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Abstract Wilms’ tumor (WT), a common renal pediatric
solid tumor, serves as a model for a malignancy formed by
renal precursor cells that have failed to differentiate proper-
ly. Here we review recent evidence showing that the tumors’
heterogeneous cell population contains a small fraction of
cancer stem cells (CSC) identified by two markers: Neural
Cell Adhesion Molecule 1 (NCAMI) expression and
Aldehyde dehydrogenase 1 (ALDHI1) enzymatic activity.
In vivo studies show these CSCs to both self-renew and
differentiate to give rise to all tumor components. Similar to
other malignancies, the identification of a specific CSC
fraction has allowed the examination of a novel targeted
therapy, aimed at eradicating the CSC population. The loss
of CSCs abolishes the tumor’s ability to sustain and propa-
gate, hence, causing tumor degradation with minimal damage
to normal tissue.
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Introduction

Wilms’ tumor (WT), also known as nephroblastoma, is the
most common pediatric renal tumor. It accounts for 6 % of
tumors in patients under the age of 15 and is the second
most frequent intra-abdominal pediatric tumor [1]. WT af-
fects 1 in 10,000 children in North America, usually arising
before the age of 5 with equal incidence between genders
[2]. Most WT cases are sporadic, although 1-2 % of patients
have a family history. Familial cases are associated with a
higher frequency of bilateral tumors, as well as a lower age
at diagnosis [2]. Genetic alterations are observed in only
one-third of all Wilms’ tumors, while the most common
changes occur in the WT1, WTX, CTNNBI (encodes [3-
catenin), and 7P53 genes. Several syndromes are associated
with an increased incidence of Wilms’ tumor; these include
WAGR (Wilms’ tumor, aniridia, genitourinary abnormali-
ties, and mental retardation), Denys—Drash syndrome,
Frasier syndrome, and Beckwith—Wiedemann syndrome
among others [3]. The fact that two-thirds of all WT cases
cannot be linked to any genetic aberration emphasizes the
need to further explore the pathophysiology of these tumors.
WT is characterized by its unique histology; the tumor is
composed of three main elements: blastema, epithelia, and
stroma. The blastema component consists of sheets of
densely packed small cells with hyperchromatic nuclei and
conspicuous mitotic activity; the epithelial component con-
sists of primitive cuboidal cells forming tubular structures
and rosettes; and the stromal component is composed main-
ly of fibroblast-like cells that reside between nodules of
blastema. This unique histology is suggestive of incomplete
and disorganized kidney development. Accordingly, the tu-
mor is believed to arise from renal precursor cells which
have failed to differentiate properly. The differentiation fail-
ure results in the appearance of similar tissue components in
WT as in the fetal kidney (i.e., blastema, stroma, and epi-
thelia) without proper tissue architecture (Fig. 1). Thus, WT
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Wilms’ tumor

Fig. 1 Wilms’ tumor and the human fetal kidney show marked histo-
logical resemblance. H&E staining of favorable histology tri-phasic WT
(right) and human fetal kidney (/eff) showing similar cellular components
in both tissues—Blastema (B) vs. the metanephric mesenchyme (MM,;

is an attractive model for studying the connection between
cancer and development. In fact, WT research has already
provided significant information regarding the genetic and
epigenetic events leading to the development of pediatric
tumors. Specifically, global gene and chromatin analysis
comparing WT to the renal progenitor pool of the develop-
ing human kidney has linked early renal stem/progenitor
genes to WT oncogenesis [4—10].

Cancer stem cells—past and current

Similar to the tissues from which they arise, neoplasms have
long been viewed as being composed of heterogeneous
populations of cells [11]. While most cells are destined to
differentiate, albeit aberrantly, and eventually stop dividing,
a small subset of cells within the tumor, termed cancer stem
cells (CSCs), actively sustain the capability of the tumor to
grow and propagate. The cancer stem cell population is
defined by two main properties which they share with their
normal counterparts: self-renewal and differentiation capac-
ities (Fig. 2). Self-renewal is a unique property, allowing
unlimited cell division and preservation of the stem cell pool
in the tissue. The ability of stem cells to differentiate and
create progeny that continue to divide until they produce
terminally differentiated specialized cells, allows them to
regenerate the tissue in which they reside. Both these prop-
erties apply also to CSCs, allowing them to initiate tumors
and maintain their growth, while giving rise to all cell
phenotypes of the parental tumor. Other key features of both
normal and cancer stem cells include: activation of
pluripotency genes (i.e., OCT4, SOX2, NANOG), formation
of tumor spheres in low-adherence cultures, and multi-drug
resistance [12]. Cancer stem cells are thought to differ from
their normal counterparts in their ability to continuously
proliferate and sustain tumor growth, disregarding inhibito-
ry signals from their environment [13]. This independence
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not shown); immature tubules (IT) vs. tubules (T); glomeruloid bodies
(GB) vs. glomerular tuft (GT) and stroma (St) vs. interstitium (Ins)—in
WT and the human fetal kidney, respectively

can be explained by the differences between normal stem
cells and cancer stem cells in the degree to which they
depend on the stem cell niche, a specific microenvironment
in which stem cells reside. It has been shown that the stem
cell niche in normal adult tissues plays an essential role in
maintaining stem cells as well as preventing tumorigenesis
by providing inhibitory signals for proliferation and differ-
entiation. On the other hand, it provides stimulatory signals
for stem cell proliferation when tissue regeneration is need-
ed [14]. The balance between inhibitory and stimulatory
signals is the key for regulation of the balance between stem
cell maintenance and tissue regeneration [15].

The history of the CSC theory can be traced back more
than 70 years. In 1941, teratocarcinomas were found to
contain both differentiated and undifferentiated cells, lead-
ing to the notion that the undifferentiated cells represent
multi-potent cancer cells [16]. In 1963, over four decades
ago, Bruce and Van Der Gaag were the first to suggest the
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Fig. 2 The cancer stem cell model. A cancer stem cell (red) is
defined by two main properties: self-renewal and differentiation
capacities. A single cancer stem cell (CSC) possesses the ability

to form a full heterogeneous tumor, recapitulating all cell types
found in the original tumor
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existence of cancer initiating cells (CICs) in murine lym-
phoma and a method for their in vivo quantification [17]. In
1977, Hamburger et al. published a method for supporting
colony growth of human tumor stem cells in soft agar [18,
19]. Buick et al. developed an in vitro system for measuring
the frequency of clonogenic cells within tumors more accu-
rately in semi-solid cultures [20, 21]. They managed to
demonstrate the self-renewing ability of blast progenitors
in acute myeloid leukemia (AML) [22, 23]. Consequently,
McCulloch and colleagues postulated that AML can be
considered as a clonal hemopathy [22, 23]. However, the
first prospective identification, characterization, and isola-
tion of CSC/CICs was performed years later in AML on the
basis of their phenotypical similarities to normal hematopoi-
etic stem cells [24]; in their innovative work, Dick and
colleagues have identified CD34'CD38  cells as AML
CSCs [24, 25]. Subsequently, the group reported that only
CD34"CD38 cells were able to reproduce AML in recipi-
ent immunodeficient mice, which closely resembled the
original patient’s disease, and exhibited its full heteroge-
neous phenotype.

Following AML, recent years have seen the identification
and isolation of cancer stem cells in various solid organ
malignancies. The first to identify such cells was Al-Hajj
who found that breast cancer cells with CD24-CD44+ phe-
notype are able to form tumors that recapitulate their paren-
tal tumor when implanted in the mammary fat pad [26].
Immediately following this discovery, CD133+ cells were
identified as tumor stem cells in glioblastoma brain tumors
[27] and thereafter in colon cancer [28]. In the past few
years, high ALDH]1 activity levels have been used to iden-
tify CSCs in a variety of tumors including liver, head and
neck, colorectal, breast, multiple myeloma, acute myeloid
leukemia, and brain cancers [29-35]. Moreover, a link be-
tween poor prognosis and increased ALDHI1 activity was
found in breast tumors [33]. Since the above discoveries, as

Fig. 3 CSCs are resistant to
conventional chemo-/
radiotherapies. Conventional
therapy (fop) does not target the
CSC fraction. Despite tumor
size reduction, the tumor
initiation capacity is maintained
and the tumor relapses. Only a
treatment strategy that
specifically targets CSCs
(bottom) may lead to a complete
and durable regression of
malignant cancers

Targeted CSC
therapy

Conventional
treatment

well as additional CSCs markers, CSCs have been prospec-
tively isolated from a variety of malignancies, thus far
including pancreas, skin, head and neck, and prostate can-
cers, and the list is ever growing [26-28, 36-38]. The
identification of CSCs was facilitated by significant prog-
ress achieved over the last several years in this field. To
date, the gold standard for CSC identification is xenotrans-
plantation of human tumor cells into immunodeficient mice.
The injection of tumor cell subpopulations, selected based
on the differential expression of specific markers, allows the
assessment of the tumorigenic potential of different subpop-
ulations within the tumor. The subpopulation identified with
tumorigenic capacity is implicated as the CSC population.
In addition, mainly for support of the in vivo methods, in
vitro assays have been developed for CSC identification,
including colony formation assay, sphere formation assay,
the side population (SP) assay, differentiation potential as-
says, and label retention cell assay [39].

Despite significant improvements in cancer treatment in
the past few decades, two of the major challenges remaining
are late cancer relapse and tumor resistance to therapy.
These challenges may result from residual cancer stem cells,
which may be resistant to conventional chemo- and radio-
therapies and are therefore difficult to eradicate. Gerber et
al. demonstrated, for the first time, that the presence of
CSCs in AML correlates with a poor clinical outcome and
suggested that those cells may be responsible for tumor
relapse [40]. Therefore, these cells could be responsible for
the selection of drug-resistant clones and the eventual de-
velopment of multidrug resistance (Fig. 3). There are several
mechanisms that may mediate CSC resistance to chemother-
apy and radiation, these include: the quiescent nature of
CSCs shown in several malignancies, their presence in
hypoxic niches into which therapies fail to penetrate, the
up-regulation of DNA damage response mechanisms by
these cells, and their increased drug efflux capacity [41].

Tumor relapse
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Identifying the CSCs and understanding the mechanisms
involved may assist unraveling new therapeutic targets and
creating new improved specific treatments (Fig. 3).

Cancer stem cells in Wilms’ tumors

Following the definition of what a cancer stem cell is (see
previous section), our lab attempted to study the CSC model
in WT. Studying the CSC model in WT employs the use of
single tumorigenic WT cells upon xeno-transplantation. This
presented two main inherent limitations: first, tumorigenic-
favorable histology WT cell lines are not obtainable, and
second, primary Wilms’ tumor tissues, like other pediatric
solid tumors, are less available compared to fresh surgical
adult carcinomas [42]. Moreover, establishment of WT xeno-
grafts from single cells, derived from fresh primary WT, has
been estimated at 30 % graft take [43] and in our experience
approximately 10 %, while after culture and in vitro growth of
primary WT cells, xenograft formation is unattainable. These
limitations were circumvented by the establishment of human
WT xenograft models that recapitulated the components of the
original parental tumor. Single tumorigenic WT cells could be
robustly derived from these human WT xenografts and
afforded the opportunity to perform in vitro and in vivo assays
required to examine the CSC model in WT. Previous work
aimed at deciphering the clonogenic and progenitor properties
of primary WT cells in vitro suggested NCAM1 as a putative
marker for WT CSCs [44]. The NCAM 1+ cell population was
shown to be highly clonogenic, over-expressing WT stemness
and progenitor genes (e.g., WT1, SIX2, EZH2, BMI-1, FZD7,
NANOG) and topoisomerase 2A (TOP2A4), a WT bad prog-
nostic marker. Later, by working with the WT xenograft
model, performing limiting xenotransplantation (LDTA), we

were able to show that the initiation and propagation of human
WT xenografts by unsorted WT-xenograft-derived cells re-
quired a minimum of 10,000 cells. Hence, the propagation of
human WT in mice self-enriches for the CSC phenotype [6,
42]. However, only prospective isolation of the NCAM1* WT
cell fraction from xenografts enabled tumor initiation and
propagation from as few as 500 cells. Further fractionation
of the NCAMI™" heterogeneous population into cell subsets
revealed that the addition of aldehyde dehydrogenase 1
(ALDHI1) activity to NCAM1 expression during cell selec-
tion, allowed for tumor initiation from only 200 purified
NCAMI1'ALDHI" cells. Xenografts derived from the
NCAMI'ALDHI1" cell fraction recapitulated at least
the tri-component phenotype of their parental WT. In
addition, xenograft tumors initiated from NCAM1"ALDHI"
cells were further sorted into NCAMI ALDHI" and
NCAMI"ALDHI1~ WT cells and injected into secondary re-
cipients (i.e., NOD-SCID or NOG mice), in serial dilutions.
Consequently, only the NCAM1 ALDH1" samples were ca-
pable of tumor initiation. These experiments indicate two fun-
damental traits exclusively observed in NCAM1"ALDHI"
cells: in vivo differentiation and self-renewal capacities, impli-
cating this cell fraction as the Wilms’ tumor CSCs (Fig. 4). In
vitro data corroborated in vivo experiments disclosing
“stemness” properties of NCAM1"ALDH1" WT cells; qRT-
PCR of NCAMI"ALDHI" demonstrated significant elevation
of transcripts of renal progenitor genes (i.e., NCAMI, SALLI,
SIX2, OSRI), “stemness” genes (i.e., BMII, EZH2, OCT4)
and poor prognostic genes (i.e., TOP2A, N-MYC, CRAB2P)
in comparison to NCAMI1'ALDHI1 cells. In addition,
colony-forming assays showed a significantly higher number
of clones and larger colonies in NCAM1"ALDHI" compared
to NCAMI ALDHI1 ™ cells, in line with their CSC phenotype
[42].

® 5 &

Fig. 4 In vivo self-renewal of WT CSCs. Wilms’ tumor xenografts were
sorted according to NCAMI expression and ALDHI activity in order to
isolate the CSCs. Two hundred NCAM1"ALDHI1" Wilms* tumor xeno-
graft-derived cells were injected into immunodeficient mice and a
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heterogeneous Wilms’ tumor was formed. The tumor was then dissoci-
ated into a single cell suspension and the CSCs were again sorted and
injected into immunodeficient mice. The procedure was repeated several
times, demonstrating the CSCs’ in vivo self-renewal capacity
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Hence, the identification and characterization of the WT
cancer stem cells unveiled new therapeutic targets in WT.

Wilms’ tumor treatment

Several decades ago, WT was mainly treated by means of
nephrectomy and postoperative radiotherapy, with only
30 % surviving their illness [33]. Today, most WT patients
are treated with a combination of surgery and chemotherapy,
while cases exhibiting poor prognostic factors are treated
with radiotherapy. Reports from the National Wilms” Tumor
Studies (NWTS) identified lymph node metastases and an-
aplastic histology as the most significant factors predicting
long-term survival [45]. As a result of treatment protocol
improvement, the 5-year overall survival for patients with
WT is now over 90 % [46]. Despite overall improved out-
comes, WT treatment holds two significant challenges: tu-
mor relapse and late adverse effects. According to the
International Society of Pediatric Oncology, the relapse rate
of patients is 12 %, with an overall survival of 48 % in
recurrent disease [47]. In patients without metastatic disease
at presentation, approximately 75 % of all recurrences occur
within 1 year after treatment completion [48]. The preva-
lence of late adverse effects in long-term WT survivors is
high, especially after radiotherapy and treatment with
anthracyclines [49]; studies on survivors of childhood can-
cer have shown that 68 % of WT survivors had developed
chronic health problems [50], among the most clinically
significant effects are: musculoskeletal abnormalities, cardi-
ac toxicity, reproductive problems, renal dysfunction, and
the development of secondary malignant neoplasms [51].
Great efforts are being made to improve the efficiency of
WT treatments. Novel targeted treatment strategies are
needed to improve clinical outcomes for children with WT

Fig. 5 Targeting of WT
NCAMI1" cells in vivo with a
humanized NCAM1 antibody
drug conjugate (ADC).
Targeting the human WT
NCAM1" cell fraction with an
anti-NCAM1 antibody-toxin
conjugate (HuN901-DMI)
resulted in loss of the WT
CSCs, followed by complete
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as well as to reduce the toxic adverse effects of available
treatment options.

Targeted therapy—targeting CSCs in WT

Anti-tumor targeted therapies are treatments aimed at spe-
cific characteristics of cancer cells that are crucial for tumor
initiation and maintenance. Due to their specificity, targeted
therapies are less likely to harm normal, healthy cells com-
pared to systemic chemotherapy or radiation therapy, and
therefore are expected to cause fewer side effects.

Thus far, several targeted treatments, each directed at a
specific cancer trait, have been approved for clinical use. A
few examples are outlined: (1) targeting of specific cell signal-
ing pathways such as the epidermal growth factor inhibitors—
cetuximab (Erbitux), a chimeric (mouse/human) monoclonal
antibody (mAb), used in the treatment of colorectal cancer and
head and neck carcinoma [52—-55], trastuzumab (Herceptin), an
anti-HER2 mAb, used against breast tumors and metastatic
gastric cancer-expressing HER2 [56]; (2) interference with
tumor angiogenesis—bevacizumab (Avastin), an anti-VEGF-
A humanized mAb, used against colorectal, lung, breast, glio-
blastoma, kidney, and ovarian tumors [57, 58]; (3) targeting of
specific tumor antigens—rituximab (MabThera), an anti-
CD20 mAD, used against non Hodgkin’s lymphoma [59]. A
growing number of targeted treatments have reached the clin-
ical setting; some replacing the conventional systemic treat-
ments and others are used in conjunction with them to allow
application of lower doses of the later, more toxic, drugs.

From a translational aspect, cancer stem cell theory pre-
dicts that CSCs should be the preferred targets of anti-cancer
treatment, as they are the driving force behind tumor initi-
ation, propagation, and recurrence [60, 61]. However, their
inherent traits, which allow them to escape conventional
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chemo/radiotherapies, necessitate the development of alter-
native treatment options directed at these highly malignant
and therapy-resistant cancer cells. Although therapeutics
aimed at CSC eradication have not yet reached clinical
use, there are several novel reports of targeted CSC therapy
in animal models or in clinical trials [62, 63].

Due to tissue availability and a well-characterized cellular
hierarchy of the normal hematopoietic system, the most stud-
ied CSCs are those of acute myeloid leukemia (AML), isolat-
ed over a decade ago [24]. This discovery was followed by
several efforts aimed at targeting the hematopoietic cancer
stem cell markers, such as CD44 and CD123 in AML
[64—68]. Further studies have since been performed by
targeting CSCs in several solid tumors such as pancreatic,
breast, prostate and colon cancers, melanoma, glioma, hepa-
tocellular carcinoma, and others. These therapies are aimed at
targeting a tumor-specific antigen (e.g., CD133, EpCAM,
CD24 etc.) [69-71], inhibiting a signaling pathway predomi-
nantly activated in the CSCs (e.g., Notch, Wnt etc.) [72, 73],
immunomodulation (e.g., CD326, ALDHI1 inhibitor) [73, 74],
sensitizing CSCs to systemic chemotherapy/radiation (e.g.,
IL4, hyaluronate receptor) [56, 75] or inhibiting CSC angio-
genesis (e.g., VEGF-R, DLL4) [76-78]. An important contri-
bution of CSC research to anti-cancer targeted treatment is
that it unveils specific biomarkers which can be targeted in
vivo by antibody therapy leading to disrupted tumor growth
[60, 67,79, 80]. Several of these antigens have been known to
be expressed in different malignancies, long before their im-
plication as CSC markers. However, their specific targeting
was put forward as means to treat human malignancies only
following the revelation of their role in signifying the CSC
population [67, 81, 82].

Consequently, we found NCAMI, which has been
known to be expressed in WT since the 1980s, to mark
WT CSCs, hence the importance of its targeting.

The importance of targeting the WT CSCs is also
supported by our data, showing that first-line chemothera-
peutics used to treat WT patients do not have a prominent
effect on either the NCAM1" or NCAM1"ALDHI1" cells in
vitro. The second-line course of therapy, used to treat WT
patients whose disease recurred, reduces these cell
populations in vitro, however, clearly does not eradicate all
WT CSCs. Currently, chemotherapy regimens used to treat
WT patients are employed at doses that lead to numerous
adverse effects, perhaps the most feared being devastating
secondary malignancies emerging about 20-30 years fol-
lowing treatment completion [83—86]. Taking into account
that WT is usually diagnosed before 5 years of age, these
effects possess an even greater impact, taking place in the
patient’s early adulthood.

We have recently shown that targeting the human
NCAM" cell fraction with an anti-NCAM antibody-drug
conjugate (ADC) (HuN901-DMI) resulted in loss of the
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WT CSCs, both in vitro and in vivo [42]. In vitro, treatment
of both primary and xenograft-derived WT cell cultures with
the anti-NCAM ADC, resulted in depletion of their
“stemness” properties (CFU capacity, proliferation). In vivo,
targeting NCAM™ WT cells in multiple WT xenograft
models with HUN901-DMI showed dramatic results: treat-
ment of mice bearing human WTs with high NCAM expres-
sion resulted in complete eradication of the tumors in the
majority of cases (Fig. 5) while on solitary occasions, a
significant reduction in tumor volume was detected.
Treatment of low NCAM-expressing WT xenograft with
HuN901-DMI resulted in reduction of tumor size followed
by a plateau, suggesting that once all NCAM" cells, which
are solely responsible for tumor growth, were eliminated,
the remaining NCAM  cells that comprise most of these
tumors lacked tumorigenic capacity. The treatment did not
cause any toxic effect. Our data suggests that low NCAM-
expressing WT xenografts and primary WT possess similar
NCAM levels. Thus, we propose that the deployment of the
anti-NCAM ADC for eliminating the WT-CSCs, in combi-
nation with low-dose conventional chemotherapy for non-
cancer initiating cancer cells, would show the best efficacy
for primary tumor eradications and is more likely to be
clinically relevant.

Altogether, NCAM, serving as a definite marker for WT
CSCs, can be exploited as a therapeutic target in WT pa-
tients. Moreover, although NCAM is a renal developmental
marker [87-90], human nephrogenesis completely ceases at
34 weeks of human gestation, excluding the potential for
aberrant development caused by anti-NCAM treatment.
Therefore, from a clinical standpoint, a combined regimen
involving the specific eradication of the WT CICs via
targeting of the NCAM molecule, might prove useful in
reducing chemotherapy toxicity in all WT patients and
particularly in those that do not respond to conventional
treatment or those with recurrent disease.

Key summary points

* Wilms’ tumor (WT), the most common pediatric solid
tumor of the kidney, is believed to arise from renal
precursor cells that have failed to differentiate properly.

» Cancer stem cells (CSCs) are defined by two main prop-
erties: self-renewal and differentiation capacities. In re-
cent years the CSC population has been identified in a
growing number of solid and hematologic malignancies.

* NCAMI+ALDHI1+ cells have been identified as the CSC
fraction in WT. The capability of the tumor to grow and
propagate is maintained solely by these cells.

* The use of an anti-NCAMI antibody-drug conjugate
(HuN901-DMI) results in loss of the WT CSCs, both in
vitro and in vivo, causing tumor size reduction and loss of
tumorigenic capacity.
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Multiple choice questions (answers are provided
following the reference list)

1. Which of the following statements regarding Wilms’
tumor epidemiology is correct?

a. Most patients have familial history
WT is the most frequent pediatric tumor
c. Two thirds of all WT cases cannot be linked to any
genetic aberration
d. The tumor is more common among males
2. What is the definition of a cancer stem cell?

a. Activation of pluripotency genes (iec Oct4, Sox2,
Nanog)
Multi-drug resistance
c. Formation of tumor spheres in low-adherence
cultures
d. Self-renewal and differentiation capacities
3. Which of the following assays does not serve as a
method for CSC identification and isolation?

Doubling time assay

Side population assay

Label retention cell assay

Colony formation assay

4. What is the common practice for WT patients?

ao o

Nephrectomy and postoperative radiotherapy

Targeted therapy aimed at cancer stem cells

A combination of surgery and chemotherapy

Conservative treatment based on low protein diet

5. Choose the incorrect sentence regarding the results of an
anti-NCAMI1 antibody-drug conjugate (HuN901-DMI)?

ao o

a. Invitro, the treatment resulted in depletion of the cell’s
‘stemness’ properties (CFU capacity, proliferation)

b. HuN901-DMI treatment presented a toxic effect,
represented by mice weight loss

c. Treatment of mice bearing human WTs with high
NCAMI expression resulted in complete eradica-
tion of the tumors in the majority of cases

d. Treatment of low NCAMI expressing WT xeno-
graft resulted in reduction of tumor size followed
by a plateau
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