Skip to main content

Advertisement

Log in

Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy is frequently encountered in patients with renal failure and represents an independent risk factor for cardiovascular morbidity and mortality. The pathogenesis of cardiac hypertrophy is related to multiple factors, including excess adrenergic activity. This study investigated how renal injury in the early stages of life affects the adrenergic system and thereby potentially influences cardiac growth. Biomarkers of cardiac hypertrophy were used to assess adrenergic function. Newborn male Sprague-Dawley rats were allocated to three groups of five rats each: 5/6 nephrectomy (Nx), pair-fed controls (PF), and sham-operated (SH). Nx animals had significantly higher plasma urea nitrogen, serum creatinine, and mean arterial blood pressure. The heart-weight/body-weight ratio of the Nx cohort was higher than SH and PF (p < 0.001) groups. Plasma norepinephrine (NE) of Nx animals was almost twofold higher than SH and PF (p < 0.01) animals. Compared with SH and PF, Nx animals had higher α1A-receptor protein expression, lower cardiac β1- and β2-receptor protein expression (p < 0.05), but higher G-protein-coupled receptor kinase-2 (GRK2) expression (p < 0.05). Norepinephrine transporter protein (NET) and renalase protein expression in cardiac tissue from Nx pups were significantly lower than SH and PF. Our data suggest that early age Nx animals have increased circulating catecholamines due to decreased NE metabolism. Enhancement of cardiac GRK2 and NE can contribute to cardiac hypertrophy seen in Nx animals. Furthermore, AKT (activated via α1A receptors), as well as increased α1A receptors and their agonist NE, might contribute to the observed hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Regan S (1984) Cardiovascular abnormalities in paediatric patients with ESRD. In: Fine RN, Gruskin AB (eds) End-stage renal disease in children. Saunders, Philadelphia, pp 359–374

    Google Scholar 

  2. Scharer K, Ulmer HE (1985) Cardiovascular complications of renal failure. In: Holliday MA, Barratit TM, Vernier RL (eds) Pediatric nephrology (2nd edn). Williams and Wilkins, Baltimore, pp 887–896

    Google Scholar 

  3. Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2006) Progression of left ventricular hypertrophy in children with early chronic kidney disease: 2-year follow-up study. J Pediatr 2149:671–675

    Google Scholar 

  4. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, Bonanno G, Rapisarda F, Fatuzzo P, Seminara G, Cataliotti A, Stancanelli B, Malatino LS (2002) Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 105:1354–1359

    CAS  PubMed  Google Scholar 

  5. Leineweber K, Heinroth-Hoffmann I, Pönicke K, Abraham G, Osten B, Brodde OE (2002) Cardiac beta-adrenoceptor desensitization due to increased beta-adrenoceptor kinase activity in chronic uremia. J Am Soc Nephrol 13:117–124

    CAS  PubMed  Google Scholar 

  6. Mann JF, Jakobs KH, Riedel J, Ritz E (1986) Reduced chronotropic responsiveness of the heart in experimental uremia. Am J Physiol 250:H846–H852

    CAS  PubMed  Google Scholar 

  7. Meggs LG, Ben-Ari J, Gammon D, Choudhury M, Goodman AI (1986) Effect of chronic uremia on the cardiovascular alpha 1 receptor. Life Sci 39:169–179

    CAS  PubMed  Google Scholar 

  8. Kohout TA, Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63:9–18

    CAS  PubMed  Google Scholar 

  9. Slotkin TA, Saleh JL, Zhang J, Seidler FJ (1996) Ontogeny of adrenoceptor/adenylyl cyclase desensitization mechanisms: the role of neonatal innervation. Brain Res 742:317–328

    CAS  PubMed  Google Scholar 

  10. Garofolo MC, Seidler FJ, Auman JT, Slotkin TA (2002) Adrenergic modulation of muscarinic cholinergic receptor expression and function in the developing heart. Am J Physiol 282:R1356–R1363

    CAS  Google Scholar 

  11. Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiomyocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746

    CAS  PubMed  Google Scholar 

  12. Slotkin TA, Smith PG, Lau C, Bareis DL (1980) Functional aspects of development of catecholamine biosynthesis and release in the sympathetic nervous system. In: Parvez H, Parvez S (eds) Biogenic amines in development. Elsevier/North-Holland, Amsterdam, pp 29–48

    Google Scholar 

  13. Deskin R, Mills E, Whitmore WL, Seidler FJ, Slotkin TA (1980) Maturation of sympathetic neurotransmission in the rat heart. VI. The effect of neonatal central catecholaminergic lesions. J Pharmacol Exp Ther 215:342–347

    CAS  PubMed  Google Scholar 

  14. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757

    CAS  PubMed  Google Scholar 

  15. Iaccarino G, Dolber PC, Lefkowitz RJ, Koch WJ (1999) Beta-adrenergic receptor kinase-1 levels in catecholamine-induced myocardial hypertrophy: regulation by beta- but not alpha1-adrenergic stimulation. Hypertension 33:396–401

    CAS  PubMed  Google Scholar 

  16. Dhein S, Röhnert P, Markau S, Kotchi-Kotchi E, Becker K, Poller U, Osten B, Brodde OE (2000) Cardiac beta-adrenoceptors in chronic uremia: studies in humans and rats. J Am Coll Cardiol 36:608–617

    CAS  PubMed  Google Scholar 

  17. Briest W, Rassler B, Deten A, Zimmer HG (2003) Norepinephrine-induced cardiac hypertrophy and fibrosis are not due to mast cell degranulation. Mol Cell Biochem 252:229–237

    CAS  PubMed  Google Scholar 

  18. Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, Biaggioni I, Blakely RD, Robertson D (2000) Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 342:541–549

    CAS  PubMed  Google Scholar 

  19. Perrino C, Rockman HA (2007) Reversal of cardiac remodeling by modulation of adrenergic receptors: a new frontier in heart failure. Curr Opin Cardiol 22:443–449

    PubMed  Google Scholar 

  20. Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906

    CAS  PubMed  Google Scholar 

  21. Osadchii OE (2007) Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev 12:66–86

    CAS  PubMed  Google Scholar 

  22. Penela P, Murga C, Ribas C, Tutor AS, Peregrín S, Mayor F (2006) Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res 69:46–56

    CAS  PubMed  Google Scholar 

  23. Choi DJ, Koch WJ, Hunter JJ, Rockman HA (1997) Mechanism of b-adrenergic receptor desensitization in cardiac hypertrophy is increased b-adrenergic receptor kinase. J Biol Chem 272:17223–17229

    CAS  PubMed  Google Scholar 

  24. Leineweber K, Rohe P, Beilfuss A, Wolf C, Sporkmann H, Bruck H, Jakob HG, Heusch G, Philipp T, Brodde OE (2005) G-protein-coupled receptor kinase activity in human heart failure: effects of beta-adrenoceptor blockade. Cardiovasc Res 66:512–519

    CAS  PubMed  Google Scholar 

  25. McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, Izumo S (2003) Phosphoinositide 3-kinase(p110a) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA 100:12355–12360

    CAS  PubMed  Google Scholar 

  26. Wakatsuki T, Schlessinger J, Elson EL (2004) The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci 29:609–617

    CAS  PubMed  Google Scholar 

  27. Krieg RJ, Chan W, Lin KC, Kuemmerle NB, Veldhuis JD, Chan JC (2002) Growth hormone and growth hormone-related mRNA in uremic rats: effect of a growth hormone secretagogue. Pediatr Nephrol 17:585–590

    PubMed  Google Scholar 

  28. Rocha-Singh KJ, Honbo NY, Karliner JS (1991) Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes. J Clin Invest 88:204–213

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghosh SS, Gehr TW, Ghosh S, Fakhry I, Sica DA, Lyall V, Schoolwerth AC (2003) PPARgamma ligand attenuates PDGF-induced mesangial cell proliferation: role of MAP kinase. Kidney Int 64:52–62

    CAS  PubMed  Google Scholar 

  30. Ghosh S, Sica D, Schoolwerth AC, Quigg RJ, Haas M, Fakhry I, Gehr TW (2002) The role of the renin-angiotensin system in cholesterol and puromycin mediated renal injury. Am J Med Sci 324:296–304

    PubMed  Google Scholar 

  31. Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S, Desir GV (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest 115:1275–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamaguchi N, Takahashi N, Xu L, Smithies O, Meissner G (2007) Early cardiac hypertrophy in mice with impaired calmodulin regulation of cardiac muscle Ca release channel. J Clin Invest 117:1344–1353

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Callanan EY, Lee EW, Tilan JU, Winaver J, Haramati A, Mulroney SE, Zukowska Z (2007) Renal and Cardiac Neuropeptide Y (NPY) and NPY Receptors in a Rat Model of Congestive Heart Failure. Am J Physiol Renal Physiol 293:1811–1817

    Google Scholar 

  34. Strand AH, Gudmundsdottir H, Os I, Smith G, Westheim AS, Bjørnerheim R, Kjeldsen SE (2006) Arterial plasma noradrenaline predicts left ventricular mass independently of blood pressure and body build in men who develop hypertension over 20 years. J Hypertens 24:905–913

    CAS  PubMed  Google Scholar 

  35. Rascher W, Schömig A, Kreye VA, Ritz E (1982) Diminished vascular response to noradrenaline in experimental chronic uremia. Kidney Int 1:20–27

    Google Scholar 

  36. Amann K, Rump LC, Simonaviciene A, Oberhauser V, Wessels S, Orth SR, Gross ML, Koch A, Bielenberg GW, Van Kats JP, Ehmke H, Mall G, Ritz E (2000) Effects of low dose sympathetic inhibition on glomerulosclerosis and albuminuria in subtotally nephrectomized rats. J Am Soc Nephrol 11:1469–1478

    CAS  PubMed  Google Scholar 

  37. Goldstein DS (1988) Plasma catecholamines and essential hypertension: An analytical review. Hypertension 5:86–99

    Google Scholar 

  38. Esler M, Kaye D (2000) Measurement of sympathetic nervous system activity in heart failure: the role of norepinephrine kinetics. Heart Fail Rev 5:17–25

    CAS  PubMed  Google Scholar 

  39. Woodcock EA (2007) Roles of a1a- and a1b-adrenoceptors in heart: insights from studies of genetically modified mice. Clin Exp Pharmacol Physiol 34:884–888

    CAS  PubMed  Google Scholar 

  40. Anderson D, Campbell AM, Feldman M, White R, Roden W, Minobe MF, Khan P, Larrabee M, Wollmering JD, Port F (1994) Age-related changes in beta-adrenergic neuroeffector systems in the human heart. Circulation 90:1225–1238

    PubMed  Google Scholar 

  41. Bazan A, Van de Velde E, Fraeyman N (1994) Effect of age on beta-receptors, Gs alpha- and Gi alpha- proteins in rat heart. Biochem Pharmacol 48:479–486

    CAS  PubMed  Google Scholar 

  42. Tyralla K, Amann K (2003) Morphology of the heart and arteries in renal failure. Kidney Int 84:S80–S83

    Google Scholar 

  43. Ferchland A, Rettkowski O, Pönicke K, Deuber HJ, Osten B, Brodde OE (1998) Effects of uremic plasma on alpha- and beta-adrenoceptor subtypes. Nephron 80:46–50

    CAS  PubMed  Google Scholar 

  44. Koch WJ (2004) Genetic and phenotypic targeting of beta-adrenergic signaling in heart failure. Mol Cell Biochem. 263:5–9

    CAS  PubMed  Google Scholar 

  45. Brodde OE, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci 100:323–337

    CAS  PubMed  Google Scholar 

  46. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    CAS  PubMed  Google Scholar 

  47. Eckhart AD, Ozaki T, Tevaearai H, Rockman HA, Koch WJ (2002) Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates beta-adrenergic receptor signaling and increases resting blood pressure. Mol Pharmacol 61:749–758

    CAS  PubMed  Google Scholar 

  48. Kimball KA, Cornett LE, Seifen E, Kennedy RH (1991) Aging changes in cardiac alpha 1-adrenoceptor responsiveness and expression. Eur J Pharmacol 208:231–238

    CAS  PubMed  Google Scholar 

  49. Chalothorn D, McCune DF, Edelmann SE, García-Cazarín ML, Tsujimoto G, Piascik MT (2002) Differences in the cellular localization and agonist-mediated internalization properties of the alpha(1)-adrenoceptor subtypes. Mol Pharmacol 61:1008–1016

    CAS  PubMed  Google Scholar 

  50. Fonseca MI, Button DC, Brown RD (1995) Agonist regulation of _1B-adrenergic receptor subcellular distribution and function. J Biol Chem 270:8902–8909

    CAS  PubMed  Google Scholar 

  51. Wang J, Zheng J, Anderson JL, Toews ML (1997) A mutation in the hamster a1B-adrenergic receptor that differentiates two steps in the pathway of receptor internalization. Mol Pharmacol 52:306–313

    CAS  PubMed  Google Scholar 

  52. Mahan LC, McKernan RM, Insel PA (1987) Metabolism of alpha- and beta-adrenergic receptors in vitro and in vivo. Annu Rev Pharmacol Toxicol 27:215–235

    CAS  PubMed  Google Scholar 

  53. Akhter SA, Milano CA, Shotwell KF, Cho MC, Rockman HA, Lefkowitz RJ, Koch WJ (1997) Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J Biol Chem 272:21253–21259

    CAS  PubMed  Google Scholar 

  54. Augustyniak RA, Tuncel M, Zhang W, Toto RD, Victor RG (2002) Sympathetic overactivity as a cause of hypertension in chronic renal failure. J Hypertens. 20:3–9

    CAS  PubMed  Google Scholar 

  55. Proud CG (2004) Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res 63:403–413

    CAS  PubMed  Google Scholar 

  56. Xiao L, Pimental DR, Amin JK, Singh KSDB, Sawyer DB, Colucci WS (2001) MEK1/2–ERK1/2 mediates a1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:779–787

    CAS  PubMed  Google Scholar 

  57. Kodama H, Fukuda K, Pan J, Sano M, Takahashi T, Kato T, Makino S, Manabe T, Murata M, Ogawa S (2000) Significance of ERK cascade compared with JAK/STAT and PI3-K pathway in gp130-mediated cardiac hypertrophy. Am J Physiol Heart Circ Physiol 279:H1635–H1644

    CAS  PubMed  Google Scholar 

  58. Thorburn J, Frost JA, Thorburn A (1994) Mitogen-activated protein kinases mediate changes in gene expression but not cytoskeletal organisation associated with cardiac muscle hypertrophy. J Cell Biol 126:1565–1572

    CAS  PubMed  Google Scholar 

  59. Silberbach M, Gorenc T, Hershberger RE, Stork PJ, Steyger PS, Roberts CT (1999) Extracellular signal-regulated protein kinase activation is required for the anti-hypertrophic effect of atrial natriuretic factor in neonatal rat ventricular myocytes. J Biol Chem 274:24858–24864

    CAS  PubMed  Google Scholar 

  60. Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C (2002) Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA 99:12333–12338

    CAS  PubMed  Google Scholar 

  61. Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, Liao R, Rosenzweig A (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901

    CAS  PubMed  Google Scholar 

  62. Guo J, Sabri A, Elouardighi H, Rybin V, Steinberg SF (2006) Alpha1-adrenergic receptors activate AKT via a Pyk2/PDK-1 pathway that is tonically inhibited by novel protein kinase C isoforms in cardiomyocytes. Circ Res 99:1367–1375

    CAS  PubMed  Google Scholar 

  63. O’Connell TD, Swigart PM, Rodrigo MC, Ishizaka S, Joho S, Turnbull L, Tecott LH, Baker AJ, Foster E, Grossman W, Simpson PC (2006) Alpha1-adrenergic receptors prevent a maladaptive cardiac response to pressure overload. J Clin Invest 116:1005–1015

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work is supported by the Jeffress Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha S. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S.S., Krieg, R.J., Sica, D.A. et al. Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system. Pediatr Nephrol 24, 367–377 (2009). https://doi.org/10.1007/s00467-008-0978-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-008-0978-8

Keywords

Navigation