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Abstract The severity of renal involvement is the major
factor determining the long-term outcome of children with
Henoch-Schönlein purpura (HSP) nephritis (HSPN).
Approximately 40% children with HSP develop nephritis,
usually within 4 to 6 weeks after the initial onset of the
typical purpuric rashes. Although the pathogenetic mecha-
nisms are still not fully delineated, several studies suggest
that galactose-deficient IgA1 (Gd-IgA1) is recognized by
anti-glycan antibodies, leading to the formation of the
circulating immune complexes and their mesangial deposi-
tion that induce renal injury in HSPN.
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Introduction

Henoch-Schönlein purpura (HSP) is predominantly a
childhood vasculitic disease, characterized by the presence
of immunoglobulin A1 (IgA1) dominant immune deposits
in the small vessels [1, 2]. While HSP is often a self-limited
condition, approximately 40% pediatric patients develop
nephritis within 4 to 6 weeks of the initial presentation [2].
Some children with HSP nephritis (HSPN) subsequently
have an episode or recurrent episodes of macroscopic
hematuria, frequently associated with upper respiratory tract
infection without the other clinical features of HSP [3, 4].
Thus, these children’s clinical phenotype changes to one of
IgA nephropathy (IgAN). As the renal histologic and
immunofluorescence microscopy findings in HSPN are
indistinguishable from those seen in patients with IgAN
[5], it has long been speculated that HSPN and IgAN share
common pathogenetic mechanisms and may represent
different ends of a continuous spectrum of disease [3].
Knowledge acquired from studies of patients with IgAN
may also provide important insights into the pathogenesis
of HSPN.

The role of IgA in pathogenesis of HSPN

The postulation that HSPN is a systemic immune-complex
mediated disease is supported by the clinical or histological
recurrences of HSPN in some patients after transplantation
[6, 7]. Although detailed pathogenic mechanisms of HSPN
have not been fully elucidated, perturbations in the immune
system, including elevations in serum levels of IgA1, IgA1-
containing circulating immune complexes and IgA-
rheumatoid factors have been documented for patients with
HSP [8–11]. Elevated serum levels of IgA and IgA-
containing immune complexes were observed in patients
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with HSPN [12]. Furthermore, it was noted that all HSP
patients have IgA1-circulating immune complexes of small
molecular mass, but only those with nephritis have
additional large-molecular-mass IgA1-IgG-containing cir-
culating immune complexes [13].

The risk for progression of HSPN was associated with
increasing mean proteinuria levels during follow-up and
was greater in adults and females [14]. IgA1-containing
immune complexes are excreted in elevated amounts in the
urine in patients with IgAN and HSPN and may provide a
specific marker for disease activity and/or severity in these
patients [15, 16].

Levels of serum IgA may not be a diagnostic marker
of HSPN

Although serum IgA levels are higher in children with HSP/
HSPN than in controls [17], this serum abnormality does not
constitute a sensitive diagnostic marker of HSP or HSPN. In
a recent retrospective study from Brazil, over 40% children
with HSP had elevated serum IgA levels at presentation [18],
but the difference in serum IgA levels between patients with
and without nephritis was not statistically significant. On the
other hand, in spite of high levels of circulating serum IgA in
patients with multiple myeloma, HSPN cases have rarely
been reported in these patients [19]. These observations
argue against the assumption that high serum IgA alone
predisposes patients to nephritis.

Abnormal glycosylation of IgA1 and its role
in the pathogenesis of HSPN

HSPN is similar to IgAN in that IgA1, but not IgA2, is
found in the circulating immune complexes and in
mesangial immune deposits [12, 20, 21]. Only humans
and higher primates have IgA1 [22]. As depicted in Fig. 1,
the human IgA1 molecule has a hinge region containing up
to six O-linked glycan chains [23, 24] consisting of
N-acetylgalactosamine (GalNAc), usually with a β1,3-
linked galactose (Gal) attached to it [25, 26]. GalNAc
and/or Gal may or may not be sialylated and serum IgA1
from normal healthy subjects predominantly has the Gal-
GalNAc disaccharide in its mono- and di-sialylated forms
[27, 28].

Similarly as in patients with IgAN, increased galactose-
deficient IgA1 (Gd-IgA1) levels have been detected in
patients with HSPN [29, 30], but not in subjects with other
glomerular diseases. With several lines of evidence, Gd-
IgA1 now assumes a pivotal role in the pathogenesis of
both IgAN and HSPN. Using GalNAc-specific lectin from
Vicia villosa, patients with HSPN were shown to have
increased lectin binding, indicating elevated levels of Gd-
IgA1, while the levels of Gd-IgA1 in patients with HSP
without nephritis were similar to healthy controls [29]. We
recently reported, using GalNAc-specific lectin from Helix
aspersa, that the serum levels of Gd-IgA1 were higher in
children with IgAN and HSPN compared to healthy
controls and patients with C1q nephropathy [30]. Impor-

Fig. 1 IgA1 and its hinge
region with O-linked glycans
(white circles) and N-linked
glycans (black circles). Under-
lined amino acids denote usual
sites of attachment of as many
as five O-linked glycans [99].
Examples of galactose-deficient
(in red color) and galactosylated
(in blue color) O-linked glycans
in the hinge region of human
circulatory IgA1 are shown at
the bottom. GalNAc, N-acetyl-
galactosamine; Gal, galactose;
SA, sialic acid

20 Pediatr Nephrol (2010) 25:19–26



tantly, the median levels of serum Gd-IgA1 in children with
HSP without nephritis did not significantly differ from
those in healthy controls [30]. These data corroborate a
potential pathogenic role for Gd-IgA1 in HSPN. Moreover,
IgA molecules in the skin immune deposits of patients with
HSP regardless of renal involvement are exclusively of
IgA1 subclass [31], but there have been no studies on the
glycosylation of these IgA1 molecules.

The biosynthetic origin of Gd-IgA1

There are two major sites with IgA1-producing cells:
mucosal tissues and bone marrow. Both have been
suggested as possible sites of production of the aberrantly
glycosylated IgA1 [32–39]. Reduced galactosylation of
IgA1 O-glycans has been suggested by the results of lectin
ELISA [29]; these finding correlated with the observation
of reduced activity of β1,3-galactosyltransferase in the
peripheral B cells of patients with IgAN and HSPN [40–42].
The primary defect that leads to the production of such
abnormally glycosylated IgA1 is probably heritable [43].
Moreover, Suzuki et al. have recently immortalized and
cloned B cells from patients with IgAN that synthesized and
secreted an undergalactosylated form of IgA1 [44]. Such
glycosylation defects, due to complex changes in expression
of specific glycosyltransferases with reduced expression of
β1,3-galactosyltransferase and elevated expression of
GalNAc-specific α2,6-sialyltransferase, were detected in
patients with IgAN and HSPN, but not in patients with
HSP without nephritis or healthy controls [40, 44, 45]. These
data suggest that premature sialylation may contribute to the
aberrant IgA1 O-glycosylation in IgAN and these cell lines
provide a new model for future studies on the mechanisms
leading to aberrant IgA1 O-glycosylation in IgAN and HSPN.

Interestingly, IgG in the serum and IgG produced by
cloned IgG-secreting cells from patients with HSPN had
elevated levels of IgG against Gd-IgA1 compared to those
from HSP patients without nephritis and controls [40, 46].
The possible origin and role of these anti-glycan antibodies
in the pathogenesis of HSPN needs further study. However,
they now appear to be the major factor responsible for the
formation of the nephritogenic immune complexes, consis-
tent with the previously described large-molecular mass
IgA-IgG complexes in the circulation of patients with
HSPN [13].

Which sites on IgA1 contain aberrantly glycosylated
O-glycans?

The assays based on the binding of GalNAc-specific lectins
to IgA1 indicated the presence of aberrant glycosylation in

the IgA1 molecules; the assay itself cannot assess whether
all the sites contain these anomalies or whether only specific
sites are affected. Analysis of the IgA1 molecules from
patients with IgAN and HSPN shed some light on the
localization of aberrant glycans. Use of bacterial IgA-specific
proteases together with lectin western blotting and mass
spectrometry suggested presence of Gal-deficient O-glycans
(terminal GalNAc or sialylated GalNAc - see Fig. 1) at
T228/S230 and S232 in the hinge region of IgA1 in patients
with IgAN; immune complexes containing such IgA1 bound
with IgG specific to Gal-deficient IgA1 were able to
stimulate proliferation of cultured human mesangial cells
[20, 40, 47–49].

Sialylation of IgA1 molecules in IgAN and HSPN

As sialic acid carries a high negative charge, the degree of
sialylation may alter interactions of IgA1 with other
molecules and thus affect clearance of IgA1 and IgA1-
containing immune complexes. Although removal of sialic
acid has been shown to increase the aggregation of IgA1
molecules [50, 51], in a recent study by Leung et al.,
neuraminidase treatment (removal of sialic acid) significantly
reduced the binding capability of polymeric IgA1 from IgAN
patients to human mesangial cells in vitro [52]. It is therefore
of interest that a portion of IgA1 from patients with IgAN is
Gal-deficient and over sialylated [44, 53].

Possible mechanisms involving Gd-IgA1
in the development of HSPN

Figure 2 depicts a proposed mechanism of how aberrantly
glycosylated IgA1 may become nephritogenic. Polymeric
Gd-IgA1 molecules are recognized by naturally occurring
anti-glycan IgA1 or IgG and circulating immune complexes
are formed [20, 40, 50, 54–57]. Due to their size, Gd-IgA1-
containing immune complexes are less efficiently taken up
by the asialoglycoprotein receptor in the liver and catabo-
lized and their amounts increase in the circulation [58, 59].
These complexes may then deposit in the renal mesangium
and incite glomerular injury, likely due to the binding to
mesangial cells leading to cellular activation. Consequently,
mesangial cells start to proliferate and overproduce extra-
cellular matrix components, cytokines and chemokines [29,
60–62]. CD71 (transferrin receptor), was found to be a
receptor for polymeric IgA1 on the mesangial cells, and
could provide a mechanism for how the Gd-IgA immune
complexes bind to the mesangial cells [63]. Expression of
CD71 on the mesangial cell surface was increased in
pediatric patients with IgAN and HSPN as compared to
children with other forms of glomerular disease [63]. The
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intensity of CD71 expression associated with the degree of
cellular proliferation rather then the intensity of the IgA
staining. Hence, the processes involving IgA1 mesangial
deposition, the molecular mechanisms underlying the inter-
action of IgA1-containing circulating immune complexes
and cell receptors that lead to mesangial cell activation and
initiation of glomerular inflammatory processes need to be
more completely delineated.

Composition of immune deposits in HSPN

While Gd-IgA1-containing immune complexes are increas-
ingly recognized as a major player in the pathogenesis of
HSPN [29, 30], other components in these immune
complexes have also been examined for their possible
pathogenetic roles. Although it has been reported that IgG
contents in the IgA-containing circulating immune com-
plexes from patients with HSPN were higher than those
with IgAN [64, 65], IgG deposition is not a universal
finding in renal biopsies from patients with either disease
[13, 66–68]. Likewise, IgM deposits were inconsistently
demonstrated in the glomerular deposits of patients with
HSPN [67, 68]. Thus, the roles of IgG and IgM in
pathogenesis of HSPN still need further elucidation.
J-chain has also been demonstrated on renal biopsies from

patients with IgAN, consistent with the presence of
polymeric IgA1 [67, 68].

Glomerular depositions of other components, including
kappa and lambda light chains, are also variably demon-
strated in HSPN. In patients with IgAN, lambda light
chains were found predominantly over kappa light chains
[69, 70]. However, the ratio of lambda chains to kappa
chains in the mesangial deposits remains about equal in
patients with HSPN [71]. The discrepancy in synthesis of
different types of light chains in patients with IgAN and
HSPN, and their implications in pathogenesis, is not clear.

Potential role of complement system in the pathogenesis
of HSPN

Complement activation appears to play an important role in
the pathogenesis of IgAN and HSPN, as glomerular
complement activation may initiate the inflammatory
cascade and enhance glomerular injury [72]. Although
hypocomplementemia has been reported in some patients
with HSPN [73, 74], it is usually transient and not related to
the severity of the diseases. Since the first report on higher
incidence of either C4A or C4B null variants, or both, in
patients with IgAN and HSP [75], C4A and C4B
deficiencies had also been described in patients with HSPN
[76, 77]. In Iceland, the frequency of C4B null alleles was
significantly increased in children with HSP as compared to
controls [78]. The role of partial or complete C4 isotype
deficiencies in pathogenesis of HSPN may relate to
impairment in the ability to solubulize and/or clear immune
complexes [79], but the precise mechanisms involved
remain speculative.

Although it has long been known that the alternative
complement pathway is activated in patients with IgAN and
HSPN [80], attention has shifted to the lectin pathway. This
third pathway of complement activation is initiated by
mannose-binding lectin (MBL). MBL also forms complexes
with MBL-associated serine protease-1 (MASP-1), MASP-2
and MASP-3 [81–84]. Recent studies suggested that com-
plement activation occurs through both the alternate and
lectin pathways in patients with IgAN [81, 82].

The long pentraxin 3 (PTX3), a complement related
protein, has been detected in the renal tissue of patients
with glomerulonephritis [85]. In renal biopsies from
patients with IgAN, intense staining for PTX3 was
observed in the expanded mesangial areas and was
localized to the glomerular mesangial and endothelial cells.
Normal renal tissue and biopsies from patients with other
glomerular nephropathies were negative for PTX3 expres-
sion in glomeruli. Cultured human mesangial cells synthe-
sized PTX3 when stimulated with TNF-α and IgA, and
exhibited specific binding for recombinant PTX3 [85].

HSPN pathogenesis

Upper respiratory tract infection 

⇑ Production of  
   polymeric Gd-

Formation of IgA1-IgG and IgA1-IgA1 immune 

Anti-glycan IgG or IgA1 
antibodies bind to Gd-

Glomerular 

Activation of mesangial cells 
Initiation of glomerular inflammation 

  (cellular proliferation, matrix 
expansion) 

Gastrointestinal infection 

Fig. 2 Possible role of IgA1 and IgA1-containing immune complexes
in the pathogenesis of HSPN
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These observations suggest potential role for PTX3 in the
modulation of glomerular injury in IgAN and likely also in
HSPN. PTX3 appears to be involved in the classical and
not the alternative pathway of complement activation [86].
Thus, its role in pathogenesis of HSPN, where the
complement activation is alternative and/or lectin pathway
mediated [81, 82], will require further clarification.

Possible role of cytokines in the pathogenesis of HSPN

In cell lines isolated from patients with IgAN, but not in
those from controls, cytokine stimulation reduced the
expression of β1,3-galactosyltransferase and its molecular
chaperone Cosmc, but increased the expression of α2,6-
GalNAc-sialytransferase II. As a result, the synthesis of
sialylated GalNAc was enhanced [87], pointing to a
potential role of some cytokines in the pathogenesis of
IgAN; these aspects in HSPN require further investigations.

Other possible pathogenic mechanisms of HSPN

Masuda et al. showed that nephritis-associated plasmin
receptor (NAPlr), a group A streptococcal antigen, may
also have pathogenetic role in a subset of patients with
HSPN [88]. Among 33 children with biopsy proven HSPN,
30% had segmental or global mesangial deposition of
NAPlr antigen, comparing to 3% in other children with
non-HSPN glomerular diseases (half of these children had
IgAN). The exact pathophysiologic mechanism, if any, and
the relationship between NAPlr and HSPN, needs further
investigation.

In a study by Davin et al, 22 children with HSPN were
compared to 16 children with IgAN. In their cohort,
elevated plasma IgE levels were more commonly found in
patients with HSPN (77% versus 44%) [89]. They
hypothesised that the IgA containing immune complexes
could enhance local IgE production via stimulation the
dermal and intestinal mast cells. Deposition of the IgA
immune complexes was further enhanced with the subse-
quent increase in local capillary permeability [89]. Notwith-
standing the higher incidence of elevated plasma level of IgE
in patients with HSPN, the pathogenetic roles of IgE remains
unclear, as the mast cell is not usually found in the
mesangium [90, 91].

Eosinophil activation has also been proposed to play a
role in the pathogenesis of HSPN [92–94]. Children with
HSP, compared to those with IgAN or healthy controls,
have higher levels of serum eosinophil cationic protein
(ECP) [93]. And the levels were even higher in patients
with HSPN. In a recent study from Japan, patients with
HSPN were also demonstrated to have higher serum

concentrations of ECP and interleukin-5 [93]. In another
study from China, serum levels of ECP were higher only
when the patients had active HSPN [94]. These studies
suggested that ECP might have a role in the initiation of
nephritis in patients with HSP.

Serum IgA anti-cardiolipin and anti-phosphatidylserine-
prothrombin complexes were both elevated and associated
with the severity of proteinuria in a group of Japanese adult
patients with HSP [95]. The role of these IgA antibodies in
the pathogenesis in HSP and HSPN is not clear.

Recently, renal expression of alpha-smooth muscle actin
(α-SMA) has also been associated with progression of renal
injury in patients with HSPN [96]. Thirty five patients in
Japan with biopsy proven HSPN were studied in 3 groups: 1)
nephritis with histological class (classification system used
by the International Study of Kidney Disease in Children
[97]) of stage II or less, 2) histological stage III or greater and
a good prognosis, and 3) histological stage II or greater and
poor prognosis. All patients, except those in group 1, had
repeated biopsy during the course of follow-up. The authors
found that the mean scores for glomerular and interstitial
α-SMA staining at first biopsy were higher in HSPN patients
with crescents. And at second biopsy, α-SMA expressions
were also higher in patients with poor prognosis. Although
α-SMA is the predominant actin isoform within vascular
smooth muscle and the mechanism of phenotypic changes of
mesangial cells and increased expression of α-SMA in
patients with HSPN is unclear, these observations did suggest
that increased renal α-SMA expression may be an early
histological indicator of progression of HSPN. Similarly,
increased expression of α-SMA in the tubulointerstitial area,
but not in glomeruli, was associated with poor prognosis of
patients with IgAN [98].

Conclusions

HSPN is a common pediatric renal disease with potential
long-term morbidity. Co-operative efforts of clinical and
basic research scientists have provided valuable information
and insights on the pathogenetic mechanisms of HSPN.
Although these mechanisms are far from being completely
understood, multiple possible players have been identified.
Recent data suggest that Gd-IgA1 is likely to play a pivotal
role in the formation of nephritogenic immune complexes
(Fig. 2) and further investigations as to its role are ongoing.
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