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Abstract Variation in disease risk underlying observed

disease counts is increasingly a focus for Bayesian spatial

modelling, including applications in spatial data mining.

Bayesian analysis of spatial data, whether for disease or

other types of event, often employs a conditionally

autoregressive prior, which can express spatial dependence

commonly present in underlying risks or rates. Such con-

ditionally autoregressive priors typically assume a normal

density and uniform local smoothing for underlying risks.

However, normality assumptions may be affected or dis-

torted by heteroscedasticity or spatial outliers. It is also

desirable that spatial disease models represent variation

that is not attributable to spatial dependence. A spatial prior

representing spatial heteroscedasticity within a model

accommodating both spatial and non-spatial variation is

therefore proposed. Illustrative applications are to human

TB incidence. A simulation example is based on mainland

US states, while a real data application considers TB

incidence in 326 English local authorities.

Keywords Spatial � Bayesian � Conditional
autoregressive � Heteroscedasticity � Scale mixture �
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1 Introduction

Modelling variation in disease or other events underlying

observed totals for geographic areas is important for

detecting elevated rates (Beale et al. 2008). In disease

mapping, the observations often consist of incidence totals

for chronic or infectious disease. Such data are subject to

stochastic variations, and the underlying area specific

incidence risks are often the focus in data mining studies.

In such studies, the objects include extraction of underlying

spatial and spatiotemporal patterns, including detection of

elevated risk (hotspots) and spatial outliers (Shekhar et al.

2015). The particular focus of this paper is on ecological

epidemiology, in the sense of focusing on population

aggregates (Morgenstern 1995), namely geographic areas,

and on environmental and socio-economic risk factors for

infectious disease (Ploubidis et al. 2012). The applications

are to human infectious disease, namely TB incidence.

Different forms of spatial correlation analysis or model

have been proposed in disease applications (human and

veterinary), environmental science, ecology, crime and

other settings. For example, Wikle (2003) reviews hierar-

chical spatial models applied in environmental science,

including irregular lattice data (such as geographic areas)

and regular lattice data (such as air pollution grids). Beale

et al. (2010) consider how regression findings for spatial

ecology data are affected by the method used (if at all) to

reflect spatial dependence. To exemplify hierarchical

models for veterinary data, Pioz et al. (2012) apply

simultaneous autoregressive (SAR) models to investigate

bluetongue spread in French municipalities, while Farns-

worth and Ward (2009) apply Bayesian conditional

autoregressive (CAR) models to avian influenza H5N1

outbreak data. In such applications, identifying elevated

risk in particular areas, detecting elevated risk clusters, or

assessing significant predictors of risk, are emphasized, in

methods recognizing the explicitly spatial structure of the

data. However, the underlying assumptions of such tech-

niques should be assessed, and subject to modification

when indicated.
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Hierarchical models involving spatial random effects,

both CAR and SAR forms, can be estimated by classical

methods (Alam et al. 2015; Horabik and Nahorski 2010) or

Bayesian methods (Waller and Carlin 2010; Lesage 1997).

CAR spatial priors imply local smoothing of outcome rates,

that is smoothing towards the local rather than global average

(Gelman 1996; Waller and Carlin 2010). Such local dis-

continuity is demonstrated in the England TB application

considered below. Marked variability in risks has been

detected in other area studies of infectious disease (Duarte-

Cunha 2015; Varga et al. 2015; Ploubidis et al. 2012),

whereas spatial variability in relative risks of chronic dis-

eases (cancer, diabetes, etc.) is generally less pronounced.

When there are spatial discontinuities in risk, it is preferable

to allow differing strengths of association between neigh-

bouring areas, as opposed to uniform local smoothing under

CAR priors (Gelman 1996; Smith et al. 2015).

Bayesian applications in disease mapping and ecological

epidemiology commonly employ a CAR prior (Lee 2011)

to express spatial clustering in underlying risks (Besag

et al. 1991; Best 1999), including human TB incidence

(Nunes 2007; Maciel et al. 2010). Most applications of

CAR priors assume a normal density for the underlying

risks combined with uniform local smoothing. However,

normality assumptions may be vitiated by heteroscedas-

ticity linked to spatial outliers or to marked discrepancies

in risk between neighbouring areas. It is also desirable that

spatial disease models represent variation in area disease

risks that is not attributable to spatial dependence (i.e.

heterogeneity as against clustering). Some spatial priors

may represent this feature by using more than one set of

random effects, but at the cost of identifiability.

This paper considers modification of the local smooth-

ing principle when there are spatial discontinuities, namely

discrepant levels of outcome rates (e.g. disease or crime

incidence) between neighbouring areas. In particular, we

consider modifications of the normality assumption for

area random effects based on a scale mixture version of the

Leroux et al. (1999) model, allowing for heterogeneity and

clustering in a single set of random effects, but with the

scale mixture providing adaptivity to local discontinuity

and spatial outliers. The relevance of such an approach is

illustrated with simulated data on TB incidence in 49

mainland US states, and an application to observed TB

incidence in 326 English local authorities.

2 Defining conditional spatial priors

As discussed by Besag and Kooperberg (1995), one may

use properties of the multivariate normal to obtain the

univariate conditional autoregressive prior from a joint

spatial prior and vice versa. Thus consider a joint

multivariate normal density for the spatial risk effects s ¼
ðs1; . . .; snÞ for n areas, with mean zero and covariance Rs,

p(s) ¼ 1

ð2pÞn=2
Rsj j�0:5

exp �0:5s0R�1
s s

� �
ð1Þ

Denote

Q = [qij�¼R�1
s

as the precision matrix, and s½i� ¼ ðs1; . . .; si�1; siþ1; . . .; snÞ
as the totality of effects omitting the ith effect. The con-

ditional distributions for each si take a univariate normal

form (Rue and Held 2005, p. 22), namely

sijs½i� �N
X

j6¼i

�qij

qii

� �
sj;

1

qii

 !

ð2Þ

Following Besag and Kooperberg (1995, p 734) define

hii¼ 0; and set

hij ¼ �qij=qii ði 6¼ j):

Also set

qii = ai=d

with variance parameter d, so that

hij ¼ �qijd=ai ð3Þ

The density (2) is then in the conditional autoregressive

form specified by Besag (1974), namely

sijs½i� �N
X

j6¼i

hijsj; d=ai

 !

To obtain the joint density from the conditional one, sym-

metry ofQmeans�qij ¼ �qji, so that from (3) the constraint

hijai ¼ hjiaj ð4Þ

applies.

3 Conditional autoregressive spatial priors

Various schemes for defining the hij and ai can be used. A

measure of spatial dependence 0�x� 1 is included by

setting

hij ¼ x
wijP

k 6¼i

wik

; ai ¼
X

k 6¼i

wik

where wij represent spatial interactions between areas i and

j. If the interactions are specified as symmetric with

wij ¼ wji, and also with wii ¼ 0, the symmetry constraint

(4) is ensured, with hijai ¼ xwij ¼ hjiaj.

A common approach sets wij ¼ 1 for adjacent areas and

wij ¼ 0 otherwise, with
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ai ¼
X

k6¼i

wik ¼ di

then equal to the number, di, of areas adjacent to area i.

Equivalently, di is the number of areas in the locality Ni of

area i (the areas surrounding area i, and excluding area i

itself). This provides the conditionally autoregressive

CARðxÞ prior, with

sijs½i� �N x�Ai;
d
di

� �
ð5Þ

where �Ai is the average of the sj in locality Ni, i.e.

�Ai ¼

P

j2Ni

sj

di
:

Lower values of x imply lesser degrees of spatial depen-

dence between the si, though the limiting case when x ¼ 0

has the disadvantage that the variance is not constant but

depends on the number of neighbours di. The CAR(1) prior

(Besag et al. 1991) specifies relative risks entirely deter-

mined by spatial dependence, with

sijs½i� �N
X

j2Ni

sj=di;
d
di

 !

In any set of area disease rates, some spatial correlation is

typically detected, and this motivates spatial priors which

imply borrowing of strength from nearby areas. However,

there may also be particular local variations in illness risks

unrelated to those in surrounding areas, namely unstruc-

tured variation without spatial dependence. In principle, the

CARðxÞ prior (also called the proper CAR prior) can rep-

resent various levels of spatial dependence through the x
parameter, but this parameter does not calibrate well with

marginal measures of spatial correlation, such as Moran’s I

(Banerjee et al. 2004; Rodrigues and Assunção 2012).

Values of x exceeding 0.99 are needed to achieve modest

values of Moran’s I.

In practice, to represent a mix between spatial depen-

dence and simple unstructured variation, called clustering

and heterogeneity respectively by Clayton et al. (1993), a

common strategy is the so-called convolution prior (Ugarte

et al. 2005; Waller and Carlin 2010). This represents the

unknown area relative risk as a sum of a pure spatial effect

following a CAR(1) prior, combined with an iid (or

unstructured) random effect. Thus denote observed disease

counts as yi, expected counts as Ei (expected disease counts

in the demographic sense) and known area risk variables

(predictors) as Xi. Then one might specify

yi � PoðqiEiÞ;
log(qiÞ = Xib + si + hi ð6:1Þ

sijs½i� �N
X

j2Ni

sj=di;
d
di

 !

ð6:2Þ

hi �Nð0;/Þ ð6:3Þ

where qi denotes an area specific relative risk, and / is a

variance term for iid unstructured effects hi. A drawback

with this scheme is that identifiability may be impeded by

the presence of two sets for random effects representing

one underlying aspect of the data, namely variation in area

illness risks.

4 The Leroux et al. spatial prior

A scheme for area effects, incorporating both clustering

and heterogeneity, involves scale adjustments

ai ¼ ð1� kÞþ k
X

j 6¼i

wij;

with the parameter 0� k� 1 providing a measure of spatial

dependence (Leroux et al. 1999). This scheme, which may

be represented as the LLB prior by virtue of its authors, has

the benefit that only one set of random effects is involved

in representing the pattern of area illness risks. This pro-

vides improved identifiability as compared to the convo-

lution prior (Lee 2011). The case k ¼ 0 corresponds to a

lack of spatial interdependence (and i.i.d or unstructured

errors si), with the advantage that the conditional variance

is then simply d, independent of
P

j 6¼i

wij. By contrast, k ¼ 1

leads to a CARð1Þ model, with purely spatial interdepen-

dence. In typical datasets k will be intermediate between

these extreme values.

The symmetry condition hijai ¼ hjiaj is maintained by

setting

hij ¼
kwij

ð1� kÞ þ k
P

j6¼i

wij

since hijai ¼ kwij ¼ kwji ¼ hjiaj: So the conditional prior is

sijs½i� �N
k

1� kþ k
P

j6¼i

wij

X

j 6¼i

wijsj;
d

1� kþ k
P

j6¼i

wij

0

B@

1

CA

ð7Þ

with d a scale parameter. When k ¼ 0 one obtains normal

iid effects si �Nð0; dÞ: If the wij are defined by contiguity

one obtains (Leroux et al. 1999, p 181)

sijs½i� �N
k

1� kþ kdi

X

j2Ni

sj;
d

1� kþ kdi

 !

ð8Þ
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5 Adaptiveness to non-normality and spatial
discontinuities

Proposals to modify spatial priors to achieve greater

robustness have been made, including the presence of

heteroscedasticity and heavier tails (excess kurtosis) than

under the normal. Thus Yan (2007), Brewer and Nolan

(2007), and Reich and Hodges (2008) propose modified

CAR priors to accommodate heteroscedasticity. Other

forms of modified spatial prior are considered by Nathoo

and Ghosh (2013) and Lawson and Clark (2002). These

schemes are all modifications of the CAR prior, or of the

convolution prior, as considered in Sect. 3. Modifications

of the pure spatial CARð1Þ prior, without allowance for

spatially unstructured variation, may be appropriate for

particular applications, such as dental decay as in Reich

and Hodges (2008), but for area illness data an allowance

for heterogeneity is generally needed. Modification of the

proper CARðxÞ prior are left with the problem that its x
parameter does not calibrate well with marginal measures

of spatial correlation. Studies such as Yan (2007) and

Lawson and Clark (2002) modify the convolution prior,

with potential identifiability problems due to multiple sets

of random effects. Thus Yan (2007) allows for

heteroscedasticity in spatial effects via a double imple-

mentation of the CARð1Þ prior, namely

yi � PoðqiEiÞ;
logðqiÞ ¼ Xibþ si þ hi;

sijs½i� �N
X

j2Ni

sj=di;
ds
di

 !

;

hi �Nð0; uiÞ;
logðuiÞ ¼ lh + ri;

rijr½i� �N
X

j2Ni

rj=di;
dr
di

 !

:

Here we modify the constant scale assumption of the LLB

prior in (7) and (8) using a scale mixture, with the benefit

of providing an indicator of potential outlier status for each

area. To implement a scale mixture, define ji �
Ga(0:5m; 0:5mÞ where m is a hyperparameter. The proposed

model reduces to the scale mixture version of the Student t

when k ¼ 0 (Boris Choy and Chan 2008). The ji have

average 1 with small values of ji (under 1) acting as

indicators of outlier status (West 1984). Under this scale

mixture modification, the symmetry condition (4) is

maintained by setting

ai ¼ ji ð1� kÞ þ k
X

j 6¼i

wij

" #

;

hij ¼ kwijjj

1� kþ k
P

j 6¼i

wij

" #;

since hijai ¼ kwijjjji ¼ kwjijijj ¼ hjiaj.Then the model

for incidence counts becomes

yi � PoðliÞ;
li ¼ qiEi;

logðqiÞ ¼ Xibþ si;

where the conditional prior when the wij are binary indi-

cators of adjacency is

sijs½i� �N
k

1� kþ kdi

X

j2Ni

jjsj;
d

ji½1� kþ kdi�

 !

: ð9Þ

This prior reduces to an unstructured i.i.d scale mixture

Student-t density

si �Nð0; d=jiÞ;

when k ¼ 0.

From (9) it can be seen that small jj values indicate

areas discrepant in risk from their neighbours (i.e. they

indicate outliers in spatial terms), and reduce the amount of

spatial borrowing of strength. Equivalently stated, a clus-

tering of small jj values can be taken as indicators of

spatial volatility, namely discrepant illness risks in a set of

adjacent areas. In regression applications, small jj values
will also indicate where the regression predictions in the

neighbourhood of area i, and their implied neighbourhood

relative risk
P

j2Ni

lj=
P

j2Ni

Ej, are discrepant from the mod-

elled relative risk in area i itself li=Ei.

Let s ¼ 1=d; and let Iði� jÞ ¼ Iðj� iÞ denote that areas i
and j are neighbours under binary adjacency. Then the

precision matrix in the multivariate normal (1) has diagonal

terms

Qii ¼ sai ¼ sji ð1� kÞ þ k
X

j 6¼i

wij

" #

;

and off diagonal terms

Qij ¼ �saihij ¼ �skjijjIði� jÞ:

A scale mixture approach to spatial dependence can be set

within a broader literature on heavy tailed priors (e.g.

student t, double exponential) that can be represented as

two level hierarchical models (Yi and Xu 2008). One

application of such priors is to predictor selection in high

dimensional regression, with a likelihood penalty function

that is a normal scale mixture (e.g. Polson et al. 2014).

Besag et al. (1991) propose a double exponential prior for

spatial effects as a robust alternative to the normal
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conditional autoregressive, with an application provided by

Manda (2013).

Identification of random effects in spatial disease mod-

els is often problematic (e.g. MacNab 2014; Nathoo and

Ghosh 2013), especially for models including multiple

random effects, or when disease counts are relatively small.

In the case of the model just discussed, identification of

outliers (e.g. in terms of significantly low ji), as well as

identification of elevated risks si; will be improved for

larger disease counts and/or longer observation periods.

Identification of hyperparameters may also be problematic,

especially with small samples. For example, in student t

binary regression with data augmentation, Gelman et al.

(2004, p 447) recommend a robust analysis with m not

estimated but preset at 4.

6 Simulation example

A simulation example of the heteroscedastic LLB prior

involves TB incidence with a spatial framework provided

by the n ¼ 49 mainland states (including the District of

Columbia). Expected TB incidence counts Ei are obtained

by applying actual US-wide age specific rates for TB in

2013 to state population estimates for 2013, taken from the

US National Cancer Institute SEER site (http://seer.cancer.

gov/popdata/). TB incidence rates are from the CDC

National Tuberculosis Surveillance System, with just over

9500 incident cases in 2013, and an all ages rate of 3 per

100,000. Highest rates (over 6 per 100 thousand) are for the

75-84 and 85 ? age groups.

We simulate TB incidence counts using these expected

counts as offsets. The LLB hyperparameters (guide values)

are set as k ¼ 0:7; s ¼ 3, and with m taking values 3,10,

and 25. Although the student t is defined for degrees of

freedom of 2 or less, it has infinite variance, and Gelman

et al. (2004) mention that ‘‘t’s with one or two degrees of

freedom have infinite variance and are not usually realistic

in the far tails’’. One hundred sets of random effects are

generated from the multivariate normal s1 : n �N(0, Q�1Þ.
Simulated TB incidence counts are then obtained via a

Poisson simulation yi � Po(EiqiÞ, with logðqiÞ ¼ b0 þ si;

where b0 ¼ �0:1, and qi is the simulated disease relative

risk in state i (relative to that expected on the basis of US

wide incidence levels). The R code used is set out in

‘‘Appendix’’. Note that each of the 100 simulations

involves a separate sample of ji �Gað0:5m; 0:5mÞ.
Analyses to estimate the parameters from the 100 sets of

simulated data fy; Eg (with E as in the simulations) are

carried out using the WINBUGS package (Lunn et al.

2009). An exponential prior with mean 10 is adopted for

m (Fernandez and Steel 1998; Geweke 1993), a gamma

prior with shape 1 and index 0.01 assumed for the inverse

variance parameter s, a normal prior with mean zero and

precision 0.001 assumed for the fixed effect b0, and a

uniform Uð0; 1Þ prior assumed on k. Estimates are based

on the last 5000 iterations from two chain runs of 10,000

iterations, with convergence assessed using Brooks–Gel-

man–Rubin diagnostics (Brooks and Gelman 1998).

The focus is on the posterior means for the main

parameters of the LLB prior and risk regression over the

100 samples, namely m; k; b0, and the variance of the

spatial effects (which depends on both s and the sampled

jiÞ. The posterior densities for m tend to be positively skew,

so Table 1 also includes results for the posterior summary

of log(m). Because each simulation involves a distinct set of

Table 1 Recovered parameter

estimates from 100 simulated

datasets

Parameter Percentiles of posterior means Samples with 95 % credible interval

containing guide value

20th 50th 80th Percent

(a) m set to 3

k 0.44 0.59 0.67 99

m 2.4 4.5 8.4 95

log(m) 0.76 1.29 1.88 95

b0 -0.26 -0.12 0.04 88

(b) m set to 10

k 0.52 0.65 0.72 99

m 7.8 10.4 12.5 100

log (m) 1.68 2.09 2.36 97

b0 -0.26 -0.14 0.01 91

(c) m set to 25

k 0.53 0.65 0.73 100

m 16.1 23.4 31.0 99

log(m) 2.22 2.65 3.03 99

b0 -0.28 -0.15 -0.02 84
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ji, the actual variance of the si will vary between simula-

tions . This variance Vt of spatial effects for simulation t is

recorded in the vector var.s[] in the code in ‘‘Appendix’’.

Table 1 sets out the percentiles (20th, 50th, 80th) of the

100 posterior means for m; logðmÞ; k; and b0, and also the

proportion of simulated datasets where the 95 % credible

interval for a parameter includes the guide value. Thus for

the setting m ¼ 10, 50 out of the 100 samples have posterior

means for m below 10.4, and 50 samples have posterior

means above 10.4.

The expected Ei are relatively large, so the Poisson

simulations may be subject to some excess dispersion,

which to some extent attenuates the spatial structure pre-

sent in the simulated data. Nevertheless, the recovered

parameters effectively reproduce those used in generating

the data. This feature is also apparent in a correlation

between the actual and estimated Vt over the 100 samples

of 0.97. Figure 1 plots the two series of Vt for the m ¼ 10

option, including 95 % credible intervals for the estimated

Vt. Of substantive relevance in interpreting the parameters

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

0 5 10 15 20 25 30 35 40 45 50

Sampled variance 

Es�mated variance 

Est variance 2.5% 

Est variance 97.5% 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

50 55 60 65 70 75 80 85 90 95 100

Sampled variance 

Es�mated variance 

Est variance 2.5% 

Est variance 97.5% 

(a)

(b)

Fig. 1 a Simulated and

estimated spatial effect

variances: US Mainland States

(1st 50 Samples). b Simulated

and estimated spatial effect

variances: US Mainland States

(2nd 50 Samples)
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of the LLB model, there is a 0.72 correlation between the

100 posterior means for k; and the corresponding posterior

means for Moran’s I, which are estimated from the si in

each dataset. To further illustrate variation over the simu-

lations, Fig. 2 shows, for each simulated dataset, the pos-

terior mean (and 95 % interval) of log(mÞ under the m ¼ 3

option.

One also wishes to reproduce the patterns of outlier

status (areas with significantly low ji). This involves, for

the setting m ¼ 10 (and other hyperparameters as above),

simulating 100 sets of y based on a single set of ji values
(the ‘‘actual’’ jiÞ, sampled from a gamma density,

ji �Gað5; 5Þ: The expected incidence counts are multi-

plied by 10 to increase the amount of information provided

by the data. Re-estimation of ji from the simulated datasets

shows a shrinkage effect, with posterior mean re-estimated

ji closer to 1 than the actual ji (see Fig. 3). However, the

re-estimation does identify as outliers the states with

unusually low actual ji: For the five states with the lowest

actual ji; four have 95 % credible intervals on the re-es-

timated ji that are entirely below 1, and no other states

have re-estimated ji with credible intervals entirely below

1.

7 Application: TB incidence for England local
authorities

An application involves TB incidence data y for 326

English local authorities between 2011 and 2013. Two

analyses are undertaken, one without predictors and one

with two predictors: an index of multiple socio-economic

deprivation (X1) and population density (X2). The impact

of poverty on TB incidence is well documented (Lopez de

Fede et al. 2008) and population density is associated with

infectious disease risk as ‘‘the likelihood that a susceptible

person will be exposed to an infectious tuberculosis patient

increases with population density’’ (Rieder 1999). The two

predictors are centred and divided by 100. Thus with pre-

dictors Xi ¼ ð1; X1i; X2iÞ, under the scale mixture model

we have

yi � PoðliÞ;
li ¼ qiEi;

logðqiÞ ¼ Xibþ si;

sijs½i� �N
k

½1� kþ kdi�

X

j2Ni

jjsj;
d

ji½1� kþ kdi�

 !

;

ji �Gað0:5m; 0:5mÞ:

For the original Leroux et al. (1999) scheme, the condi-

tional prior for si is as in (8).

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

1 11 21 31 41 51 61 71 81 91

Mean 

2.5% 

97.5% 

Fig. 2 Posterior intervals, re-

estimated log(m), 100 simulated

datasets with m = 3

0.75 

0.8 

0.85 

0.9 

0.95 
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1.1 

1.15 

0.20 0.70 1.20 1.70 2.20

Re-es�mated 
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Fig. 3 Pre-simulated and posterior mean re-estimated ji. simulated

data (100 datasets) with preset ji
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Prior settings are as in Sect. 6, and inferences are from

the last 5000 iterations from two chain runs of 10,000

iterations, with convergence assessed using Brooks–Gel-

man–Rubin diagnostics. Table 2 contains parameter sum-

maries and comparison of measures of fit between the

original LLB model (Sect. 4) and the heteroscedastic

Leroux (Sect. 5). Fit is assessed using the posterior pre-

dictive loss (PPL) criterion (Gelfand and Ghosh 1998).

Consider replicate observations yrep sampled from the

posterior predictive density pðyrepjyÞ. The PPL involves

defining t(z) ¼ z log z� z, and ni ¼ t(yi; repÞ: Letting gi and

/i denote posterior means for yi; rep and ni; the PPL is

2
X

i

f/i � tðgiÞg þ 2ðk + 1Þ
X

i

tðgiÞ þ ktðyiÞ
k + 1

n

�t
gi þ kyi
k + 1

� �o
:

where the left term is a penalty complexity, and different k

values put different stress on fit and parsimony. In Table 2,

two values of k are used, k ¼ 0:5 and k ¼ 5, with the latter

putting more stress on goodness of fit.

Also presented are predictive checks based on replicate

observations. Posterior predictive probabilities Prðyi; rep [
yijyÞ in extreme tails (e.g. values under 0.1 or over 0.9)

indicate poorly fitted cases. The mixed predictive

scheme (Marshall and Spiegelhalter 2003), providing

checks that are close to leave-one-out cross validation

(Green et al. 2009), was also applied. This involves sam-

pling new random effects si; rep, and then sampling replicate

data yi; rep;mixed conditional on these new effects.

Table 2 shows that fit is generally improved under the

heteroscedastic option, and predictive checks are also

improved. The estimates for k suggest that spatial depen-

dence is not overly pronounced, and hence illustrate the

broader principle that a spatial prior represent unstructured

as well as structured variation: estimates of k are all under

0.8. Figure 4 demonstrates disjunction between high risk

and adjacent low risk areas. Table 2 also shows positive

Table 2 Model assessment and parameter summaries, models without and including predictors

Model fit and checks LLB constant scale Scale mixture LLB

Model without predictors

Fit measures

PPL (k = 0.5) 645.8 630.6

PPL (k = 5) 677.4 661.9

Predictive checks

Total observations overpredicted, with Pr(yi,rep[ yi|y)[ 0.9 5 0

Total observations underpredicted, with Pr(yi,rep[ yi|y)\ 0.1 0 0

Total observations overpredicted, with Pr(yi,rep,mixed[ yi|y)[ 0.9 30 25

Total observations underpredicted, with Pr(yi,rep,mixed[ yi|y)\ 0.1 38 33

Model with predictors

Fit Measures

PPL (k = 0.5) 622.2 616.3

PPL (k = 5) 666.6 660.2

Predictive checks

Total observations overpredicted, with Pr(yi,rep[ yi|y)[ 0.9 5 3

Total observations underpredicted, with Pr(yi,rep[ yi|y)\ 0.1 0 0

Total observations overpredicted, with Pr(yi,rep,mixed[ yi|y)[ 0.9 31 27

Total observations underpredicted, with Pr(yi,rep,mixed[ yi|y)\ 0.1 31 25

Parameter Summaries (posterior mean, 95 % credible intervals) LLB constant scale Scale mixture LLB

Model without predictors

k Spatial dependence 0.59 (0.37, 0.89) 0.57 (0.37, 0.86)

m Scale mixing parameter 8.1 (4.2, 15.9)

Model with predictors

k Spatial dependence 0.76 (0.49, 0.98) 0.75 (0.51, 0.98)

m Scale mixing parameter 10.4 (4.2, 27.3)

b1 Effect of deprivation 4.98 (4.01, 6.11) 4.96 (3.71, 6.23)

b2 Effect of population density 1.34 (0.98, 1.7) 1.25 (0.75, 1.81)
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effects for both predictors but less precise effects under the

scale mixture approach, in line with a general principle that

neglecting heteroscedasticity may lead to mis-stated

regression coefficient standard errors.

Table 3 contains a more detailed assessment of predic-

tive discrepancies between the two approaches for the

regression without predictors. As mentioned above, the ji
effects will act to identify spatial outliers, with illness

levels discrepant from their neighbours, and so Table 3

contains the 20 areas with the lowest posterior mean ji
under the scale mixture approach. One may assess spatial

outlier status to some extent from the observed data. The

first two columns of Table 3 contain maximum likelihood

(ML) relative risks in each area Ri ¼ yi=Ei, and relative

risks in the neighbourhoods Ni of each area, with ML

estimates Li ¼
P

j2Ni

yj=
P

j2Ni

Ej:

Table 3 shows two types of outlier. One consists of

major urban centres with high risk themselves, but a low

risk hinterland (e.g. areas 1,2,3, and 8 in the Table). For

example, Fig. 5 shows estimated relative risk patterns

around area 2 (Leicester). These areas are underpredicted

under the constant scale model, with mixed predictive

Prðyi; rep;mixed [ yijyÞ p-values under 0.025. Under the scale
mixture model they have higher means li, closer to the

observed yi, as there is less local borrowing of strength.

The other type of outlier (e.g. areas 5 and 6 in the Table)

are low risk areas with much higher risk neighbourhoods.

These are overpredicted under the constant scale model,

with Prðyi;rep [ yjyÞ ¼ 0:91, and Prðyi; rep;mixed [ yijyÞ ¼ 1

for area 6. Under the scale mixture model, modelled means

are reduced closer to the observed yi. For all 20 areas, 19

have mixed predictive p-values under 0.05 or over 0.95

Fig. 4 Modelled relative risks

of TB incidence, scale mixture

model
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Fig. 5 modelled relative risks of TB incidence around Leicester, scale mixture model
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under a constant scale model, whereas under the scale

mixture, this is reduced to 12 out of 20.

Table 4 contains the 10 areas with the lowest posterior

mean ji under the scale mixture approach when the two

covariates are included. These areas illustrate when mod-

elled relative risk in area i itself li=Ei are discrepant from

implied relative risk
P

j2Ni

lj=
P

j2Ni

Ej in the locality of area i.

These discrepancies may be related to covariate patterns.

Under a scale mixture approach, local borrowing of

strength is lessened, and Table 4 shows that the predicted

TB counts li are closer to the actual counts than under the

constant scale LLB.

8 Conclusion

Different forms of spatial correlation analysis or modelling

have been proposed in disease applications, ecological

epidemiology, environmental science and other settings.

Both Bayesian and frequentist estimation have been used.

Common themes include identifying elevated risk areas or

clusters of areas, and finding predictors of risk, while

recognizing the explicitly spatial structure of the observa-

tions. For example, in a review of regression findings from

spatial species abundance data, Dorfmann (2007) shows

that ignoring spatial dependence (e.g. in regression resid-

uals) leads to possible bias in parameter estimates and

optimistic standard errors. However, while it is important

to incorporate spatial dependence in models for area data,

the assumptions of such techniques should be assessed, and

subject to modification when the data so indicate. In par-

ticular, spatial discontinuities suggest a modification to the

principle of uniform local smoothing.

In particular, Bayesian analyses of spatially arranged

data often employ a conditionally autoregressive prior,

which can express spatial clustering commonly present in

the underlying risks, but typically assume a normal density

for risks and uniform conditional association. However, a

more sensitive parameterisation with utility in detecting

outliers and locally irregular risk patterns may be obtained

by allowing for non-normality. Commonly applied condi-

tionally autoregressive priors, such as the proper CAR prior

and the convolution prior, also have potential deficits when

the observations contain a mixture of spatial dependence

and unstructured heterogeneity. The present paper has

proposed a scale mixture version of the Leroux et al.

(1999) spatial prior, combining the benefit of adaptability

when risks are discrepant in adjacent areas, and also a less

problematic approach to representing a mixture of clus-

tering and heterogeneity.

The analyses here show improved fit to infectious dis-

ease data, which may often show pronounced risk vari-

ability between areas. In England, high risk areas are often

major urban centres, whereas the neighbouring suburban or

rural hinterlands of such centres may be low risk. In such

situations some modification of the uniform local borrow-

ing of strength principle may be beneficial.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a link

to the Creative Commons license, and indicate if changes were made.

Appendix

The R code for simulating data for 49 mainland US states is

as follows:

# 49 by 49 binary adjacency matrix

W\- read.table(‘‘adj_state.txt’’)

# numbers of neighbours

Table 4 Areas ranked by outlier status, regression with predictors

Name Events Scale mixture LLB Constant scale LLB

j li Model RR (li/Ei) Model neighbourhood RR li

Brent 896 0.57 892.9 7.22 2.41 889.7

Peterborough 170 0.60 166.3 2.06 0.35 165.1

Barnsley 20 0.60 23.7 0.24 0.85 24.8

Swale 8 0.62 11.1 0.20 0.50 11.7

Woking 57 0.67 54.2 1.26 0.39 53.7

North Lincolnshire 47 0.68 43.5 0.61 0.27 43.0

Kirklees 287 0.69 283.1 1.53 1.00 281.9

Newham 1072 0.71 1068.0 9.34 2.99 1068.0

Tandridge 3 0.71 6.8 0.21 1.10 7.5

Rushmoor 81 0.72 78.0 1.79 0.36 77.6
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d = c(4,5,6,3,7,3,3,2,2,5,6,5,4,6,4,7,3,1,5,5,3,4,4,8,4,6,5,3,

3,5,5,4,3,5,6,4,6,2,2,6,8,4,6,3,6,2,5,4,6)

# expected events (TB incidence)

E\- c(147,199.5,89.6,1144.7,157.6,111.2,28.5,20.2,621.5,

293.7,47.4,389.3,

197.3,94.5,86.5,133.4,138.4,42.4,180.1,207.7,302.4,164.4,

89.1,184.3,31.4,56,83.8,41.3,272.8,62.7,606.1,297.6,22,

354.4,115.3,121.5,399.6,

32.8,145.3,25.5,197.4,765.3,79.8,19.7,250.2,211.6,58.4,

175.8,17.5)

# parameter and data definitions

N\- 49; Tau\- 3; lam = 0.7; T\- 100; nu\- 10;

nu.2\- nu/2

kap\- Qdiag\- numeric(N); var.s\- numeric(T)

y\- matrix(,N,T); Q\- C\- matrix(,N,N)

library(mvtnorm)

# simulation

for (t in 1:T) {for(i in 1:N) {# scale mixture effects

kap[i]\- rgamma(1,nu.2,nu.2);

Qdiag[i]\- Tau*kap[i]*(1-lam ? lam*d[i])}

for(i in 1:N) {for (j in 1:N) {

Q[i,j]\- (i ==j)*Qdiag[i]-(1-(i ==j))*Tau*lam*W[i,j]*

kap[i]*kap[j]}}

C\- solve(Q)

s\- rmvnorm(1, mean = rep(0, nrow(C)), sigma = C,

method = c(‘‘svd’’))

eta\- log(E)-0.1 ? s

mu\- exp(eta)

var.s[t]\- var(s[1:N])

for (i in 1:N){y[i,t]\- rpois(1,mu[i])}}
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