontime, afternoon) at seven positions
around the flux tower characterised by different slopes and
expositions. Two measurements, each with three pseudo-
replicates, were made at each plot—the first one horizon-
tally and a second one with the net radiometer approxi-
mately inclined according to local slope and aspect based
on a manual assessment of the operator. The fraction of
diffuse radiation was quantified continuously with quan-
tum sensor (BF3H, Delta-T, UK) on the flux tower. As
shown in Fig. 4, it is obvious that horizontal measurements
overestimated Rn measured slope-parallel on this steep
North-facing slope by a factor of almost 2. Correcting for
local slope and aspect following Hammerle et al. (2007)
reduced the discrepancy to the slope-parallel measure-
ments (on average down to 3 %; Fig. 4); however, from
the spread of data (differences up to 100 W m−2), it is clear
that the correction did not completely remove the bias at all
locations and times. Apparently, there are other local fac-
tors, such as the fraction of cold sky/warm vegetation seen
by the pyrgeometers, which vary within the footprint and
are not well captured by the common approach of
correcting only for the angle between the incident direct
short-wave radiation and the underlying surface. In addi-
tion, the manual assessment of local slope and aspect is
likely to introduce uncertainty, which might be reduced by
adding an electronic tilt sensor to the EcoBot capabilities
in the future.

Fig. 3 Comparison between stationary (solid lines with grey shading indicating 2×standard deviation) and mobile measurements (at seven different
positions characterised by different land use within the eddy covariance flux footprint; see Fig. 2) of the four components of net radiation
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Case study 3: drivers of landscape-scale variability in soil
temperature and albedo

Case study 3 is meant to illustrate the potential of EcoBot and
concurrent auxiliary measurements to study landscape-scale
variability in Rn and its components and drivers. Briefly, the
study was conducted between June and October 2011 and
June 2013 in the Stubai Valley (Western Austria), in the
Matscher/Mazia Valley and in the Tauferer-Ahrntal Valley
(both in Northern Italy), at 51 different grassland and shrub
ecosystems. The study sites covered an altitudinal range from
850 to 2,500 m asl and included abandoned areas and differ-
ently managed hay meadows and pastures. At each site, two to
five replicate EcoBot measurements were taken as described
above. At the same sites, the above-ground plant area index
(PAI) was estimated directly based on harvesting and plant
area determination and/or indirectly based on canopy light
transmission measurements using a line quantum sensor as
described in Wohlfahrt et al. (2001). The total above-ground
biomass was quantified by harvesting the vegetation in a 0.3×
0.3 m area. Species composition and dominance were esti-
mated in a 2×2 m area based on Braun-Blanquet (1964) and
the vegetation association according to Tasser et al. (2010).

Soil temperature affects numerous soil processes (e.g.
weathering, mineralisation of organic material) and through
the biogeochemical cycling of carbon, nutrients and water,
vegetation composition and status. Spatial differences in soil
temperature on a landscape-scale reflect these differences in
soil and vegetation, in addition to topographical and environ-
mental factors. Figure 5 illustrates the potential of the EcoBot
to explore and explain landscape-scale spatial patterns in soil

temperature using a forward stepwise linear regression. We
hypothesised that a combination of site, vegetation and land-
use variables would best predict spatial soil temperature pat-
terns. The following site variables were used: altitude (as
proxy for the altitudinal climate gradient), slope angle and
aspect, all parameters measured by the EcoBot (see Fig. 1),
day length, time of day, total vegetation cover, cover of
grasses, forbs, dwarf shrubs and open soil, mean canopy
height, PAI and phytomass (total, green, woody and dead
plant matter). With these independent variables, a total of
83.7 % of the spatial variability in soil temperature could be
explained (Durbin Watson: 1.4), with 11 variables contribut-
ing significantly (Fig. 5b). Spatial patterns of soil temperature
were positively correlated with air temperature, which ex-
plained the largest fraction of the total variability (Fig. 5a),
the time of day and the degree of South exposition. Negative
correlations were observed with variables expressing the
amount and cover of above-ground plant area (total vegetation
and dwarf shrub cover, PAI and green biomass), soil moisture,
altitude, day length and the degree of North exposition. While
this simple empirical model is likely to have little utility
outside the conditions under which the data have been ac-
quired, it may be used in the study areas, together with land
cover/use maps and information on the litter quality of single
different land cover types (e.g. Gamper et al. 2007), to predict
soil mineralisation rates for carbon budgeting studies (e.g.
Smith et al. 2005).

The potential of the EcoBot for exploring spatial differ-
ences in albedo driven by land use is shown in Fig. 6 for the
same dataset. Abandoned areas with a high cover of dwarf
shrubs or taller woody shrub species such as Pinus mugo or

Fig. 4 Comparison between net
radiation measured parallel to the
slope and measured horizontally
(red circles) and horizontal
measurements corrected for local
slope and aspect (blue squares)
(Hammerle et al. 2007)
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Alnus virridis reflected much less shortwave radiation com-
pared with differently managed grasslands or Alpine grass-
lands above the tree line (Fig. 6). These findings are critical for
accounting for biophysical feedbacks (Bonan 2008) from
ongoing changes in land use (e.g. Tappeiner et al. 2008a, b)
and climate (e.g. Pauli et al. 2007; Gobiet et al. 2014) in the
Alps.

Case study 4: using the EcoBot for inferring
evapotranspiration

Another application, which primarily motivated the inclusion
of air temperature and wind speed measurements, is to use the
EcoBot for estimating sensible and latent heat fluxes. In a bulk
approach, the sensible heat flux may be derived from the
gradient (K) between the aerodynamic surface temperature
(Taero) and air temperature (Tair), divided by the aerodynamic

resistance to heat transfer (raero; s m−2) multiplied by the
product of the density and specific heat of air (ρcp; J m

−3 K−1):

H ¼ ρcp Taero−Tairð Þ=raero ð4Þ

For near-neutral conditions, the aerodynamic resistance
may be estimated on the basis of the logarithmic wind law
using measured wind speed and estimates of the zero-plane
displacement height (m) and roughness length (m), which
may be derived from canopy height (Campbell and Norman
1998). If the aerodynamic surface temperature is replacedwith
the measured infrared surface temperature, Eq. 4 may be
solved for H exclusively on the basis of EcoBot measure-
ments. Replacing the heat storage (S) in Eq. 1 with the soil
heat flux (G) and assumingG to represent some fraction of Rn

(Sauer and Horton 2005) and/or by empirically relating it to
measured soil temperature and water content, H derived from
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Eq. 4 together with estimated G and measured Rn allows
inferring λE as the residual of the energy balance, i.e.

λE ¼ Rn−H−G ð5Þ

This approach was applied to the data presented in case
study 1, and the results are shown in Fig. 7 for the four
components of the energy balance equation. Note that, in
contrast to the data shown in Fig. 3, here we present EcoBot
measurements only from the grassland plot (#6 in Figs. 2 and
3) which is identical to where the eddy covariance flux tower
is situated and which makes up a major fraction of the flux
footprint. In order to enable comparison with the EcoBot
calculations, which close the energy balance by definition
(Eq. 5), eddy covariance sensible and latent heat fluxes were
adjusted for the lack of energy balance closure (20 % residual
energy on average) using three different approaches
(Wohlfahrt et al. 2009): The first approach forces closure by
assigning the residual energy to H and λE according to the
Bowen-ratio and is used as the reference (solid lines in Fig. 7)
below. The second approach assigns the entire residual energy
to either H or λE, and the third approach uses H and λE as
measured, i.e. applies no closure operation. The second and
third approaches represent the range of possible closure oper-
ations and are highlighted in Fig. 7 by grey shading. The soil
heat flux was estimated as 18 % of Rn measured by the
EcoBot, based on soil heat flux measurements at the eddy
covariance flux tower (see also Hammerle et al. 2008). It can
be seen that, despite a clear underestimation ofH before noon,
overall λE inferred from the Ecobot measurements nicely

corresponded with the one measured by eddy covariance (λE-

EcoBot=1.05 λEEC, r
2=0.79, RMSE=40.3 W m−2) and was

mostly within the range of the uncertainty of the eddy covari-
ance λE measurements due to the lack of energy balance
closure.

Clearly, the assumptions involved in and uncertainties as-
sociated with this approach, in particular, the crude estimation
of the soil heat flux (Sauer and Horton 2005), the replacement
of the aerodynamic surface temperature with the infrared
surface temperature (e.g. Kustas and Norman 1996) and the
calculation of the aerodynamic resistance to heat transfer (Liu
et al. 2007), are likely to be significant. It is well-known that
the difference between the aerodynamic and infrared surface
temperature (RMSE=1.9 K for the data shown in Fig. 7) may
become substantial in situations with partial canopy cover,
necessitating semi-empirical corrections of Eq. 4 (e.g. Kalma
et al. 2008). The encouraging results shown in Fig. 7 may thus
partially be owed to the relatively ideal circumstances, such as
the high leaf area index of ca. 4 m2 m−2, within which the
comparison with the eddy covariance fluxes was conducted.
In addition, atmospheric conditions need to be steady and/or
appropriate temporal averaging be applied to the EcoBot data
for deriving meaningful energy fluxes. With these caveats in
mind, we conclude that the estimation of G, H and λE based
solely on EcoBot data requires further testing across a larger
number of different ecosystems. At the same time, we stress
that the preliminary evidence presented in Fig. 7 suggests the
EcoBot to offer exciting potential for estimating the small-
scale spatial variability in evapotranspiration in a landscape
context, which is difficult to realise with other approaches. For
example, the EcoBot may provide critical data for interpreting

Fig. 7 Energy flux components
as measured on an eddy
covariance flux tower (lines) and
measured/estimated based on the
data from the EcoBot (symbols;
corresponding to plot 6 in Figs. 2
and 3). The solid lines in the sen-
sible and latent heat flux sub-
panels refer to the respective flux
with the residual energy distrib-
uted according to the Bowen ra-
tio; the grey areas refer to the
range between the sensible
(latent) heat fluxes without clo-
sure (lower range) and with the
entire energy imbalance allocated
to the sensible (latent) heat flux
(upper range) (Wohlfahrt et al.
2009). See text for further details
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streamflow data and for the calibration/validation of evapo-
transpiration simulated by distributed hydrological models
(e.g. Rigon et al. 2006) in catchment hydrological studies or
for the ground validation of satellite products (Pasolli et al.
2011). In particular for ecosystems where microtopography
strongly governs vegetation distribution, such as in Arctic or
Alpine ecosystems (e.g. Scherrer and Körner 2011; Gamon
et al. 2013), the EcoBot may offer considerable advantage
over other approaches.

Conclusions and outlook

We have presented a mobile device, termed EcoBot, which
allows quantifying the small-scale (a few square meters) spa-
tial variability in the surface energy balance, its components
(in particular evapotranspiration, net radiation and albedo) and
several auxiliary variables (e.g. soil temperature and water
content) of short-statured canopies. The proposed device
was developed to bridge between the spatial scales of
satellite/airborne remote sensing and fixed single-tower net
radiation measurements with an emphasis on micrometeoro-
logical, catchment hydrological and landscape–ecological re-
search questions. Due to the one-point-in-time nature of the
measurements, the EcoBot will be most useful during inten-
sive campaigns when small-scale spatial coverage is more
important than long-term measurements. As illustrated in four
selected case studies, the proposed device appears to offer
potential for the interpretation of within-footprint heterogene-
ity effects on eddy covariance energy flux measurements
(Figs. 2, 3, and 4), for questions related to landscape-scale
spatial variability of the surface energy balance, its compo-
nents and drivers (Figs. 5, 6, and 7) and thus more generally
for validation of energy balance satellite products and distrib-
uted hydrological models. In particular during satellite/aerial
overpasses, the EcoBot may provide an efficient means to
acquire, complementary to stationary measurements, spatially
distributed ground truth data.

Provided the proposed measurement protocol is followed,
the EcoBot offers a reliable approach to measure a larger
number of spatially distributed sampling points (possibly with
the exception of soil temperature due to the relatively long
time constant of the sensor). In combination with additional
plant- (e.g. amount and composition of above-ground
phytomass) and soil-related (e.g. soil type, colour) parameters,
these measurements offer new avenues for research into the
role of small-scale spatial variability of vegetation and soil for
land–atmosphere coupling. The inferred distribution ofRn into
G, H and λE represents an even more exciting possible appli-
cation of the EcoBot; however, due to the assumptions in-
volved, it requires further testing. The preliminary comparison
with direct eddy covariance flux measurements presented in
Fig. 7 is however encouraging.

The EcoBot was designed for short-statured canopies, less
than approximately 1 m tall, which allow a convenient oper-
ation of the net radiometer. Using a ladder, we anticipate that it
would be possible to use the EcoBot for canopy heights up to
around 2 m, such as larger bushes, agricultural crops or young
trees. For taller canopies, such as adult forests, airborne mea-
surements are likely to remain the only alternative. The
EcoBot may however be used to quantify the spatial variabil-
ity of Rn in the forest understory.

The capabilities of the EcoBot may be easily augmented by
adding additional sensors. One promising option would be to
include a pair of down- and upward looking multi-spectral or
photosynthetically active radiation (PAR) sensors. Multi-
spectral sensors are available in configurations that allow
calculation of frequently used vegetation indices such as pho-
tochemical reflectance index (Gamon et al. 1992) or normal-
ised difference vegetation index (NDVI; Tucker 1979). By
difference with the up- and down-welling shortwave radiation
measurements, PAR sensors allow calculating a so-called
broadband NDVI (Huemmrich et al. 1999). Acquisition of
these additional data would further strengthen the link be-
tween Ecobot data and satellite/airborne remote sensing and
provides proxies for the amount of vegetation and its photo-
synthetic activity (Wohlfahrt et al. 2010b; Huemmrich et al.
1999; Richardson et al. 2007; Eklundh et al. 2011).
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