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Abstract
Forced vibration analysis is an indispensable process for the design of a rotating component. However, rather expensive
nonlinear static and linear frequency response analyses are usually accompanied by a frequency domain analysis. The tra-
ditional mode-superposition method (MSM) effectively reduces the cost of the frequency response analysis. However, the
nonlinear static analysis of earlier processes remains as the computational bottleneck. In this paper, the application of the
hyper-reduction method will be proposed along with the model order reduction (MOR) framework for rotating component
forced vibration analysis. The energy-conserving sampling and weighting (ECSW)method will be employed for the nonlinear
iterative computation. The pre-stressed stiffness matrix of the reduced finite elements (FEs) resulting from the ECSW will
be used for the post computation stage. Also, a variety of MOR will be attempted for the performance comparison, including
MSM, proper orthogonal decomposition (POD)-based reduced order model (ROM), and a hybrid approach. It is found that the
present ECSW-combined MOR will significantly relieve the computational bottleneck, provide a minimal loss of accuracy,
and be compatible with both nonlinear and linear analyses of the rotating component forced vibration analysis.

Keywords Forced vibration analysis · Model order reduction · Rotating component · Hyper-reduction method

1 Introduction

Rotating components including turbine blades and propellers
are efficient power delivery apparatus that are acted upon
by unsteady aerodynamic forces. As a result of the rotation,
the machinery suffers from various vibratory loads that may
cause catastrophic failures such as high cycle fatigue (HCF)
[1]. Therefore, the design process of the rotating components
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should include an investigation of their vibration charac-
teristics. In this regard, forced vibration analysis examines
the structural response to an external vibratory force. To
obtain the steady-state solution, the analysis is conducted in
a time-harmonic field in which the structural displacements
are assumed to vary at the same frequencies as the sinusoidal
external load [2].

The computational cost of a frequency response analysis
increaseswith both the number of degrees of freedom (DOFs)
and the width of the frequency band. In this respect, the
projection-based reduced-order model (ROM) is a favored
alternative to reduce the computational costs. Traditionally, a
ROM is obtained by the mode superposition method (MSM),
which utilizes the eigenmodes for the reduced-order basis
[3]. Although MSM reduces the dimension of the full-order
model (FOM) dramatically, the modal analysis of the gener-
alized eigenvalue problem on FOM is a prerequisite.

Consideration of the stress-stiffening and spin-softening
effect is another computational challenge for the forced
vibration analysis. Under the action of the centrifugal force,
the component will experience large deformation and corre-
sponding geometric stiffening by the stress state. Also, the
centrifugal force increase caused by the structural elongation

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-022-02149-y&domain=pdf


1444 Computational Mechanics (2022) 69:1443–1456

should be included by an equivalent stiffness decrease [4].
Consideration of this stiffness-varying effect usually entails
a nonlinear analysis of FOM by an iterative solution proce-
dure, and precedes the aforementioned modal and frequency
response analysis.

To reduce the modal and nonlinear analysis cost for
rotating components, the reduced-order basis by the proper
orthogonal decomposition (POD) is introduced for both the
forced vibration analysis procedures [5,6] and for the non-
linear time-transient analysis [7]. POD [8] has received
attention for its successful application to various fields using
linear and nonlinear formulations [9–11]. The advent of
the hyper-reduction method [12–14] alleviated the com-
putational bottleneck induced by the matrix multiplica-
tion between the reduced-order basis and FOM equations
(i.e. Galerkin projections). Accelerated performance of the
hyper-reduction method was obtained for the (pseudo) time-
transient analysis in which a repeated Galerkin projection
was required for each iteration [15]. Successful application
of the hyper-reduction method on the rotating component
was found in Ref. [7], where the computational speed for
the nonlinear time-transient analysis on the propeller blade
became ten to twenty times faster than that of FOM. How-
ever, a relatively small number of POD-applications were
attempted for the frequency domain analysis of the rotating
component.

Kim et al. [5] applied POD to the modal analysis of
the rotating component. It was observed that accurate nat-
ural frequencies and corresponding modes were obtained for
various rotating speeds, while the computational time was
reduced. Kang et al. [6] extended the POD-based MOR to
an integrated numerical procedure for the rotating compo-
nent forced vibration analysis. This included the following:
nonlinear analysis for the evaluation of the stress-stiffening
and spin-softening effect, modal analysis prior to MSM, and
forced response analysis in the frequency domain. Regard-
less of the rotating speed, robust performance was obtained
for the given POD basis used. Although efficient results were
obtained for the overall numerical analysis, it was observed
that non-negligible cost remained in the nonlinear static anal-
ysis in which repetitive Galerkin projections were required
by Newton-Raphson iteration.

In this paper, an application of the hyper-reductionmethod
on the forced vibration analysis of rotating components
will be investigated. The application aims to reduce the
computational cost of POD-based ROM by an iterative solu-
tion procedure. Then, performance evaluation of various
projection-based MOR methods will be conducted includ-
ing convectional MSM, POD-based ROM, hyper-reduction
method and their hybrid approach. The procedure of the
forced vibration analysis will include the nonlinear static
solution for the evaluation of the stiffness variation by the
centrifugal force and time-harmonic solution to obtain the

steady-state frequency response. Two applications will be
executed in terms of the rotating speed. The first applica-
tion considers the propeller blade of a slender shape with
significant geometrical nonlinearity. The subsequent appli-
cation concerns a turbine blade composed of a large number
of DOFs.

2 Problem statement

In this section, equations of the forced vibration analysis will
be introduced along with the validation of the FOM by com-
parison against the commercial software. The finite element
(FE)methodwill be employed and the results of FOMwill be
compared with those obtained by ANSYS Mechanical [16].

2.1 Equation of themotion for the nonlinear static
analysis

The first equation of the motion pertains to a nonlinear static
analysis for the stress-stiffened and spin-softened stiffness.
The governing equations are expressed as follows:

f int (u (μ) ;μ) = fext (u (μ) ;μ) (1)

where f int ∈ R
N , fext ∈ R

N are the external and inter-
nal force vectors, respectively. u ∈ R

N is the displacement
vector. N indicates the number of DOFs in FOM. μ is a
parameter. In this paper, μ will be selected as the rotating
speed �rot, which will be crucial for the centrifugal effect
and succeeding structural behavior of the rotating compo-
nent.

The Newton-Raphson algorithm is the conventional itera-
tive approach for the nonlinear solution of Eq. 1. By Taylor’s
expansion, the relevant linearized form will be obtained as
Eq. 2.

K (uk (μ) ;μ) �uk (μ) = fext (uk (μ) ;μ)

− f int (uk (μ) ;μ)
(2)

K ∈ R
N×N is the stiffness (Jacobian) matrix, and the sub-

script k indicates an iteration index. �uk = uk+1 − uk
denotes the displacement increment toward the next itera-
tion step.

For the rotating component, external force fext is pro-
vided by the centrifugal force, and the stiffness matrix K
reflects centrifugal effects such as the stress-stiffening and
spin-softening. f int, fext, and K will be written as Eqs. 3-5,
respectively [3,4,7].

fext (uk (μ) ;μ) = fext0 (μ) + Ksp (μ) uk (μ) (3a)

Ksp (μ) =
∑

e∈E
LT
e K

sp
e (μ)Le (3b)
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f int (uk (μ) ;μ) =
∑

e∈E
LT
e f

int
e (Leuk (μ) ;μ) (4)

K (uk (μ) ;μ) =
∑

e∈E
LT
e Ke (Leuk (μ) ;μ)Le (5a)

Ke (Leuk (μ) ;μ) = Kl
e (Leuk (μ) ;μ)

+ Knl
e (Leuk (μ) ;μ) − Ksp

e (μ) (5b)

fext0 ∈ R
N is the centrifugal force defined by an initial con-

figuration. E = {e1, e2, . . . , eNe } is the set of the element
indices, where Ne is the total number of the finite elements.
Le ∈ R

neu×N is a Boolean matrix that extracts the contri-
butions of the element e, and neu indicates the number of
the displacement DOFs of the element e. Ksp ∈ R

N×N and
Ksp

e ∈ R
neu×neu are the spin-softening matrix and that for

the e-th element, respectively. f inte ∈ R
neu and Ke ∈ R

neu×neu

are the e-th elemental internal force and stiffness matrix.
Kl

e ∈ R
neu×neu and Knl

e ∈ R
neu×neu are the e-th elemental stiff-

nessmatrices of linear and nonlinear strains. In this paper, the
vectors and matrices of Eqs. 3-5 will be obtained by updated
Lagrangian formulation. After the nonlinear analysis con-
verges, the stiffness matrix K (um (μ) ;μ) will be utilized
for the next step, wherem indicates the last Newton-Raphson
iteration number.

2.2 Equation of themotion for the frequency
response analysis

Prior to the explanation of the equation for the frequency
response analysis, that of the linear time-transient analysis
will be introduced as Eq. 6.

M (μ) ü (t;μ) + C (μ) u̇ (t;μ)

+K (um (μ) ;μ) u (t;μ) = fext (t;μ)
(6)

M ∈ R
N×N and C ∈ R

N×N are the mass and damping
matrices. t is time. It is noted that the pre-stressed stiffness
matrix K is obtained from the nonlinear static analysis in
Eq. 5, where um is the converged displacement vector by
Newton-Raphson iteration.

The governing equation for the frequency response analy-
sis assumes that the entire structural component oscillates at a
frequency equal to that of the imposed harmonic force. Then,
the linear structural dynamic equation will be expressed as
Eq. 7.

(
− �2M (μ) + j�C (μ)

+ K (um (μ) ;μ)
)
uc (μ;�) = fc (μ)

(7)

j and � are the unit imaginary number and angular velocity
of the excitation force, respectively. uc ∈ C

N and fc ∈ C
N

are the complex displacement and imposed force vector, in
which Re

(
uce j�t

)
and Re

(
fce j�t

)
implies the dynamic dis-

placement and force vectors with the harmonic assumption.

2.3 Validation of the full-order model

Prior to MOR application, FOMwill be validated against the
results by ANSYS [16]. The present in-house FOM solver is
written in FORTRAN 90 with the Intel Math Kernel Library
(MKL) [17].Thevalidationobject is a 54H60propeller blade,
which has a slender configuration that is associated with
geometrical nonlinearity. As shown in Fig. 1, the blade is dis-
cretized into 10-node tetrahedral elementswith Ne = 24,151,
and the corresponding number of the displacement DOFs is
N = 133,857 from the ANSYS mesh generator [18]. The
material properties of a 7000-series aluminum alloy are con-
sidered [19] with Rayleigh-type viscous damping of a mass
matrix multiplier of 50 s−1.

For rigorous verification, each analysis module is vali-
dated separately. In this subsection, the pre-stressed stiffness
matrix of the nonlinear static analysis will not be used for

Fig. 1 54H60 propeller blade. aConfiguration, b Surface discretization
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the estimation of the frequency response, to validate both
modules independently.

First, the pre-stressed state under �rot of 1,020 RPM will
be obtained by the nonlinear static FOM solver, where�rot is
the rotating speed. It takes seven Newton-Raphson iterations
for the force convergence, such that ‖fext − f int‖2/‖fext‖2 <

10−6. As shown in Fig. 2, the present FOMmodule generates
similar results compared with those from ANSYS; and the
normalized root mean square error (NRMSE) in entire FE
nodes are found to be 0.11% and 0.11% for the displacement
andvon-Mises stress, respectively.Herein,NRMSE isRMSE
normalized by RMS of the reference value.

The linear frequency response is obtained under an oscilla-
tory transverse tip force of amplitude 1,000N. The frequency
range extends from 5 to 300 Hz with an interval of 5 Hz. Fig-
ure 3a shows the maximum transverse displacement for each
frequency and is completely identical for te present FOMand

Fig. 2 FOM validation for the nonlinear static analysis: von-Mises
stress distribution. All units in Pascal. a Present, b ANSYS

Fig. 3 FOM validation for the frequency response analysis: maximum
transverse displacement amplitude

Fig. 4 FOM validation for the frequency response analysis: maximum
von-Mises stress by an alternating stress

ANSYS. The maximum von-Mises stress, which is crucial
for the investigation of HCF, is derived from the alternating
stress component as shown in Fig. 4. NRMSE over the fre-
quency band is 0.72 %, which is due to the difference of the
stress recoverymethod for the harmonic values. Based on the
validation, it is concluded that the present FOM solver will
be reliable for the forced vibration analysis of the rotating
component.

3 Projection-basedmodel order reduction

Projection-basedMOR is an effective technique to reduce the
dimension of the aforementioned FOM for the forced vibra-
tion analysis of the rotating component. The method may
be categorized by the projection matrices (e.g. eigenmode
and POD mode matrix). Furthermore, the hyper-reduction
method will further decrease the computational cost of ROM
assemblage (e.g. FOM assemblage and Galerkin projection)
by the sparse sampling method. In this section, MSM, POD,
and their hybrid ROM approaches will be discussed. Then,
application of the energy-conserving sampling and weight-
ing (ECSW) scheme, which was the hyper-reduction method
recommended by Ref. [14], will be proposed for the compu-
tation of the forced vibration analysis.

3.1 Mode superpositionmethod (MSM)

MSM is one of the widely used methods to reduce the
dimension in the frequency response analysis. Given the pre-
stressed stiffness matrixK from the nonlinear static analysis,
the equation of the modal analysis, for the eigenmode extrac-
tion, are expressed in Eq. 8.
(
K (um (μ) ;μ) − (ωi (μ))2 M (μ)

)
φi (μ) = 0

i ∈ {1, 2, . . . , nφ}
(8)

Herein, a non-trivial solution ωi and φi ∈ R
N are the i-

th natural circular frequency and eigenmode, respectively.
nφ indicates the number of the natural modes obtained.
Then, the projection matrix of MSM will become � =
[φ1,φ2, . . . ,φnφ

] ∈ R
N×nφ .
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Since�TM� = I and�TK� = diag{ω2
1, ω

2
2, . . . , ω

2
nφ

},
where I ∈ R

nφ×nφ is the identity matrix, the ROM of the
frequency response analysis (Eq. 7) may be expressed as fol-
lows:
(
−�2I + j��T (μ)C (μ) � (μ) + �2 (μ)

)

× yc (μ;�) = �T (μ) fc (μ) (9a)

uc (μ;�) = � (μ) yc (μ;�) (9b)

where �2 = diag{ω2
1, ω

2
2, . . . , ω

2
nφ

} is the diagonal eigen-
value matrix; and yc ∈ C

nφ is the reduced complex
displacement vector in the modal coordinates. It is found
that the final solution uc is approximated as a linear combi-
nation of the eigenmodes, in which the coefficients are the
reduced solution yc.

MSM effectively reduces the dimension in the frequency
response analysis from N to nφ . However, the computational
cost of the nonlinear static analysis (Eq. 2) remains the same,
and a modal analysis (Eq. 8) will be required. Moreover,
the estimation of the projection matrix �, which requires
both nonlinear static and modal analysis in FOM, should be
performed for each parameter (μ) variation.

3.2 Proper orthogonal decomposition (POD)

In contrast, the computation of POD modes [8] is separated
from the FOM of nonlinear static and modal analysis, and
it will be conducted in the so-called off-line stage. Then, an
online stage will follow, in which ROM will be defined by
Galerkin projection of FOM to POD coordinates.

To be more specific, the off-line stage starts with the
collection of the sample result that represents the dynamic
behavior of FOM. In this paper, the result will be collected
by the nonlinear time-transient analysis module, of which
the governing equation and numerical algorithm are found
in detail in Ref. [7]. Then the snapshot matrix W ∈ R

N×Ns

will be constructed by the time- and parameter-varying dis-
placement vectors as follows:

W = [u (t1;μ1) , . . . ,u
(
tNs ;μNs

)] (10)

where t and Ns are time and the number of the snapshot sam-
ples. Then, PODmodes will be obtained from the orthogonal
basis vectors of the compact singular value decomposition,
as Eq. 11.

W = USV (11a)

� = [ψ1,ψ2, . . . ,ψnψ
] (11b)

U ∈ R
N×Ns and V ∈ R

Ns×Ns are the left and right singular
vector matrices; S ∈ R

Ns×Ns is the diagonal singular value
matrix; and nψ is the number of POD modes for utilization.

� ∈ R
N×nψ is the POD mode matrix, which comprise the

first nψ column vectors of U.
In the online stage, the governing equations of FOM will

be transformed to POD mode coordinates by Galerkin pro-
jection (e.g. �TK� and �Tu). Then, POD-based ROM of
the forced vibration analysis will be expressed as Eqs. 12 and
13 for the nonlinear static (Eq. 2) and the frequency response
analysis (Eq. 7), respectively [6].

�TK (uk (μ) ;μ) ��urk (μ) = �T
(
fext0 (μ)

+ Ksp (μ) uk (μ) − f int (uk (μ) ;μ)
)

(12a)

�uk (μ) = ��urk (μ) (12b)

(
−�2�TM (μ) � + j��TC (μ) �

+�TK (um (μ) ;μ) �
)
urc (μ;�) = �T fc (μ) (13a)

uc (μ;�) = �urc (μ;�) (13b)

Herein, �urk ∈ R
nψ and urc ∈ C

nψ denote the displacement
increment and the complex displacement vectors in POD
mode coordinates.

Also, in the case of nψ ≥ nφ , the governing equations
of the modal analysis (Eq. 8) will be written in the form of
POD-based ROM as follows [5]:

(
�TK (um (μ) ;μ) �

− (ωi (μ))2 �TM (μ) �
)

φr
i (μ) = 0

i ∈ {1, 2, . . . , nφ} (14a)

φi (μ) = �Tφr
i (μ) i ∈ {1, 2, . . . , nφ} (14b)

where the non-trivial solution φr
i ∈ R

nψ is the i-th eigen-
mode in POD mode coordinates.

Unlike the eigenmode matrix � of MSM, POD mode
matrix � will be independent of the parameter μ during the
online stage. In this respect, POD is an effective method for
the multi-query simulation, in which a number of the sim-
ulation parameters will be investigated. Also, POD will be
applicable not only to the governing equations of the forced
vibration analysis (Eqs. 12 and 13), but also to those of the
modal analysis (Eq. 14). It will initiate hybrid approaches
of POD and MSM, in which the natural frequencies and
eigenmodes will be obtained by POD-based ROM (Eqs. 12
and 14), and the frequency responses by MSM (Eq. 9).

The computational cost for solving nφ or nψ equations
will be negligible compared to that for N equations.However,
the computational bottleneck will occur by the construction
of ROM equations. This will include assemblage of FOM
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matrices and vectors (e.g. computation of K and f int) and
Galerkin projection (e.g.�TK� and�T f int). The bottleneck
will become significant in the nonlinear analysis (Eq. 12), in
which ROM construction will be required in each Newton-
Raphson iteration.

3.3 Energy-conserving sampling and weighting
method (ECSW)

To minimize the cost for ROM assemblage of the nonlin-
ear analysis, the hyper-reduction scheme will employ the
sparse sampling method. ECSW [14] defines a reduced set
of the elements with the corresponding weightings by an
energy-conserving approach which is based on the principle
of virtual work.

Therefore, additional effort of the coarse set definitionwill
be required in the off-line stage. First, the reduced training
vector will be obtained from the collected result in Eq. 10,
using the least square as follows:

qi =
(
�T�

)−1
�Tu (ti ;μi )

i ∈ {1, 2, . . . , Ns} (15)

where qi ∈ R
nψ is the i-th reduced training vector. Then, the

elemental contribution gie ∈ R
nφ of the reduced nonlinear

termwill be defined with their element-wise summation bi ∈
R
nφ as follows:

gie = �TLT
e f

int
e (Le�qi (μ) ;μ)

i ∈ {1, 2, . . . , Ns}, e ∈ E (16a)

bi =
∑

e∈E
gie i ∈ {1, 2, . . . , Ns} (16b)

Moreover, a block matrix G ∈ R
nψ Ns×Ne and a vector b ∈

R
nψ Ns will be assembled as follows:

G =
⎡

⎢⎣
g11 . . . g1Ne
...

. . .
...

gNs1 . . . gNs Ne

⎤

⎥⎦ (17a)

b =

⎧
⎪⎨

⎪⎩

b1
...

bNs

⎫
⎪⎬

⎪⎭
(17b)

Based on the matrix G and vector b, the standard non-
negative least square (NNLS) equation will be defined as
Eq. 18.

ξ = argmin
α≥0

‖Gα − b‖22 (18)

Herein, α ∈ R
Ne and ξ = [ξ1, ξ2, . . . , ξNe ]T ∈ R

Ne are the
coefficient vector and the set of element weightings asso-
ciated with Ne elements. An iterative solution algorithm of
the standard NNLS was proposed by Lawson and Hanson
[20].Moreover, the variant of the algorithm, called the sparse
NNLS, was suggested by Farhat et al. [14] by adding the
iteration termination criterion with a positive tolerance ε as
follows:

‖Gα − b‖2 ≤ ε‖b‖2 (19)

Through the additional off-line stage of Eqs. 15-19, the
reduced set of elements will be defined as Ẽ = {ẽ : ξẽ >

0} ⊂ E.
In the online stage, ROM assemblage for the nonlinear

static analysis (Eq. 12) will be expressed as follows:

�T K̃ (uk (μ) ;μ) ��urk (μ) = �T
(
fext0 (μ)

+ K̃sp (μ) uk (μ) − f̃ int (uk (μ) ;μ)

)
(20a)

�uk (μ) = ��urk (μ) (20b)

where the element-wise assemblage of K̃ ∈ R
N×N , K̃sp ∈

R
N×N , f̃ int ∈ R

N is performed in the reduced element set Ẽ
as Eq. 21.

K̃ (uk (μ) ;μ) =
∑

ẽ∈Ẽ
ξẽL

T
ẽ Kẽ (Lẽuk (μ) ;μ)Lẽ (21a)

K̃sp (μ) =
∑

ẽ∈Ẽ
ξẽL

T
ẽ K

sp
ẽ (μ)Lẽ (21b)

f̃ int (uk (μ) ;μ) =
∑

ẽ∈Ẽ
ξẽL

T
ẽ f

int
ẽ (Lẽuk (μ) ;μ) (21c)

Equation 21 shows that the number of element-wise sum-
mations for the assemblage of FOMmatrices and vectorswill
be drastically decreased. Also, considering that FOM matri-
ces are usually allocated in a sparse storage format, non-zero
entries of the matrix will be significantly reduced, leading to
the computational cost reductions for the matrix-matrix or
matrix-vector multiplication in Eq. 20.

4 Application to the rotating component

In this section, a comparison of the computational per-
formance will be conducted among the variety of MOR
frameworks when applied to rotating component forced
vibration parametric analysis. MOR application is depicted
in Fig. 5 and listed as follows:
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Fig. 5 Present MOR framework

• M1-FOM: The forced vibration analysis will be con-
ducted solely by FOM. The pre-stressed stiffness matrix
K will be obtained by the nonlinear analysis (Eq. 2).
Then, the frequency response uc will be obtained by the
linear harmonic analysis (Eq. 7).

• M2-MSM: This will be the same as M1-FOM for K
by the nonlinear analysis (Eq. 2). Then, the eigenmodes
� and eigenvalues �2 will be obtained by the modal
analysis of FOM (Eq. 8). Next, the frequency response
uc will be obtained in the eigenmode coordinates (Eq. 9).

• M3-POD: PODmodes � will be extracted from the off-
line stage (Eqs. 10-11). Then,K and uc will be estimated
by the nonlinear static (Eq. 12) and linear frequency
response analysis (Eq. 13) sequentially in POD mode
coordinates.

• M4-POD-MSM:Thiswill be the sameasM3-PODfor�
andK by the off-line stage (Eqs. 10-11) and the nonlinear
analysis (Eq. 12), respectively. Then, the modal analysis
for � and �2 will be conducted by POD-based ROM
(Eq. 14). The remaining procedure for uc (Eq. 9) will be
the same as M2-MSM.

• M5-POD-ECSW: The off-line stage for � (Eqs. 10-11)
will be extended by the sparse NNLS (Eqs. 15-19) to
obtain the weighting vector ξ and the set of the reduced
elements Ẽ. Then, the nonlinear static analysis will be
performed by the hyper-reduction method (Eq. 20) using
the stiffness matrix K̃ obtained by the reduced assem-

blage. The remaining procedure for uc (Eq. 13) will be
the same as M3-POD, except that the matrix K will be
replaced by K̃.

• M6-POD-ECSW-MSM: This will be the same as M5-
POD-ECSW for � (Eqs. 10-11), ξ , Ẽ (Eqs. 15-19) and
K̃ (Eq. 20). The remaining procedures for�,�2 (Eq. 14)
anduc (Eq. 9)will be the same asM4-POD-MSM, except
that the matrix K will be replaced by K̃.

The first application is the previously shown 54H60 pro-
peller blade, which will be discretized into hundreds of
thousands of DOFs. The blade has a slender configuration
that will induce a high degree of geometrical nonlinear-
ities. The second object is the first stage turbine blade
in the GT11N, of which its discretization has millions of
DOFs due to its complicated design incurred by inner hole
features.

The specification for the present computational resource
and libraries will be as follows: A single core Intel i9-
10900KF 3.70GHz CPUwill be used for the entire computa-
tion. For the computation of the dense matrices (Eqs. 9, 11–
14, 18–20), Intel MKL LAPACK [17] will be employed. In
the case of the large-size sparse matrices (Eqs. 2, 7-8, and
FOM analysis for the result collection), Intel MKL PAR-
DISO [17] will be used. ARPACK [21] will be additionally
adopted for the eigensolution in Eq. 8.
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To measure the accuracy of the present MOR, two indices
will be defined as follows:

E Iu (μ)

=
√∑

�∈F ‖uFOMc (μ;�) − uROMc (μ;�) ‖22√∑
�∈F ‖uFOMc (μ;�) ‖22

× 100
(22)

E Iσ (μ)

=
√∑

�∈F ‖σ FOM
v (μ;�) − σROM

v (μ;�) ‖22√∑
�∈F ‖σ FOM

v (μ;�) ‖22
× 100

(23)

where the superscripts FOM and ROM denote the quan-
tities obtained by FOM (i.e. M1-FOM) and ROM. F =
{�1,�2, . . . , �N f } is the set of the imposed frequencies,
where N f indicates the number of the frequencies. σ v ∈ R

Nn

contains the maximum von-Mises stress in each compu-
tational node which is derived from the alternating stress
components. Nn = N/3 is the total number of FE nodes.

The speedup performance S and the effective speedup one
Seff will be defined as follows:

S = TFOM
TROM

(24)

Seff = nsimTFOM
Toff + nsimTROM

(25)

where TFOM, TROM and Toff are the computational time spent
for FOM, ROM, and the off-line stage (Toff = 0 for M2-
MSM), respectively. nsim is the number of the simulations of
the parametric analysis.

4.1 54H60 propeller blade

The 54H60 propeller blade is analyzed first. The parameter
μ = �rot varies from 510 to 1,530 RPM at an interval of 102
RPM. The discretization and the harmonic excitation of the
tip are the same as in Sect. 2.3. The number of eigenmodes is
selected to be 13, where the corresponding maximum natural
frequency (from 501 to 521 Hz by Eq. 8) sufficiently covers
the frequency band of the imposed excitation. POD-applied
MOR is examined by the various number of PODbases, from
20 to 50 at an interval of 10.

Regarding the off-line stage, the snapshot matrixW of 50
column vectors will be constructed (Ns = 50). The non-
linear time-transient analysis is conducted to obtain the time-
varying displacement vectors of W, in which the sinusoidal
forces and angular velocities are imposed. To be more spe-
cific, tip force of amplitude 1,000 N is imposed along the
longitudinal axis, and the angular velocity of amplitude 1,020
RPM is imposed along the transverse and rotating axes for
each. The sinusoidal function oscillates during 5 periodswith

Fig. 6 Time-varying tip displacement of the 54H60 propeller blade
obtained from the snapshot matrix

Fig. 7 Sampled mesh for the 54H60 propeller blade obtained by the
present sparse NNLS. a nψ = 20 (Nẽ = 86), b nψ = 50 (Nẽ = 212)

the frequency of 17 Hz. Figure 6 shows the time-varying
response obtained for the nonlinear time-transient analysis.

Except for the sparse NNLS, it takes 983.9 seconds for the
off-line stage, which is Toff of POD-applied MOR without
the hyper-reductionmethod (M3-POD andM4-POD-MSM).
To apply ECSW (M5-POD-ECSW and M6-POD-ECSW-
MSM), the computational time of the sparse NNLS (TNNLS)
will be added to the off-line cost. The sets of the reduced ele-
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Table 1 Accuracy and speedup performance of MOR for the 54H60 propeller blade (μ = 1,020 RPM)

MOR framework E Iu (%) E Iσ (%) S

M2-MSM 0.97 6.36 9.9

M3-POD 20.80/7.71/2.20/0.81 53.40/19.49/6.64/3.89 30.2/27.8/25.7/23.7

M4-POD-MSM 20.80/7.73/2.20/0.97 53.43/19.80/7.10/5.42 32.3/29.9/27.5/25.5

M5-POD-ECSW 21.33/6.94/3.05/1.10 53.13/17.00/8.00/4.05 229.0/183.7/158.0/128.5

M6-POD-ECSW-MSM 21.33/6.96/3.06/1.22 53.15/17.36/8.39/5.47 232.4/202.6/171.8/142.4

The values in the multi-entry cells correspond to nψ of 20, 30, 40 and 50

ments Ẽ are obtained by the positive tolerance ε = 0.001 of
Eq. 19. Herein, the number of reduced elements Nẽ increases
in terms of the number of POD bases employed as shown in
Fig. 7. The computational time for the sparse NNLS is 12.3,
15.8, 22.0, and 37.5 seconds for each nψ .

The accuracy (E Iu and E Iσ ) and speedup (S) performance
ofMOR is investigated. The case forμ = 1,020RPM is sum-
marized in Table. 1. When enough POD bases are provided,
a significant improvement in speedup performance will be
obtained by the hyper-reduction methods. Despite a small
accuracy loss, this method results in a dramatic cost reduc-
tion for the nonlinear static analysis. The computational time
for the nonlinear static analysis is 16.9, 8.5, and 0.6 seconds
for Eqs. 2, 12 and 20, respectively, for nψ = 50.

To examine the robustness of the present MOR, indices
E Iu , E Iσ , and S are compared in terms of the parameterμ as
shown in Figs. 8, 9, 10. An increase of the displacement and
stress discrepancy is observed for large μ, which is due to
the high nonlinearity induced by the large centrifugal force.
Nevertheless, the discrepancy remains within the admissible
boundary for values ofμ (E Iu < 1.67%and E Iσ < 6.99%).
To be specific, the maximum transverse displacement is indi-
cated for each frequency location as shown inFigs. 11, 12, 13.
As the parameterμ increases, the peak locations appear in the
higher frequency locations, which implies that the stiffness
increases in terms of the rotating speed. To be more spe-
cific, the significant nonlinear stress-stiffening effect occurs,

Fig. 8 Accuracy performance of the present MOR for the 54H60 pro-
peller blade in terms of μ (nψ = 50): E Iu

Fig. 9 Accuracy performance of the present MOR for the 54H60 pro-
peller blade in terms of μ (nψ = 50): E Iσ

Fig. 10 Speedperformance of the presentMORfor the 54H60propeller
blade in terms of μ (nψ = 50): S

Fig. 11 Maximum transverse displacement amplitude in the 54H60
propeller blade (nψ = 50): μ = 510 RPM
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Fig. 12 Maximum transverse displacement amplitude in the 54H60
propeller blade (nψ = 50): μ = 1,020 RPM

Fig. 13 Maximum transverse displacement amplitude in the 54H60
propeller blade (nψ = 50): μ = 1,530 RPM

which further exceeds the spin-softening effect. Such trends
will not be observed without the pre-computation of the non-
linear static analysis. All MOR frameworks follow similar
trends, however, slight deviations occur in the higher fre-
quency region for large μ. Still, accurate results are obtained
at the peaks as shown in Fig. 14, in which the maximum von-
Mises stress by an alternating stress is obtained in each FE
node at the last peak frequency of 250 Hz (μ = 1,530 RPM).

The final investigation is for the effective speedup to mea-
sure the substantial acceleration performance by including
the computational cost of the off-line stage. To obtain Seff ,
the computational time of FOMandROM is averaged among
the parameter μ. Figure 15 shows the effective speedup with
respect to the number of simulations. Since there is no off-
line stage forMORwith onlyMSM (M2-MSM), its effective

Fig. 15 Effective speedupofMORfor the 54H60propeller blade (nψ =
50). The values in the parenthesis are S of each MOR

speedup will remain constant regardless of the number of
simulations. In the case of POD-applied MOR, the effective
speedup performance will be inferior with the small number
of simulations because of the expensive off-line computa-
tion. Seff increases in accordance with the increase of nsim,
and approaches the speedup S of each MOR. While Seff of
POD application (M3-POD and M4-POD-MSM) surpasses
that of the conventional MSM (M2-MSM) at nsim of 68
and 66, the hyper-reduction method (M5-POD-ECSW and
M6-POD-ECSW-MSM) brings the performance intersection
forward to nsim of 48 and 47. Despite the increase in the
off-line cost due to the sparse NNLS, it is found that the
application of the hyper-reduction method will be an ideal
choice for the multi-query forced vibration analysis of the
rotating component.

4.2 GT11N turbine blade

The performance of MOR on a large analysis is validated by
its application on the first stage turbine blade of a 75MW
GT11N gas turbine. Some results of the off-line stage, FOM
simulation (M1-FOM) and POD application (M3-POD) are
obtained fromRef. [6] or the results need to be re-obtained for
additional examination. The parameterμ = �rot ranges from
1,800 to 5,400 RPM at an interval of 360 RPM. The relevant
FE discretization is shown in Fig. 16. To describe the com-
plex configuration, the blade will be discretized into millions
of DOFs (N = 1,774,512) with the corresponding 10-node

Fig. 14 von-Mises stress by an alternating stress for 54H60 propeller blade (nψ = 50, μ = 1,530 RPM, � = 250 Hz). All units in Pascal. a
M1-FOM, bM5-POD-ECSW, c M6-POD-ECSW-MSM
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Fig. 16 Surface discretization of the GT11N turbine blade and the sam-
pled mesh obtained by the sparse NNLS. a nψ = 20 (Nẽ = 232), b
nψ = 50 (Nẽ = 605)

Fig. 17 Time-varying tip displacement of the GT11N turbine blade
obtained from the snapshot matrix

tetrahedral elements of Ne = 376,538. The material proper-
ties of alloy In-738LC are employed [5] with Rayleigh-type
viscous damping of mass matrix multiplier of 50 s−1. For the
frequency response analysis, a transverse tip harmonic force
of 1,000 N is imposed using the frequency band extending
from 500 to 4,500 Hz at the interval of 40 Hz. The number
of eigenmodes is selected as 11, where the corresponding
maximum natural frequency ranges from 8,995 to 9,005 Hz
by the modal analysis (Eq. 8). POD-applied MOR is exam-
ined by the various POD bases set of nψ from 20 to 50 at the
interval of 10.

The snapshot matrix W is obtained from Ref. [6] and
consists of 50 column vectors (Ns = 50). For the nonlinear
time-transient analysis, the sinusoidal angular velocities of
amplitude 3,600 RPM are imposed along the transverse, lon-
gitudinal and rotation axes for each. The sinusoidal function
oscillates during 5 periods with the frequency of 1,000 Hz.
Figure 17 shows the corresponding time-varying structural
behavior.

Excluding the computational cost of the sparse NNLS, it
takes 20,670.3 seconds for the off-line stage. For the sparse
NNLS, TNNLS is 414, 898, 1,787, and 4,152 seconds for each
set of POD bases with a tolerance of ε = 0.001. The sets of
the reduced elements Ẽ are shown in Fig. 16 for the cases of
the number of POD bases nψ = 20 and 50.

Table 2 summarizes the accuracy and speedup indices
E Iu , E Iσ , and S for various nψ in the case of μ = 3,600
RPM. Figures 18, 19, 20 show the variations of the perfor-
mance indices in the parametric axis. Despite the substantial
number of DOFs, the accuracy is found to be maintained
within 1.5 % and 2.9 % for E Iu and E Iσ . In addition, a dis-
tinctive speedup is obtained by the hyper-reduction method
with a loss of the displacement accuracy (E Iu) of 1.4 %
or less. To be more specific, the computational cost of the
nonlinear static, modal and frequency response analysis are
compared separately in Table. 3. It is found that the remain-
ing computational bottleneck of the nonlinear static analysis
is effectively mitigated into single digits by ECSW.

Like Sect. 4.1, the maximum transverse displacement
is examined for each frequency location as shown in
Figs. 21, 22, 23. Except for the slight deviation in the high
frequency region, the frequency response results ofMOR are

Table 2 Accuracy and speedup performance of MOR for the GT11N turbine blade (μ = 3,600 RPM)

MOR framework E Iu (%) E Iσ (%) S

M2-MSM 0.17 2.52 49.4

M3-POD 8.29/0.48/0.26/0.10 6.60/2.35/2.06/1.78 299.5/276.6/254.0/234.6

M4-POD-MSM 8.29/0.49/0.29/0.17 6.63/2.70/2.62/2.53 312.5/290.0/268.5/248.8

M5-POD-ECSW 8.45/2.95/1.41/0.68 9.29/2.95/4.49/2.19 1,530.5/1,281.3/1,097.9/936.3

M6-POD-ECSW-MSM 8.45/3.23/1.41/0.68 9.31/3.23/4.77/2.86 1,617.3/1,437.7/1,256.6/1,112.0

The values in the multi-entry cells correspond to nψ of 20, 30, 40 and 50
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Fig. 18 Accuracy performance of the present MOR for the GT11N
turbine blade in terms of μ (nψ = 50): E Iu

Fig. 19 Accuracy performance of the present MOR for the GT11N
turbine blade in terms of μ (nψ = 50): E Iσ

Fig. 20 Speedup performance of the present MOR for the GT11N tur-
bine blade in terms of μ (nψ = 50): S

identical to those by FOM. In addition, the maximum von-
Mises stress by an alternating stress, which is a key factor
for HCF investigation, is post-processed as shown in Fig. 24
at the last peak frequency (4,100 Hz) for the parameter μ of
5,400 RPM. Despite the large DOFs and complicated con-
figuration, ECSW will provide an accurate stress field when
compared with other methods. Figure 25 shows the effec-
tive speedup,where POD-appliedMORexceeds the effective
speedup of M2-MSM at the range of the number of sim-

Table 3 Average time for the computation (nψ = 50)

Analysis Applied Equation Computational
Type MOR Time (s)

Nonlinear static – Eq. 2 359.0

POD Eq. 12 89.5

POD-ECSW Eq. 20 5.5

Modal – Eq. 8 211.9

POD Eq. 14 6.4

Frequency response – Eq. 7 28,213.4

MSM Eq. 9 2.5

POD Eq. 13 13.6

Fig. 21 Maximum transverse displacement amplitude in the GT11N
turbine blade (nψ = 50): μ = 1,800 RPM

Fig. 22 Maximum transverse displacement amplitude in the GT11N
turbine blade (nψ = 50): μ = 3,600 RPM

Fig. 23 Maximum transverse displacement amplitude in the GT11N
turbine blade (nψ = 50): μ = 5,400 RPM
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Fig. 24 von-Mises stress by an alternating stress for the GT11N turbine
blade (nψ = 50, μ = 5,400 RPM, � = 4,100 Hz). All units in Pascal.
a M1-FOM, bM5-POD-ECSW, c M6-POD-ECSW-MSM

Fig. 25 Effective speedup performance ofMOR for the GT11N turbine
blade (nψ = 50). The values in the parenthesis are S of each MOR

ulations from 43 to 45. Despite the improved speedup S,
ECSW-applied MOR shows similar effective speedup per-
formance Seff as that without the hyper-reduction method in
the range of nsim < 55, because of the increased cost of the
sparse NNLS. In practice, it will be proper to employ the
parallel computing techniques for such large DOF off-line
including the sparse NNLS, as shown in Ref. [14]. There-
after, ECSW-applied MOR will appear to be superior Seff to
the other methods. By observing the accuracy and speedup
performance shown above, the proposed hyper-reduction
application (M5-POD-ECSW and M6-POD-ECSW-MSM)
will be appropriate for large forced vibration analysis.

5 Conclusions

The qualitative and quantitative investigation is performed
forMORapplication on the rotating component forced vibra-
tion analysis. The computational procedure of the forced
vibration analysis includes the nonlinear static analysis for
the pre-stressed stiffness and the linear frequency response

analysis for the harmonic displacement. Based on MOR
frameworks by MSM and POD, the hyper-reduction method
(ECSW) is newly applied to relieve the remaining compu-
tational bottleneck in the iterative nonlinear analysis. Two
practical applications, the slender propeller blade and com-
plicated turbine blade, are selected as the rotating component
examples to validate the present MOR performance in the
environment of the high geometrical nonlinearity and the
large DOFs. Through the studies, the following conclusions
are derived:

• Regardless of the parameter (rotating speed) variation,
the hyper-reduction method provides speedup perfor-
mance which is ten to twenty times superior than the
conventional MSM (M2-MSM), with admissible accu-
racy loss.

• In terms of the effective speedup including off-line costs
in consideration, the application of ECSW shows its
advantage for multi-query simulations.

• For the large number of DOFs, the ECSW-applied MOR
exhibits a rather deteriorated effective speedup perfor-
mance for the small number of simulations due to the
increased cost of the sparse NNLS. Nevertheless, an
exponentially increased speedup is observed for the large
number of simulations.

• All presentMOR frameworks provide precise alternating
stress distribution, which validates the employment of
the hyper-reduction method on the rotating component
forced vibration analysis.

In the future, the present MOR applications will extend to
the material nonlinearity of viscoplasticity. Thus, the appli-
cability of the present MOR on a low cycle fatigue analysis
will be examined.
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