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Abstract

This paper proposes a thermodynamically consistent phase-field damage model for viscoelastic materials following the
strategy developed by Boldrini et al. (Methods Appl Mech Eng 312:395-427, 2016). Suitable free-energy and pseudo-
potentials of dissipation are developed to build a model leading to a stress-strain relation, under the assumption of finite strain,
in terms of fractional derivatives. A novel degradation function, which properly couples stress response and damage evolution
for viscoelastic materials, is proposed. We obtain a set of differential equations that accounts for the evolution of motion,
damage, and temperature. In the present work, for simplicity, this model is numerically solved for isothermal cases by using
a semi-implicit/explicit scheme. Several numerical tests, including fitting with experimental data, show that the developed
model accounts appropriately for damage in viscoelastic materials for small and finite strains. Non-isothermal numerical

simulations will be considered in future works.
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1 Introduction

Interest in damage modeling for viscoelastic materials has
increased greatly in recent years. Due to their application in
the areas of engineering, biology and structural analysis, the
appropriate characterization of the viscoelastic behavior is
mandatory to predict component failure, making this theme
a very challenging and contemporary research topic.

The earliest contributions for modeling fractures in vis-
coelastic material date back to the mid-1960s, considering
the studies of Knaus er al. [43-45,95], Williams [93,94]
and Schapery [75]. In these studies, crack description is
included with the prescription of a critical strain that is estab-
lished empirically. Since then, robustness of the models has
progressed and many works combining theoretical and com-
putational aspects have been proposed.
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Some of the traditional models use the cohesive zone
method [87,88], which, although widely adopted, presents
some difficulties related to the insertion of a sharp inter-
face. Models based on X-FEM [67,72,98] and peridynamics
[59] have also sparked researchers’ interest, but these strate-
gies require considerable reformulation of computational
methods or present difficulties to account for nonlinear vis-
coelasticity [86]. Thus, continuum approaches have emerged
as an alternative to overcome some of these disadvantages
[23,70,86]. Particularly, phase-field models are an interest-
ing concept to deal with material damage due to the ability to
describe state changes in a continuum way. In other words,
they replace the sharp interface by a gradual, but fast, descrip-
tion of the state change induced by the crack propagation;
they may also easily couple thermal and deformation pro-
cesses by taking into account the influence on stored energy
of the material [78,91]. Moreover, the diffuse approxima-
tion of discontinuities diminishes the burden of remeshing
during crack propagation [69]. Obviously, there are rela-
tions between sharp-crack models and phase field models;
an example of an article considering such relations is [80],

One important aspect to be considered is the thermo-
dynamic consistency of the phase-field models. In this
regard, many authors have presented interesting contribu-
tions. Miehe et al. [66] outlined a framework for phase-field
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models of crack propagation in elastic solids. Fabrizio and
co-workers [2,27] also presented an isothermal model for
describing damage and fatigue for non-isothermal cases,
Dittman et al. [22] considered ductile fractures, Boldrini
et al. [7] presented a general thermodinamically consistent
phase-field model for damage and fatigue where the behavior
of particular material classes are considered by their cor-
responding free-energy potentials and pseudo-potentials of
dissipation. Haveroth et al. [36] included the effects of plas-
ticity in the model presented in [7] and compared several
simulated results with experimental data.

The application of phase-field to describe damage in vis-
coelastic materials was considered by Schinzel [74] and
Miehe et al. [62], Talamin it et al. [84], Shen et al. [79], who
used traditional rheological models of springs and dashpots
to describe viscoelasticity. These works proposed effective
models to predict the material response under loading con-
ditions, although the thermodynamic consistency of these
formulations are unclear. Furthermore, models based on
chains of springs and dashpots frequently require the iden-
tification of many material parameters for the constitutive
equation.

Despite these difficulties, traditional models based on
mechanical analogies have been used since the mid-19th
century [14,30,35,61], both to describe linear and non-linear
viscoelastic behavior [17,33,34,40,52,81,89]. These models
are widely used as they are particularly useful for predict-
ing the material response in a purely phenomenological way.
Generalized rheological chains can be used to model a large
number of viscoelastic materials; however, as mentioned
previously, it can lead to complications for the inverse iden-
tification problem since various springs and dashpots may
be involved. Models based on fractional derivatives have
emerged as an interesting alternative to describe viscoelastic
behavior. According to Welch et al. [92], the use of fractional
derivative operators typically demand fewer rheological ele-
ments, providing more flexibility to the models.

Although the relationship between viscoelasticity and
fractional derivatives started only after 1930, nowadays vis-
coelasticity analysis is one of the fields with the most
extensive applications of fractional derivatives [13,21,51,58,
60,77]. Recent contributions include the works of Jaishankar
and McKinley [41,42]. These authors used simple fractional
constitutive relationships to characterize the power-law rhe-
ological behavior exhibited by viscoelastic interfaces [41].
They also proposed a viscoelastic fractional formulation to
describe linear and nonlinear viscoelastic properties of com-
plex liquids and soft solids [42]. Xu and Jiang [96] also used
fractional viscoelastic models to characterize creep behav-
ior. They provided fitting with experimental data showing
the effectiveness of the proposed modeling.

Concerning the thermodynamic aspects of viscoelastic-
ity theories, we mention the classical studies of Coleman
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[18,19], which in turn inspired the works of Christensen
[16,17] and Laws [50]. These authors applied the classical
Colleman-Noll approach including the called memory effects
in the free-energy in order to account for the hereditary effects
of viscoelasticity. Since then, many other researches have
presented contributions on this subject [6,26,73,76]. Regard-
ing the fractional viscoelastic theory, Lion [57] presented a
full derivation of the fractional Zener model from the point
of view of thermodynamics, where a free-energy potential
is derived and the corresponding potential of dissipation is
obtained. Fabrizio [25] developed a model with fractional
derivatives and compared it with the classical Volterra the-
ory. This author also proposed a free-energy associated with
fractional viscoelasticity. Alfano and Musto [1] revisited a
fractional model proposed in [68] and presented a thermody-
namic derivation that resulted in a linear viscoelastic model.

Recently, fractional viscoelastic models have been cou-
pled to damage models [1,82,83]. Krasnobrizha et al. [47]
presented an elastoplastic damage model with fractional
derivatives that distinguished the dissipation due to the mate-
rial damage, plasticity and viscoelasticity. This collaborative
model is validated for a woven composite with thermoset
and thermoplastic matrices. Tang et al. [85] proposed a
damage model in viscoplastic materials to describe creep
in rocks. In this work, the fractional derivative is used to
describe viscoelastic behavior coupled with a continuum
damage approach. Good curve fittings of experimental data
were obtained, showing that the model can reflect ongoing
damage during rock creep. Caputo and Fabrizio [12] coupled
phase-field and fractional derivatives to describe damage in
viscoelastic materials. They considered the fractional order
of the derivative as a phase-field variable which represents
the damage evolution, but once more, the thermodynamical
consistency of this formulation is unclear.

Although significant progress has been made, many of
the constitutive models for damage in viscoelastic materials
do not account simultaneously for crack initiation, modeling
unloading processes, nonlinear viscoelasticity, or even ther-
mal effects. Moreover, apart from the works of Tijssens et
al. [87,88], Schanzel [74] and Thamburaja et al. [86], the
proposed models are limited to small strain.

Motivated by this situation, we propose a thermody-
namically consistent framework coupling the benefits of
phase-fields and fractional derivatives to describe damage
in viscoelastic materials. It results in a model, written in the
Lagrangian configuration, that describes the diffuse crack
interface by a scalar variable which evolves according to a set
of governing equations derived from thermodynamic consid-
erations and leads to automatic crack initiation, that cannot
be predicted by discrete fracture models. Furthermore, the
coupling with the fractional model considers the viscoelastic
effects by using less material parameters than those required
in the traditional rheological models. The model presented
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here allows finite strain and is based on a mathematical
phase-field framework that is similar to the one proposed
by Boldrini et al. [7] for linear elastic brittle material, which
guarantees thermodynamic consistency and can also include
non-isothermal aspects without violating such consistency.

For this, we firstly develop a general phase-field model to
account for damage by defining a novel free-energy potential
which includes memory effects. The particularization of the
model for viscoelastic materials is done by using a suitable
free-energy potential and pseudo-potentials of dissipation.
In particular, the choice of viscoelastic free-energy potential
leads to a fractional order differential stress/strain relation.
This equation includes a degradation function [48], which
role is to ensure that the part of the driving force associated
to the hyperelastic interaction appears in the equation for
damage evolution. We propose a new degradation function
suitable for describing damage in viscoelastic materials.

The model is given by a nonlinear system of fractional par-
tial differential equations for the evolution of motion, damage
and temperature in materials with viscolastic behavior that
is solved by using a semi-implicit/explicit finite element
scheme. Numerical examples include a one-dimensional
application of the model to describe the dynamic response of
a viscoelastic rod and check the influence of some terms for
the stress equation. Afterwards, the two-dimensional exten-
sion is used to simulate tensile tests that include loading and
unloading processes. We also perform an experimental curve
fitting for tensile tests with samples of high density polyethy-
lene (HDPE) for small and large strains, for which the model
presents good curve fitting properties in loading process and
also good ability to predict the behavior of the specimen for
unloading processes.

2 Development of the model

Consider a body B C RR? in the reference configuration with
Lagrangian coordinates denoted by p and an arbitrary regular
subdomainD C B withboundary dD. The fundamental state
of the body is described by the density of mass p which satis-
fies the principle of mass conservation, dynamic variables u
and v representing, respectively, displacement and velocity
vector fields, and the specific density of internal energy e.
The governing equation for v is obtained from the principle
of virtual power (PVP). The first principle of thermodynam-
ics is used for e.

Suppose that B can develop damage due to strain pro-
cess. We assume that damage evolution can be described by
a scalar phase field. In this case, the phase-field variable ¢
corresponds to the volumetric fraction of damaged material
and lies in the interval [0, 1]; ¢ = 0 is associated with the
undamaged material and ¢ = 1 with the fractured material.
In the context of this work, damage is considered a dynamic

variable with a corresponding equation obtained from the
PVP.

Application of the PVP will require the definition of vir-
tual velocities §v and dc, that are, respectively, admissible
macroscopic virtual velocity (the time rate of change of dis-
placement) and admissible microscopic virtual velocity (the
time rate of change of dynamic phase-field ¢).

2.1 Basic mechanical aspects

Following similar arguments developed by Frémond [32] and
Boldrini et al. [7], the basic governing equations considered
here emerge from the mechanical principles which are sum-
marized below.

1. The principle of mass conservation states that the total
mass in a closed system is unaltered by any physical and
chemical actions, that is p = 0, where the dot notation
(:) = g—t(-) corresponds to time derivative.

2. The principle of virtual power (PVP) states the equilib-
rium of the virtual powers of inertia P,, internal P; and
external P, loads for any virtual actions (§v, §¢) and sub-
domain D as

Pa = Pi + ,Pe’ (1)
where
P; = —f P :V (v) dD—/ [k8c + h -V (8¢c)] dD,
D D
2
P, = / pf.8v dD—}—/ [t.8v + t,6c] d(0D), 3)
D D
and
Py = / pd.8v dD. @)
D

In Eq. (2), P is the first Piola-Kirchhoff stress tensor; we
recall that P = F S, where F is the gradient deformation
tensor, and S is the symmetric second Piola—Kirchhoff
stress tensor; also, k is a volume density of energy by unit
of ¢ and h is an energy flux vector by unit of ¢ [32]. We
denote by V() the gradient operator in the Lagrangian
configuration. The first term on the right-hand side of Eq.
(2) is the classical stress power, while the second term is
the power of the interior generalized forces related to the
material damage. In Eq. (3), f is the body force vector
field per unit of mass, ¢ is the macroscopic stress vector
field and #, is the superficial density of energy supplied to
the material by the flux k. The first integral in Eq. (3) is
related to the virtual power of actions at a distance, while
the last two terms in the second integral are associated
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to the virtual powers of the surface loads. It is assumed
that there are no exterior microscopic actions affecting the
damage of the material (e.g., aging or corrosion).

By replacing Egs. (2), (3) and (4) into Eq. (1), using §v =
0 and the fact that §c is arbitrary, we obtain
div(h) —k=0 inD and h-ng=t, indD, (5-6)
where ng is the unit vector normal to the surface area
0D, and div(-) denotes the divergence operator in the

Lagrangian configuration. On the other hand, by using
8¢ = 0, and the fact that §v is arbitrary, we get

pv =div(P)4+pf inD and P-np=t indD. (7-8)

3. The first principle of thermodynamics leads to the follow-
ing equation:

pé = —diviq) +pr +S: E+k¢+h-V(p) inD,
©

where e is the specific internal energy density; q is the
heat flux vector field, r is the specific heat source density
and E is the Green-Lagrange strain tensor.

4. The entropy inequality is also considered. As in Fabrizio
et al. [28], and Boldrini et al. [7], the second principle of
thermodynamics is here expressed in a generalized form
of the Clausius-Duhem inequality [90], whose differential
form is given by

pn > —div(®) + pw inD. (10)

In this expression, the specific entropy density is denoted
by n; the general form of the total entropy flux is split as
D = Py+P,;theterm Py = q/0 is the classical thermal
entropy flux, and 8 > 0is the absolute temperature; @, is
apossible additional entropy flux due to other microscopic
features. The general form of the total specific entropy
production term is also split as w = wg + w;,, where
we = r /0 is the classical specific thermal entropy pro-
duction and w,, is a possible additional specific entropy
production term due to other microscopic features. In the
present model these extra terms may appear due to the
damage mechanisms that lead to softening and fracture,
as well as to mechanisms related to memory effects. For
proper modeling, it is required that w,, > 0. Expressions
for @,, and w,, will be obtained later on, when we will
deal with the expressions for the constitutive relations.
By replacing the Helmholtz specific free-energy

Y =e—0n, (11)
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in Eq. (9) and comparing it with inequality (10), we obtain

. . ) 1
—p(¢+0n)+S:E+kgo+h~V<p—5q-V(9)
+0div(®,,) — Opwy, > 0. (12)
Inequality (12) must be satisfied for all physical admis-
sible processes to ensure thermodynamic consistency.

Some details about this aspect are considered in the next
section.

2.2 General model
We assume that we are dealing with a class of materials with
constitutive relations for ¥, S, k, h and g that depend on the

state variables as follows:

Vv =v(0, E, H(E)),

S:=8(0, E, #(E), ¢, E), (13)
k:=k(©, E, #(E), ¢, E), (14)
h:=h(®, E, #(E), ¢, E), (15)
q:=q(0,E, #(E), . E), (16)

where ® = {0, ¢, VO, Vo} and J(E) := F(E)(p,t) =
{E; :== E(p,s) Y0 < s < t} denotes the history of the
Green-Lagrange strain tensor E up to time 7.!

The specific forms of the constitutive relations for the vari-
ables of Egs. (13)-(16) will be expressed in terms of the
specific free-energy density Y and the pseudo-potential of
dissipation ¥4, which are discussed in the next sections.

2.2.1 General form of the free-energy

The model here proposed can be compared with a rheological
combination of two parts in parallel. Part A is associated with
the local strain effects, and part B is related with the memory
strain effects; see Fig. 1.

Particular cases of this situation can be seen in Fig. 2.

! In the present work, we consider only the situation of bodies that are
strain free for times ¢ preceding the initial time fo; that is, we always
assume that E(r) = 0 V ¢ < fg. Thus, we take the strain history as

H(E) == A (E)(p, 1) = {E; =E(p, 1 —5),0 <5 < 00)}
= {E; =E(p.s5).0 <s <1)}.
This definition is a particular case of [25], and simplifies a bit the tech-

nical details. We could, without too many difficulties, include in our
model the complete past history of strain.
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Fig.1 General rheological
arrangement proposed in this
work

Is I's

(a) General model.

(b) Modified fractional Kelvin-Voigt model.

1369
A Stress
B
v Stress
s
's

(¢) Modified Kelvin-Voigt model.

Fig.2 Possible interpretations of our model in the one-dimensional case for A constant. The spring represents the hyperelastic contribution of the
Neo-Hookean material and the dashpot gives the viscous damping. The fractional rheological element is represented by the rhombus

Based on the arrangement shown in Fig. 1, we assumed
that is proper to split the total specific free-energy density
in two terms:?

V(O, E, H(E)) = y:(0, E) + ¥ (O, H(E)), (17)

The term . is the classical space-time pointwise potential
related with part A of the rheological model, and v, is the
potential that accounts for the memory effects in the strain
field related with part B. Both ¥ and v,,, are presented in this
section in a general way. Specific equations for these func-
tions are defined by the choice of the material to be modeled
(see Sect. 2.3 for the case of viscoelasticity).

The general form of the potential 1, is chosen to be

Gy ~
@) 5 (AE),

Y (@, JE(E)) = (18)

where G, (¢) > 0is a suitable damage degradation function
that will be particularized later on (see Sect. 2.3.4) and the
potential v, is defined as

~ - 1 N (E E
wm:=wm<ﬁsfi(E)>=F(l_a)[ (t; v

f’ﬂ(Et,Ea ; }
“Jy G- T

where E() := E(p,()), 0 < a < 1, I'(-) is the standard
Gamma function [4] and .4” is a suitable continuous function

(19)

2 Christensen [15](pg. 265) presents a general free energy depending
on the strain and its memory parts. The total free energy ¢ of Eq. (13)
can be considered a particular case of [15].

of second-order symmetric tensors satisfying the conditions
given in “Appendix A”. This appendix also presents the com-
putations to obtain the derivative 1, and a property that
is important for ensuring the validity of inequality (12).
“Appendix B” gives several examples of possible choices
for ./ satisfying the conditions stated in “Appendix A”. In
particular, Examples 1-3 of “Appendix B” also show partic-
ular choices for ,,,, which lead to a constitutive stress/strain
relation in terms of fractional derivatives.

It is important to emphasize that Eq. (18) depends only on
¢ and the memory effects on the strain field. At the expense of
simple, but longer computations, we could easily include in
the mathematical model the dependence of I/me on ®, and also
on its respective memory effects, as suggested in the general
form of Eq. (17). However, for simplicity of exposition, in
this work we consider 1., as presented in Eq. (19), depending
just on memory effects of the strain field.

By considering Eq. (17) and using the standard chain rule,
we obtain the derivative of ¢ as

U = 3ol + 3, Ved + dvo VO + dvp ¥ Vo

/

. . G .
+opYe t E+ Sy IE+%¢m¢)—R, (20)

where 9(.)V. represents the partial derivative of . with

. : ! dGm
respect to the subscribed variable, G;, := g

Sm

N G [8E,</V(Et’E0)
T opl(1—a) e

"9 E, E
—i—ot/ Et</V( 1 E7) d‘r],
0

(t — T)H—ot (21)
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and Since we have already done the first step , we go directly
to the second step.

oGy, N (E;, Ep) We split each one of the constitutive relations in Eqgs. (13)-

 pl(1—a) [ 1+ (16) in two parts as follows:
,/V(E,, . .

o | T)M T] 22 §=5"®,E, #(E)+ 5" (6,E. ¢ E), (23)

k=k"(0,E, A(E) + k" (6, E, ¢, E), (24)

We observe that R > 0, due to the property (b) of function ho=h"(©,E, #(E)+h"(©,E, ¢, E), (25)

A, as shown in “Appendix A”. qo = q(r)(@7 E, #(E)) + q(ir)(@’ E. ¢ E). (26)

2.2.2 Expressions for the constitutive relations

To obtain the general expressions of the constitutive rela-
tions other than the free-energy we will use the approach
of used in Frémond [32] and Fabrizio, Giorgi, Morro [27].
This approach is related to the Coleman-Noll procedure, and
it uses the free-energy and of the pseudo-potential of dissi-
pation, which is a general way to satisfy the reduced form
of the dissipation inequality, to obtain expressions for the
constitutive relations. It consists of the following five steps..

First step: one restricts the general class of materials to
be analyzed by making assumptions on how the constitutive
relations depend on the state variables and respective rates.
Specific forms, and thus particular cases of materials, are
considered after the basic arguments are done. Observe that
we have already accomplished this step in the introduction
of the present Sect. 2.2.

Second step: we split the constitutive relations other than
that of the free-energy in a part that we expect to be non-
dissipative (reversible), which depend only on the state
variables values, and and a part that will be clearly dissipative
(irreversible), which may depend on the state variables and
some of their rates.

Third step: one uses the entropy inequality (the general-
ized Clausius-Duhem inequality in our case) and the balance
of internal energy to obtain a first form of the dissipation
inequality.

Fourth step: we separate the possibly non-dissipative
(reversible) parts and use arguments similar to the Coleman-
Noll arguments to obtain the general expressions of the
possibly non-dissipative (reversible) parts of the constitu-
tive relations in terms of the free-energy being considered.
With these results, we are left with the reduced form of the
dissipation inequality .

Fifth step: the reduced dissipation inequality leads to the
general expressions of the dissipative parts of the constitutive
relations and of the extra-thermal entropy flux and production
terms as functions of a pseudo-potential of dissipation (the
free-energy also appears in an indirect form.)

Once the general theory for the chosen class of materials,
specific cases can be considered by chosen specific forms for
the free-energy and the pseudo-potential of dissipation.
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As it will be clear from our next computations, the terms in
the first part of each of these expressions, indicated by the
superscript (), will be obtained by using the free-energy.
The terms in the second part, indicated by the superscript
()4, will be obtained with the help of a pseudo-potential
of dissipation. The first part terms are expected to give no con-
tribution to the increasing of entropy of the system, while the
second part terms necessarily contribute to increasing of the
entropy and are necessarily dissipative terms. See Remark 1
at the end of this subsection for further explanation on these
aspects.

Following Frémond [32], we assume h'" = 0.Moreover,
the heat flux is purely irreversible, then we take ¢ = 0.

By recalling that for any sufficiently smooth field x (p, 1),
the time derivative of the Lagrangian gradient operator is
given by Vx = Vy, replacing Eq. (20) in the entropy
inequality (12) and using the split of the variables into
dissipative and nondissipative components given in Egs.
(13)-(16), we obtain

—p 1+ 009 0 + (K + K = pdy e = Gl ) ¢
—piva eV — (pivy e — ) Vg
+ (89 + 5% — pigye — pSn) : £

1 ..
—5q<”> VO + pR + 6 div(®,,) — Opwy, > 0. (27)

We now require that the terms in the first three lines of the
last inequality do no contribute to the increase of the entropy;
that is, we impose that

—p (n+ 090 6 + (K = pdy e = Gy ) ¢
—poveweVO — (pdvye — h) Vg

+ (S(’) — 0O — psm) CE=0. (28)

Since 6, ¢, Vo, E and V6 of Eq. (28) are arbitrary and
independent, the classical Coleman-Noll approach leads to
K" = pdy e + Gy m,

n=—0Ye, (29-30)
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dveve =0, h") =h=pdv,y., (31-32)
and
S = pdpYe + pS. (33)

By replacing the above relations in inequality (27), and
remembering that 6 > 0, we obtain

k(i)
0

(ir)
_1 V0
0 0 (34)
+div(Dy,) + ER — pwy > 0.

Since we want to develop the simplest possible theory,
we reduce this last expression by taking the additional flux
of entropy and the specific entropy production due to to
microscopic features other than thermal ones respectively
as @, = 0 and w,;, = R/H. It means that R is related to
the possible extra specific entropy production due to micro-
scopic features other than the thermal ones; in the present
model they are related to the damage mechanisms that lead
to softening and fracture.

By using these results in (34), we then are left with the
following reduced form of the dissipation inequality:

ki)
0

q(ir)
———-V6>=0. (3%

1 .. .
- (ir) .
o+ 580 E - T

2.2.3 General pseudo-potential of dissipation

To ensure inequality (35), it is enough to take the coefficients
ke 1. q"
— 84" and —
6 6 62 .
pseudo-potential ¥; with respect to ¢, E and V0.
This pseudo-potential of dissipation is a nonnegative func-

tional that in the present situation has the general expression

respectively as the derivatives of the

Va = Ya(g, E, V0, 0) > 0, (36)

and satisfies ¥4(0, 0, 0, @) = 0 where ® = {6,0, Vo, E}.
Moreover, it must be continuous and convex with respect to
the independent variables ¢, E and V6.

We then obtain

K = 08,94, S =004, (37-38)
and
q"" = —0dveva. (39)

If ¥4 is non-differentiable, then we must work with
subdifferentials.

Remark 1 Dissipation is related to the increase of the entropy.
Thus, terms appearing in constitutive relations for a certain
material are said to be either dissipative or non- dissipative
according to they respectively do or do not contribute to the
increase of the entropy.

The procedure we used in this subsection to obtain the
general expressions for the constitutive relations in terms
of the free-energy and the pseudo-potential of dissipation is
related to what is called the Coleman-Noll procedure. In this
procedure, usually one expects to obtain the non-dissipative
terms of the constitutive relations in the first step of the argu-
ments by using the free-energy; then one is left with what is
called the reduced form of the dissipation inequality, which,
by using suitable pseudo-potentials of dissipation, give nec-
essarily dissipative terms.

However, the terms obtained in the first step of this proce-
dure are only guaranteed to be non-dissipative if there are no
extra (non-thermal) non-negative sources of entropy asso-
ciated to them. In fact, when there are extra (non-thermal)
non-negative sources of entropy, the entropy can increase
due to the presence of those sources. In this case, those terms
of the constitutive relations obtained in the first step of the
procedure that contribute to those extra non-negative sources
of entropy, although derived from the free-energy, are in fact

dissipative.
This is exactly the situation of our model, where there
is an extra source of entropy w,, = R/6, where R > 0

is given in Eq. (22) and depends on the memory terms of
the free-energy. Thus, the terms in the constitutive relations
related to the memory part of the free-energy are dissipative
even though they are not derived from a pseudo-potential of
dissipation.

In particular, it can also be seen in the particularized model
proposed in the following section, where the viscoelastic-
ity is modeled by using fractional fractional derivative. In
this case, an intuitive argument to understand the dissipative
contribution of terms with fractional derivatives is the fol-
lowing: due to the nature of a fractional derivative element,
with interpolates between the behavior of a spring (non-
dissipative) and a dashpot (dissipative), it always includes
some dissipation.

2.3 Viscoelastic model

The framework derived until this moment is general in the
sense that the appropriate choices for the free-energy poten-
tial, v, and the pseudo-potential of dissipation, 14, consider
several classes of materials. Now, we want to particularize
this model for viscoelastic materials. For that purpose, we
start describing the particular form of the pseudo-potential
of dissipation that we will consider in this work.
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2.3.1 A particular pseudo-potential of dissipation

A possible choice for 14, satisfying the conditions described

in the previous subsection, is the following:

b(®)
2

MO, .,
3 lol” +

Ya(g, E,V6,0) = E|?

é(O)

+ Vo - C~'ve. (40)

The inverse of parameter A corresponds to the rate of change
in damage ¢ [7], and we take it as

—_—

Ch
(1468 — )¢

(41)

x

where ¢; and ¢ are positive material parameters and § is a
small perturbation to avoid singularity when ¢ = 1. More-
over, b > 0 and ¢ > 0 correspond to the viscous damping
and the heat conductivity of the material, respectively [7].

By considering this pseudo-potential of dissipation and
Egs. (37)-(39), we obtain

ki = 0x(@)¢, S =0b(O)E, (42-43)
and
g = —6%¢@)C Ve, (44)

where C = 2E + I is the right Cauchy-Green strain tensor.

Remark 2 The form of last term in expression (40) deserves
an explanation.

The term related to the gradient of the temperature in the
pseudo-potential of dissipation gives rise to a diffusion of
temperature term in the energy equation. To be physically
correct, this term must be related to some variant of Fick’s
law, which requires that the actual diffusive heat flow must
be in a direction determined by the Eulerian gradient of the
temperature. That is, the actual diffusive heat flow directions
must be expressed in terms of V(6), where the subscript (-)x
indicates the operation done in Eulerian coordinates.

For instance, to obtain the simple case of isotropic ther-
mal diffusion, with thermal diffusion coefficient &(@) > 0,
the corresponding term in the pseudo-potential of potential,
when written in Eulerian coordinates, must be have a term
of form

1. ~
v = SOV,

We observe that many articles dealing with this issue use a
Lagrangian version of this energy obtained by just replacing
the Eulerian gradient by the Lagrangian gradient. However,
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we think that this replacement is not quite correct because
the resulting Lagrangian form does not generate the correct
diffusion term in the energy equation.

The last term in (40) gives the physically correct diffu-
sion of temperature because it is simply the previous 1#559)
written in Lagrangian coordinates; this change of variable is
done because the theoretical framework in the present work
is based on Lagrangian description.

In fact, we have Vy@ = F~'V0, where the last gradient
is with respect to Lagrangian coordinates. By substituting
this in the previous expression of 1//;9) and performing some
simple computations, we obtain

&(O)

GO
€©) g0 = Ve Cc've,

©) _
v ==
which is exactly the last term appearing in (40).
2.3.2 A particular free-energy potential

The local free-energy density ¥, is decomposed in three parts
related to the hyperelastic deformation, represented by v,
purely thermal effects, given by ¥y, and damage contribu-
tions, considered in Z. Therefore, the volumetric density of
the part of the free-energy independent of memory effects is
given by

pYe(0, 9, Vo, E) = Gp(@)Yn(E) + Y9 (0)
+Z(p, Vo, E),

where G (¢) > 0 is a suitable damage degradation function
of the hyperelastic part of the free-energy which will be par-
ticularized later on (see Sect. 2.3.4). Note that, as in the case
of Eq. (18), the volumetric density of elastic energy v is
multiplied by this degradation function.

The hyperelastic energy density for a compressible Neo-
Hookean material is given by [8]

0 LA 12
Yn = E[tr(c) — 3] — win[det(C)]2 + 5[1H(det(c))2] ;
(45)

where ¢ and A are the Lamé material parameters. The non-
linear elastic behavior of Eq. (45) requires the consideration
of finite strain in this model.

The thermal part of the free-energy is assumed to be [32]:

Vo = c,01n0, (46)

where ¢, is the heat capacity.
The damage contribution is given by

1
T=g (ngz) C Vg + ;H(ga)) . (47)



Computational Mechanics (2022) 69:1365-1393

1373

The Griffith fracture energy g. is assumed positive and con-
stant; H(¢p) = ‘”2—2 is the potential for ¢ € [0, 1] [7]. The
parameter y > O is related with the width of the fractured
layers. According to [36], smaller values for y must lead to
a less diffuse crack path, and sufficiently small values of y
lead to sharp cracks [10]. In addition, é can also be related
to crack propagation speed, being faster for larger values of
8 (see [36]).

Finally, concerning the free-energy with memory effects
Y, we assume the definition of Eq. (18) with v,, given by

m =

= 5[(E,—E0):A: (E; — Ey)

P t*
‘(B —E0): A: (B — Er)
ta /0 — dr}, 48)

as suggested in Eq. (140). Here, « = 1/(21"' (1 — «)) and the
specific form of the fourth order symmetric tensor A will be
described in Sect. 4. Equation (48) leads to

Gm
S = 7 |:A ODta(Et)

(E; — Ey) : 0, A: (E; — E;)
+x

tol
"(E; —E;):0g,A: (E; — E;)
+ouc/0 = )it dr] 49)

where oD;* E; is the Caputo fractional derivative of E (see
“Appendix A” for details and comments on how to obtain
Eq. (49)).

Remark3 As for the case of the term commented in
Remark 2, the first term of Eq. (47) also deserves some
explanation.

We recall that a standard physical assumption in phase
field models is that part of the energy associated to the dam-
age process accumulates in transition layers of the damage
variable. This assumption brings a contribution to the free-
energy that depends on the gradient of ¢.

It is important, however, to understand that, to correspond
to the physical situation, such parcel of the free-energy must
depend directly on the gradient of ¢ in the actual (deformed)
configuration of the body, not directly on the gradient with
respect to the reference configuration, which, in principle
may be arbitrary.

The simplest case to be considered is that in which that
parcel of the free-energy has an expression depending on the
Eulerian gradient of ¢ as follows:

Y
ARES gcgmcpﬂ

Many articles dealing with this issue use a Lagrangian
version of this parcel by just replacing the Eulerian gradient

by the Lagrangian gradient, and this leads to a simple form
of the equation for the damage variable ¢ where a simpler
damage diffusion term Ag appears.

Sometimes this term Ag appears directly in the equation
for the damage variable, without mention of the correspond-
ing pseudo-potential of dissipation, because it is taught
simple as an artificial, but convenient, smoothing approxi-
mation.

But, as in our previous remark, we think that these
approaches is not quite physically correct because, as we
previously said, energy can in fact accumulate in transitions
layers and must be considered with energy parcels similar to
the previous ().

One can also see the problem of considering a free-energy
with a term depending on the square of the norm of the gra-
dient of the damage variable with respect to the variables in
reference configuration reasoning as follows. Let us consider
two different reference configurations, related by a change of
variables that is not a simple rotation. Then, the use of a free-
energy with a term depending on the square of the norm of
the gradient of the damage variable with respect to the vari-
ables in the reference configuration leads in both cases to a
diffusion term A, obviously with derivatives with variables
associated to each reference configurations. However, these
diffusion terms are not correctly related by the changing of
variables relating the two reference configurations, and they
will correspond to different pattern of damage spreading in
the actual deformed configuration, and thus to different phys-
ical predictions. This is somewhat strange. We also observe
that this difficulty does not appear with the bulk part of the
free-energy, that is, the part depending on the pointwise val-
ues of ¢; the parts of the driving-forces associated to the bulk
free-energy in two different reference configuration would be
correctly related.

Thus, we think that the correct way to proceed in a
Lagrangian framework is to rewrite %) in terms of the
Lagrangian gradient by using the relation between Eulerian
and Lagrangian gradients.

By using Vxp = F~/ Vg in ¥, after some simple com-
putations, we obtain the Lagrangian expression:

Y )4 _
ARES g05|vx<p|2 =85V C Ve,

which is exactly the expression of the first term appearing in
Eq. (47).

Finally, we stress that, if one want to derive the usual dif-
fusion model, our derivation can easily modified, with easier
computations, to obtain the usual simpler linear dissipation
term for damage spreading. It is enough to replace C by I
in 47).
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2.3.3 Viscoelastic stress

Under the conditions of the previous subsection, Egs. (33),
(38) and (49) lead to the following second Piola-Kirchhoff
stress tensor:

S =S8 +8") = pdpye + pSm + 03V (50)

Taking into account Eq (50), the expression for S,, given
by Eq. (49), the local free-energy . of Eq. (45) and the
pseudo-potential of dissipation 15 of Eq. (40), the complete
expression for the second Piola-Kirchhoff stress tensor is
given by

S =Gy (,u(I — € + Aln(det C)%C*‘) +ObE

—gc7(CT'V (@) ®(CT'V(9) + G [A 1 oD% (E,)
(E, — E;): 35, A: (E, — E;)

+K a
"(E,— E;):0g,A:(E, — E;)
+ou</0 = )it dr] . (51

For the sake of simplicity, we assumed that the hyperelastic
and the memory parts of the stress tensor degenerate in the
same way, that is, G(¢) := Gp(¢) = G,,(¢). Section 2.3.4
describes the degradation function G (¢).

If the tensor A is constant, then the last two terms of Eq.
(51) are null. In this case, the one-dimensional version of
the model can be represented by the rheological mechanism
of Fig. 2a. The spring represents the hyperelastic contribu-
tion of the Neo-Hookean material and the dashpot represents
the viscous dissipative damping given by the term 6bE. The
fractional rheological element, represented by the rhombus,
is called spring-pot [46] and results in a nondissipative vis-
coelastic counterpart, whose behavior is governed by A and
«. Here, the degradation function G(¢) indicates that the
spring and the spring-pot include damage effects. Addition-
ally, if A is constant and b= 0, then we obtain the modified
fractional Kelvin-Voigt model of Fig. 2b.> On the other hand,
if A is constant and viscoelastic effects due to the frac-
tional component are not considered, we recover the modified
Kelvin-Voigt model of Fig. 2c which includes thermal effects.
In other words, by using the appropriate simplification, Eq.
(50) can describe several material behaviors. Additionally,
the last two terms in Eq. (51) come from the consideration of
memory effects in S,,. In fact, these terms do not contribute
very much to the evaluation of stress and can be disregarded

3 In this work, we refer to modified fractional Kelvin-Voigt when the
spring represents a Neo-Hookean spring to account for hyperelasticity.
If the spring represents the traditional linear elastic material, then we
refer to the traditional Kelvin-Voigt model.
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in several cases. A complete study on this subject is presented
in Sect. 4.1.1.

Even for the one-dimensional case, it is important to
emphasize that for small strain, the Neo-Hookean spring
becomes the traditional linear elastic spring. In this case, if A
and 6 are constants and no damage is considered, the model
described in this work recovers the usual fractional Kelvin-
Voigt model, largely discussed in the literature [29,53,97].
Section 4.1.2 presents an example where this simplification
is considered. In fact, for that case, Eq. (51) is simplified
for a widely known equation, for which the thermodynam-
ics were addressed by Lion [57]. A free-energy potential
was even derived with physical justification and the corre-
sponding mechanical dissipation potential was obtained. In
the present work, we generalize the hypothesis including the
possibility of nonlinear dependence of .4 on E, large strain
and thermal effects.

2.3.4 Degradation function

The degradation function G(¢) couples the damage to
the material properties and models the change in stiffness
between the undamaged and fractured states. The material
response of the damage is mainly controlled by the degrada-
tion function which must satisfy the conditions [65]:

1 ifp=0,
G(p) >0, G(p) = . (52-53)
0 ifp=1,
and
G'(1)=0. (54)

The condition expressed by Eq. (54) ensures that the part of
the driving force associated to the hyperelastic interaction
appears in the equation for the evolution of damage ¢. There
are many proposals for this function [9,36,48], which in turn
depend on the material. Firsty, we follow Miehe et al. [63]
and use the quadratic function:

G(p) =G =(1— ) (55)

Indeed, this expression is one of the most frequently found in
the literature to describe the degradation function for crack
modeling, but it yields a significant degradation of stiffness,
as can be seen in Fig. 3. This is not desirable when modeling
viscoelastic materials which present a different behavior in
fracture.

Remark 4 The damage process due to loading for viscoelas-
tic materials generally occurs in two steps: slippage of the
chains and chain separation [20]. Differently from the case of
metals, most of the viscoelastic materials are made up of long
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Fig.3 Degradation functions

molecular chains [3], and the speed of the slippage process
depend on the considered material.

Let us consider the damage evolution for the case of
polymers (the standard example of viscoelastic material).
Under tensile stress, a rather fast chain separation process
occurs; these chain separation may lead to nucleation and
coalescence of voids and to a certain amount of stiffness
degradation; then slippage along the chains occurs in a pro-
cess leading to small decrease in stiffness; as the slippage
of chains increases, the localized stress level also increases;
when the stress on a small chain segment is larger than the
bound strength can sustain, chain breaking occurs, leading
again to void nucleation and coalescence of voids, resulting
again in a rather fast stiffness degradation.

This process may lead to coalescence of voids and evolve
until fracture [3,20,49]. Additionally, according to Chris-
tensen [15], viscoelastic mateials can undergo local failure,
even at moderate strain levels. Local instabilities, as slippage,
often dominate the subsequent behavior.

In other words, the damage process for a viscoelastic mate-
rial can not be restricted to the nucleation and coalescence of
voids, once the slippage is an important part of the process.

Taking into account the damage process explained in
Remark 4,
we propose a new degradation function:

ag?(1 — g)?

o _ _\3
G@)i=G2= (=) + s

(56)
where parameters a, b and c are assumed to be positive and
d = 1.05. Exponent d could be a variable considered as an
additional parameter to be determined. However, in this work
we consider this value fixed to obtain the desirable behavior
in G,. Figure 3a—c show the effect of variation of a, b and
¢ in this function. In fact, G, imposes different transitions
in the damage process, when compared with the quadratic
function G .

The change in the concavity of G, creates a region where
the damage grows slowly. We consider that this region is
related with the slippage of the chains, as described in
Remark 4. The time between the slippage and the fracture can
be adjusted by the parameters a, b and c, used to define G,
[see Eq. (51)]. It allows more flexibility for the modeling of
different materials, once the variation of a, b and ¢ can change
the region of G, related with the slippage accordingly. As we
see in Remark 4, this behavior is best suited for viscoelastic
materials because it agrees with the micro-structural evolu-
tion in strain processes. A test comparing functions G and
G is presented in Sect. 4.3.2.

2.3.5 Final governing equations for the viscoelastic model

Considering the aspects discussed previously, the final gov-
erning equations for the evolution of motion, damage and
temperature in a body with viscoelastic behavior can be
resumed as follows.

1. The equation of motion is given by the balance of linear
momentum of Eq. (7); that is,
pv =div(P)+pf. (57)

We recall that in this equation v is the velocity field and

that P = FS, with the constitutive relation stress/strain

for § given by Eq. (51).

In order to obtain the equation for the damage evolution,

we replace k and h in Eq. (5) using Egs. (14), (30), (32)

and (42). Then

08p%a = div(pdve¥e) — pdyc — Gy (@) Um.  (58)

The above equation is written in terms of the pseudo-

potential of dissipation 4, the free-energy ¥ and the
free-energy with memory effects v, given by Egs. (40),
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(45) and (48), respectively. Replacing the derivatives of
Eq. (58) by the corresponding expressions and recalling
that G’ = G, = G;,, we obtain

_ gH'(p)

1
':Tdiv< ~c—lv) i
¢ = sodiv (g7 ¢ w7

—% (v +m). (59)

3. The expression for the temperature evolution is obtained
by considering Eq. (9). We replace the expressions for g,
ko and h given in Eqgs. (44), (30), (32) and (42) to obtain

péy = —div(0dveva) + pr + S : E
+ (PO e + 94 + G ) ¢
+pdveve V. (60)

By taking this expression and using the Helmholtz specific
free-energy of Eq. (11), we have

— B0 = div(0dv(e)Va) + poro
+ (0090 Ve + 03¥a) ¢
+p00vydoe : Vo + pR
+ (003 dpY + dpva) : E. (61)

The free-energy functional ¥ and the pseudo-potential of
dissipation ¥4, defined by Egs. (45) and (40), respectively,
lead to the final governing equation for the temperature
evolution

| x
6 = —div (eac—lve) + 2P +
Cy Cy

or
v
b . R
+0 B + 2= 62)
Cy Cy
Equations (51), (57), (59) and (62) constitute a nonlinear
system of differential equations with fractional derivatives
and memory terms. The numerical approximation used to
solve this system is presented in the next section.

Remark 5 Note that the governing equations, as presented in
this section, does not necessarily ensure the irreversibility of
the damage; that is it does not guarantee that ¢ > 0. This
means that the model, as proposed up to now, allows the
possibility of healing, a behavior that can be, in fact, found
in some real materials [39,54,55].

However damage irreversibility can easily be incorpo-
rated in the model. From the theoretical point of view, as
mentioned by Miehe [65] and Boldrini [7], a possibility for
this is to adapt the model by adding a multi-valued convex
functional U (¢) to the pseudo-potential given in Eq. (38),
U(z) = [0,400)if z < 0and U(z) = 0if z > 0. By
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working with subdifferentials (see [7] for details), we obtain
0,U(¢) = (—00,0]if ¢ < Oand d,U(¢) =0if ¢ > 0.1t
adds a Lagrange multiplier to the stress tensor and, conse-
quently, for the damage equation ensuring that ¢ > 0 [36].

This seems an intricate approach to guarantee damage irre-
versibility, but, due to simple form of the required restriction,
¢ > 0, which simple means that ¢ cannot decrease in time,
from the practical point of view irreversibility can be easily
implemented in numerical simulations.

It is enough to use a kind of predict-corrector procedure
as follows. Assuming known the state values at time step n,
we use the evolution equation without the additional term in
the pseudo-potential to predict the damage values at time step
n+1, obtaining a predict value ;| for the damage variable.
Next, for each node of the mesh, we compare go;l“ L1 t0@n: if at
that node ¢, | > @, then we take ¢, 1 = @, |; otherwise
©n+1 = @n. This in fact is a practical implementation of
the above theoretical approach, which does not require to
compute the Lagrange multipliers due to the simple form of
the required constraint.

In the simulations to be presented later on, we guarantee
damage irreversibility by imposing the numerical constraint
as just described. See also Sect. 3.2.

There are other possibilities in the literature to impose
damage irreversibility: one could use either the history of
elastic energy as in [64] or the penalty criteria as in [36].

3 Numerical approximation

This section presents the numerical approximation used
to solve the nonlinear system of equations summarized in
Sect. 2.3.5. The global method concerns on the application
of a semi-implicit/explicit time integration scheme coupled
with the Newton-Raphson method [38].

The semi-implicit/explicit scheme consists in solving each
equation of the system individually by using a suitable
implicit time integration method, resulting in a significant
computational economy when compared with usual coupled
methods to solve nonlinear systems of equations.

Since the temperature was fixed for the numerical simu-
lations presented in this work, it is enough to explain how
the damage variable and displacement are evolved from a
time-step to the next. This is done as follows: we solve the
damage equation to obtain the updated damage variable by
using the backward Euler method for time discretization and
the Newton-Raphson procedure to handle the nonlinearities;
at this stage we use as input the known displacement of the
previous time-step. Next, the just updated damage variable
is kept fixed and used as input in the equation of motion,
which is solved by the standard Newmark method also com-
bined with the Newton-Raphson procedure. It results in the
updated displacement, velocity and acceleration.
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The time interval [0, T'] is divided into k intervals consid-
ering the time step At =t, — t,—1, withn =1,--- [k + 1.
The time discretization is indicated in the updated variables
for the time #,+1 by using the subscript (-),+1.

The spatial discretization is done for two-dimensional
finite element meshes. We consider a division of the domain
D into m elements D, with g = 1,---,m, where D =
U’;’: 1Dy and D; N D; = P, for i # j. The approximation
of the vector z and scalar z fields in each g-th element are
written as a superposition of the local nodal basis function
N; (Lagrange polynomials) as
79~ Nz% and z7~ Nz9, (63-64)

withi = 1, --- , ¥ and ¢ the number of element nodes. Here,
the tilde symbol represents the nodal values of the field of
interest. The matrices N and N are given by

N =[Ny Ny -+ Ny], (65)

and

< [NMMONO-Ny O

[ b (66)
0Ny O Na-vw 0 Ny

The approximation for the gradient operator is given by the
global derivatives of the interpolation functions to the x and
y directions and organized as

Ni.No. --- N
B — 1,x 2,x 9,x ’ (67)
Niy Niy -+ Ny
and
Nix 0 Naoyx O “Nypyx O
A N 0 Ny O - Ny, O
B=|"" > o (68)
0 Nix O Npy--- 0 Npy
0 Niy 0 Noyp--- 0 Ny,

Details concerning the linearization and numerical dis-
cretization for each equation of the governing system are
presented below.

3.1 Equation of motion

The evolution of motion is given by the balance of linear
momentum in Eq. (57). Using finite elements, we must work
with its corresponding weak form, which can be obtained in
the standard way by taking the inner product of Eq. (57) with
any virtual velocity v and doing integration by parts:

/,oi)-Svd’Dz—/(FS):V(Sv) dD
D D

+/ ,of-8vdD+/ t-5vd D).
D oD

(69)
Considering the symmetry of S we have
FS:V(v)=S:F'V@v)=S8:F'sF
1 . .
=5:3 (F‘(SF + 5F’F) : (70)

where § F = V (8v). Using the last equation, it is possible to
rewrite Eq. (69) in terms of S and § E as

fpb~8vdD=—/S:SEdD+/pf~8vdD
D D D

+/ t-8vd(dD), (71)
D

with

SEu) = % [F’(u)SF + 8FIF(u)] , (72)

where 8 E (u) is the time rate of the Green Lagrange virtual
strain tensor.

The numerical solution of Eq. (71) involves three steps:
application of the Newmark method for time discretization;
linearization of the nonlinear terms; and application of the
finite element method for space discretization.

3.1.1 Newmark method for the equation of motion

In the Newmark method (see [56], p. 266), the acceleration
at time step n + 1 is updated using the following relation:

Vp1 = lpy1 = a1 Up1 — Up) — a2l — a3y (73)
Constants a;, withi =1, --- , 3, are given by
1 1 1-28
al) = —= , A2 = =, a3 = ~ (74_76)
BAL? BAt 28

where f is the Newmark constant.
By replacing Eq. (73) in Eq. (71), we obtain the following
expression for the residue of the time discretization of the
equation of motion:
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Ry = /D(al(unﬂ —u,) — axit, — asii,) - Sv dD
1 .
+—/ S(E(upy1)) : 8E(uyy) dD
P JD
1
—/ Frs1 80 dD——/ thi1.80d (D), (77)
D P JaD

where for shortness of notation we did not make explicit
the dependence on the other variables except the mechanical
ones.

3.1.2 Linearization of the weak form

Letus evaluate the directional derivative of R, | with respect
to the displacement at u,, in the direction of the displace-
ment increment w, | = Au,1,denoted by D
VRy41 - Wy (see [S]).

The directional derivative of the first term in the right hand
side of Eq. (77) is given by

wn+1Rn+1 =

Dwn-H (/~D (Ll] (un+1 - un) - aziln - a?,iin) - v dD)
=aq / wy4+1 - 6v dD. (78)
D

Next, the body force term is considered, where f, | rep-
resents the updated body forces in the initial configuration
that are not affected by the displacement. Thus, the direc-
tional derivative with respect to displacement variation w4 |
is zero. Similarly, we assume that the surface loads ¢ do not
depend on the deformation, then its directional derivative is
also zero.

The second term on the right hand side of Eq. (77) has two
sources of nonlinearities from the displacement field. In fact,
the stress tensor S depends on strain, which in turn depends
on the displacements; furthermore, from expression (72), we
see that the time rate of the Green-Lagrange virtual strain
tensor is also a function of displacement.

For the computations that follow, we observe that the
directional derivative of F, with respect to the displace-
ment along an increment of displacement w,; is given
by

Dy, (Fpt1) = V(wy41). (79
Moreover, for the sake of simplicity, we denote
S(E(un+1)) = Sp+1,  F(upy1) = Fpqy,

and

8En+l = 6E(”n+l)-

@ Springer

Then, the directional derivative of the second term in the
right hand side of Eq. (77) with respect of displacement along
adisplacement increment w1 is obtained by using the prod-
uct rule differentiation as follows:

1 .
Dwn+1 (;‘/;)S,H_l :5En+1 dD)

1 .
= _/ Dwn+1(sn+1) :8E,4, dD
o Jp
1 .
o f Sui1 : Duy, BE, 1) dD. (80)
o Jp
Now, from (72) and (79) we have

Dy, 8E,t1)

1 . .
= 3 [V 6F o + 88, (V@] @D

For the linearization of the second Piola-Kirchhoff stress
tensor, the chain rule is used for differentiation to obtain

08
DW)1+1 (SI’H—]) = <ﬁ>n+1 : Dwn+l(En+1)
=Dyt1: Dy, (Ent1), (82)
where % = D, 41 is the fourth order, symmetric and

n—+1
positive-definite tangent stiffness tensor. The components of

D, 41 are obtained by differentiating the constitutive relation

given in Eq. (51) to E, 1. In this work, D,,1 is calculated

by using complex derivatives as explained in Sect. 3.1.4.
The linearization of E, 41 can be obtained from

E=-[Vw'V@) + V@) + V)] (83)

N =

and written as

1
Dy, (Ent1) = E(V(wn+1)tFn+1 + F VWwai)).
(84)

Now, we consider the symmetry of D and S; after some
algebraic manipulations, we obtain

S: % [3F’V(w) + V(w)(SF] = 8F : V(w)S, (85)

and
1[ it teil .oy ) t t
5 [sF F+F6F] D S(VW)'F + F'V(w)
=F'SF:D: F'V(w). (86)
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Therefore,

1 .
Dwn+1 (; ‘/7.) Sﬂ+1 :SEI’Z-‘rl dD)

1 .
=— f 8F, .\ i V(W 1)Syi1 dD
P Jp

1 .
—I—;/DFLH(SFH[:D:F;HV(wnH)dD. (87)

The final linearized form of Eq. (77) is obtained from Egs.
(78) and (87) and given by

Dle (Ry+1) =a1 / Wy - 0dD
D

1 .
o [ 8 V@08, 4D
P JD

1 .
+;/DF§,+13F,,+1 :Dyy1 s Fl V(wayr) dD. (88)

3.1.3 Approximation by finite elements

The finite element method (FEM) is applied to the previ-
ous equations to obtain the final discretized expressions for
the residue vector and the Jacobian matrix. We consider the
spatial approximations

uo = Nﬁ(,), (31)(.) ~ NSINJ(A), (89-91)

to=Nig, fo,=Nfe. (92-93)

where the matrices N and B are given in Egs. (66) and
(68), respectively. By using an equivalent product of matrices
(see details in Bhatti [5], p.496)) the residue of Eq. (77) is
approximated for each g-th element by

N N A N ~4q
R  ~ M1 (al(uzJrl +al — apu — azu}) + fn+1)
1 N
+;/D B'F, 57, dD’ + BT, (94)
q

where the element mass matrix is

N'N dD7, (95)
Da

M =

s is a vector form of the tensor S, F is obtained from F (see
“Appendix D”) and BT'? are the boundary terms which may
depend, for instance, on stresses and displacements.

We obtain the Jacobian matrix J Z 41 by deriving the
residue RZH with respect to w,y1:

n

U [ ateg s
JqH:Mqal—l—;/DBZSZHBdD

1 [ are .
+;/ B'F, DI, F,BdD, (96)
D

where S is a block-diagonal and symmetric matrix con-
structed from S, F is obtained from F (for details, see
“Appendix D”); and D is a symmetric matrix representing
the double contraction of the fourth order tensor D.

Finally, we must solve the final linearized system

Jnt1,iAuppri = Rug i, cH)

where i is the Newton-Rhapson iteration. A new approxima-
tive solution for ;| is given by

Upil,it] = Unil,i + Alpiy;. (98)

The procedure is repeated until ||, 11 ;41 — Up+1.i|| < €,
where € is a prescribed tolerance and outputs the updated
value u;,11.

3.1.4 Evaluation of the tangent stifness tensor D

The constitutive tensor D, that appears in Eq. (82), is defined
in [8] as

aS 198
=9E " 290 &
resulting in a fourth order symmetric positive definite tensor.
In order to obtain a suitable matrix multiplication in Eq. (96),
tensor D is rewritten as a symmetric matrix D.

The derivative of S in relation to E (or C) must be cal-
culated by using Eq. (51). The difficulty in deriving the final
expression for D is evident, since Eq. (51) has many nonlin-
ear dependencies on E. In order to overcome this issue, we
perform a numerical complex derivative for each component
D, using the relation [37]

s, Im<sn+1 (o) +i5) )

P
(Dus1)pg = ac, = 3 1. (100)

where p,q = 1,2,3, $§ is a small perturbation (3 €
[10~100 10=3007) and i the imaginary unit. This method
presents advantages due to the single term in the numerator
of Eq. (100). It avoids the instability related to cancellation
error inherent to all real valued finite difference approxima-
tions. Furthermore, the complex finite difference method is
more accurate when compared with the real valued finite dif-
ference method.

3.2 Equation of damage
Consider the damage evolution given in Eq. (59). Firstly,

we apply the backward Euler method for time discretization
obtaining

@ Springer
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On+1 = @y + =—— | div (chC,H_]V(er—l)

An+19n+l
_% w1 — G (Wh + wm) 1:|, (101)
where
(v +9m) | o= Vi) + Pin (Eui),
Gy =G (@nt1):
and
Hyy = H (@n41) = ¢nt1, (102)

according to the definition of H in Sect. 2.3.2.

Before applying the spatial discretization by finite ele-
ments, consider the following modification for the divergent
term in the previous equation:

[ 1 _
On+1 = @p + Atgey | div <~—Cn_~l_1v(§0n+l)>
L n+19n+1

1
-V (~—> . C_11V(¢n+l):|
)\n+19n+l "
At gc

_—5»"+19n+1 K Hy+ Gy (lﬁh + 1/fm)i| :
(103)

Then, the weak form for the damage phase-field evolution is
obtained by multiplying the previous equation by a suitable
scalar test function w and integrating over the domain D.
Therefore,

/(ﬂ,1+1wdD=/(ﬂ,1wdD
D D
1 1
+Atg-y/ div (~7C_ Vo +1)wdD
‘ D Ant+10n41 et !
1
_Atg.)// V<7~ ) C . Vo0 dD
‘ D )‘«n+10n+] n+1 !
Al‘gc/‘ 1
Y D j;rH—len—H

G’ .
—At/ 2l (4 )wdD.
D )\n+19n+1 ( "

H,/H_la) dD

(104)

Now, consider the gradient properties and Eq. (41) to write

“(5) =07 ()57 6)

1
9 y,_ _ve
262

(1 +5 — p)s+! (109

@ Springer

By using Eqgs. (102) and (105) into Eq. (104), applying the
Green’s theorem and assuming 6 and X delayed (in order to
avoid numerical instability), we obtain

/¢n+lwdD=/¢n+l(UdD
D D

1
—Atg. —C |,V 1 - Vo dD
gLVLAne’I n+1 DPn+

Vo - (C;_}_1V(pn+l>
—Atgeyec / —
ST o 0,145 — gyt

1 —1
"'Al‘gc)’/xD 5 9’% Vo, - (Cn+lv§0n+l)wdD

n
Atge 1
- gL/ ——¢nr10dD
D

y )"ﬂe}’l
1
_At/Dﬁ - (1//,1+1//m) |, @dD.
(106)
Adopting the spatial approximations

oly = N@(,, V(pl) = By, (107-108)
0, = Ne(q), V(07) ~ BO("), (109-110)
w? ~ Nw?, Vw?) >~ Buwi, (107-112)

where the matrices N and B are given in Eqgs. (65) and
(67), respectivelly, and making V(¢) delayed in the third
and fourth terms of the right hand side of Eq. (106) (to avoid
non-symmetric Jacobian matrix), we obtain the residue for
each element ¢ at time step n + 1 for the damage equation as

q.damage __ t Atgf ~q ~q
(Cq ) Bg, .,
+ A ﬁ/ Mdp
&V I, rNGY /
N'(¢1)' B' (Cy,.) " B
+Atgey e =7 " q
D, NOI(1+5—Ngi)©
N' (@) B' (Cy,.) " BOY
—Atgey T AdNy dD,
y A (NOy)
/ ~ q
N' (Gl (0 + )
+At/ RN =
D, AiN6,
dDy, (113)
where
C) Cy

— = _ ~ - —, (114)
by (L+8—@Df (1+8—Ng!
due to Eq. (41),and G! | := G(¢, |). The respective Jaco-

Jq ,damage .

bian matrix is obtained by deriving Eq. (113) to

(pn—H'
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sz;image _ / N'N (1 L L gc~q) D, where the coefficients A,, | are given by
Dy YAy NO,
B'C-! B Mgy = —Jm=0) _m-l-a, (119)
+Argey / BCubB i e T
D, ANO!

q

N (Gi)" (v + )
+A / BN
D Aa NG

q

n+1 qu

(115)

q

Finally, for each time step n + 1, we solve iteratively the
global linearized system

Rdamage

damage
J Awl’k‘r],i = - n+1,i °

n+Li (116)

where i is the Newton-Raphson iteration. Matrix J gi"}a;ge

is the global Jacobian matrix obtained by assembling each

q-th local Jacobian J ¢-damage Similarly, the global residue

n+1,i
damage . . . .
R,"/\; is obtained by assembling the local residue vector

g.,damage
Rn+1 J . . o
A new approximate solution for ¢,y is given by

On+1,i+1 = Pnt+1,i + AQui1,i. (117)

The procedure is repeated until ||@p+1.i+1 — @nt1.il|l < €,
where € is a prescribed tolerance and outputs the updated
values ¢, 1. In the first iteration of each time step, we adopt
©¥n+1.0 := @n, Where ¢, is the damage value of the previous
step.

As discussed in Remark 5, damage irreversibility will be
imposed by using a kind of predict-corrector procedure as
follows. Assuming known the state values at time step n,
we use the evolution equation without the additional term
in the pseudo-potential to predict the damage values at time
step n + 1, obtaining a predict value ¢, for the damage
variable. Next, for each node of the mesh, we compare 7 |
to ¢, : if at that node ¢ | > @, then we take ;11 := ¢ ;
otherwise ¢, 11 := ¢y.

Furthermore, for simplicity we prescribe ¢p = 0 (undam-
aged material) to start the analysis; we could take any given
damage state to initiate the evolution.

3.3 Numerical fractional derivative

Oldhan and Spanier [71] used the numerical algorithm G1
to calculate fractional derivatives. The expression for this
approximation is given by

N—-1

oD F(D)] gy = (A" Y Aniifns

m=0

(118)

Herein, Ar = t/N is the time increment, N € [1, 0co) is the
number of time steps and f,,, = f(t — mAr). If £(0) =0,
then the algorithm G1 can be used as an approximation for
the Caputo fractional derivative. For strain free materials in
the initial time (E(0) = 0), as considered in this work, we
calculate the fractional derivative of Eq. (51) by using the
algorithm GI1.

4 Results and discussion

This section presents some results and comments for the
model proposed in this work. Initially, the one-dimensional
version of the model is used to simulate tensile tests in a
viscoelastic rod. Next, two-dimensional examples are con-
sidered, including comparison with experimental data.

4.1 Viscoelastic rod

Consider a polyoxymethylene viscoelastic rod [77] with den-
sity p = 1420 kg/m?, length £ = 2 m and a squared cross
section of area A = 176.71459 mm? fixed at x = 0 and
subject to an external force given by F(t) at x = £ (see
Fig. 4a). We promoted one-dimensional dynamic tensile tests
to evaluate the contribution of the terms in the stress, given
by Eq. (51), and to study the behavior of the displacement
concerning the fractional viscoelastic parameters. The rod is
discretized into 30 equally spaced elements with 2 integra-
tion points for the application of the finite element method.
The time discretization is considered by using the Newmark
method with 8 = 0.25 and time increment Az = 1 x 10™s.
The tolerance for the Newton-Raphson method is 1078, We
also consider no viscous dissipative damping, i.e. b =0,
neither damage effects (¢ = 0).

év i
(a) Conditions for the polyoxymethylene rod.

[[TTTTTTTTIIIITITIIIITITITIIIT)
Bt

(b) Mesh used in the two-dimensional simulation.

Fig.4 Polyoxymethylene rod
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4.1.1 Evaluation of the stress terms

The constitutive stress/strain equation for our model is given
by Eq. (51). The inclusion of the last two terms in this
equation represents a great computation cost in simulations,
especially due to the singular integral that appears in the last
one. Thus, we perform tests to evaluate the relevance of these
terms and establish the situations in which they do not influ-
ence significantly in the results for stress. To this end, we
refer to Eq. (51) as the complete stress § = S.. On the other
hand, the expression obtained disregarding the last two terms
of Eq. (51) is called partial stress S .

Tensor \A is reduced to a scalar for the one-dimensional
case, whose corresponding equation is chosen to be

A=A =rC"'@C " +2(m—2In(I)I, (120)
where
3= pv g=—2r (121-122)

(1+v)(1 —2v)’ 2(14v)’

and p is a viscoelastic material parameter similar to the
Young’s modulus for the elastic case. Parameters A and &
are modifications of the usual Lamé constants and v is the
Poisson ratio. In fact, tensor A, is a generalization of the
traditional elastic tensor written in terms of the Young’s mod-
ulus. We assume p = 21.46 x 10° N/m?s* and Young’s
modulus Ey = 1430.1 x 10° Pa. The numerical fractional
derivative is calculated by using the algorithm G1 given in
Eq.(118).

The resulting strain at the right end of the specimen for
the second integration point at the end of the simulation is
considered. The difference between S. and S, is calculated
by using the mean square difference (MSD):

N
1 (Sci_Spi)2

MSD = | — 2 —
N 52,

i=1

) (123)

where S¢; and S, ; are the components of the complete
and the partial stress, respectively, for each time step i =
1,---,N.

Figure 5a presents the MSD between S, and S, and the
strain percentage for simulations with v varying between
0.0001 and 0.4999. The total time of analysis is 0.05s, the
applied force is 10 x 107 N and the fractional derivative order
is o = 0.5. It can be observed that when v approximates to
0.3 the difference increases, i.e., for values near to 0.3 the
influence of the last two terms in S, is more significant than
for the remaining values. On the other hand, the specimen
presents a strain bigger than 21% for values of v smaller
than 0.3, and decreases to 0.011% when v approximates to
0.5. This behavior was expected once v = 0.5 corresponds to

@ Springer

10 30
8 -5 24
g 10
=
A 1n-6 18 »
o 10 g
& 5
= ~
21077 128
g
s
10-8 6
r=-Strain(%)
re~Mean Square Difference
10°° . ; - ;
0 0.1 02 03 04 05

Poisson ratio

(a) Left axis: MSD between total stress and partial stress for the
variation of v. Right axis: percentage of strain for the variation of
\

107 25
jo3
210°%7 20
5
. .
Q 10-61
o 10 15 §
g =
3 10-74 10 S
=]
<
s
10-% 5
r=-Strain(%)
re~Mean Square Difference
10-°

T T T 0
0 02 04 06 08 1
Fractional Parameter

(b) Left axis: MSD between total stress and partial stress for o
variation. Right axis: percentage of strain for & variation.

Fig. 5 Evaluation of the mean square error and the strain level for
variation of Poisson’s ratio x and the fractional parameter o

an incompressible material. Furthermore, the strain E in the
last two terms of Eq. (51) has less influence for small strain.
Although higher values of v indicate an increase in dg.A, it
also leads to the reduction of the strain.

Figure 5b presents the MSD and the resulting strain for «
varying between 0.001 and 0.999. The analysis time is 0.05 s,
the applied force is 10 x 103 N and the Poisson’s ratio is 0.3.
As « approaches to 1, both the MSD and the percentage of
strain decreases.

Table 1 presents the MSD and the percentage of strain
for different values of loads and final times. In this case, the
fractional derivative order is « = 0.5 and the results are
presented for v = 0.3 and v = 0.45.

In all the cases analyzed, the MSD is not bigger than
1.0x 10™4, even when the percentage of strain is large (bigger
than 5%). It implies that the influence of the last two terms
in Eq. (51) can be neglect for these cases without significant
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Table 1 MSD and percentage of strain for the the applied forces

Final time (s) =0.05 and v = 0.3

Force (kN) Strain (%) MSD (x1079)
200 2.92 2.6615

400 6.30 5.3166

800 15.07 10.664

1000 21.02 13.498

Final time (s) = 0.05 and v = 0.45

Force (kN) Strain (%) MSD (x107%)
400 2.05 1.5109

1000 5.70 3.8064

2000 14.41 7.9290

2500 21.70 23.942

v =045

Force 1000k N

Final Time(s) Strain (%) MSD (x1079)
0.075 9.62 3.1115

0.05 5.70 2.7057

0.1 14.65 3.8064

influence on the stress evaluation. Then, the remaining simu-
lations presented in this paper are performed by disregarding
these terms. In other words, we consider § = §, for the
analyses that follows.

4.1.2 Displacement of the rod

Now, we use the model proposed in Sect. 2 to describe the
dynamic response of the viscoelastic rod of Fig. 4a when it
is subject to a force

P - {0, ifr =0 (124)

100N, ift>0"

during 0.1 s. It is done in order to check the displacement
behavior and the viscoelastic effect induced by the fractional
derivative. Considering the magnitude of the applied force,
the analysis time and the bar dimensions, we consider small
strain regime, and Eq. (51) is simplified, replacing the Neo-
Hookean by a linear spring. We also remember that damage
is not considered. Furthermore, we assume that the material
does not have nonlinearities due to the fourth order tensor
A, that appears in the stress/strain relation (51). Then, it can
be simplified to a scalar parameter p, with the same purpose
of A in weighting the fractional derivative. We consider the
Poisson’s ratio v = 0.39 and use the numerical fractional
derivative algorithm G1 of Eq. (118).

1.6

Variation of p (M Pa s*)

Displacement (mm)
f=}
oo

Time (s) .

Fig.6 Displacement at the free end of the viscoelastic rod for @ = 0.5
and different values of p [(N/m?)s®]

The application of the force F(¢) results in an oscillatory
displacement at the free end of the rod. This behavior can be
seen in Fig. 6 for some values of p and @ = 0.5. When p
increases, the damping effect also grows. This was expected
because p weights the viscoelastic behavior. These results are
important because they give qualitative information on how
to control the viscoelasticity effects by changing parameter p.

4.1.3 Two-dimensional case

The results shown in Fig. 6 were used as reference to
extend our model for the two-dimensional case including
the possibility of large strains (i.e., adopting the hyperelastic
Neo-Hookean spring as shown in Eq. (51)).

Two alternatives for the tensor .4 were tested here. The
first one is A = A as in Eq. (120), and the second tensor
proposed is A := A, where A is a fourth order tensor
with A(1,1,1,1) = p and A(i, j, k,1) = O for other com-
ponents.

The viscoelastic rod is discretized using a mesh of 30
quadratic elements as shown in Fig. 4b, and two integration
points for each element. This corresponds to an equivalent
two-dimensional version of the problem considered in the
previous section.

Plane stress state is used and remaining information is the
same as that used in the previous section.

Although this problem is in the small strain regime, hyper-
elasticity was included aiming to test the model for more
general problems.

Table 2 shows the mean square difference (MSD) for the
displacement at the free end of the rod between the one and
the two-dimensional models, for some values of «. The MSD
is calculated by

MSD = (125)
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Table 2 Mean square difference (MSD) between the one and the two-
dimensional models for the displacement of the free end of the rod

MSD
o p Al Ay

0.00794 214.6 x 10° 0.0097 0.0097

0.2 214.6 x 10° 9.7113 x 107> 9.7232 x 107>

0.5 214.6 x 10* 2.2396 x 10~* 2.2416 x 10~*

0.5 214.6 x 10° 1.0576 x 1073 1.0559 x 1073

0.7 214.6 x 10* 8.0830 x 1073 8.0877 x 1073

0.9 214.6 x 10* 2.3415 x 1073 7.2279 x 10714

where d; and d; are the displacements for the one and the
two-dimensional cases, respectively,i = 1,---, N and N is
the number of time steps.

The magnitude of the error presented in Table 2 shows
that both proposals for .4 lead to a reliable two-dimensional
extension. Since tensor .A; can be considered a natural exten-
sion for the usual elastic tensor, it will be used to simulate
the viscoelastic materials in the examples that follow.

4.2 |-shaped viscoelastic specimen

This section presents numerical results for an I-shaped vis-
coelastic specimen, without voids, modeled as a plane stress
state, whose dimensions are given in Fig. 7a. The adopted
finite element mesh has 300 linear squared elements, as
shown in Fig. 7b, and the time step is Ar = 1073 s.
Other geometric and material parameters are thickness t =
0.132934 mm, Griffith coefficient g, = 4000 N /m, frac-
ture layer width y = 0.025 mm, Young’s modulus £ =
69 x 10° Pa, Poisson’s ratio v = 0.33 and density p =
2700 K g/m>. Some of these material parameters are chosen
in order to simulate a general viscoelastic hard-strong poly-
meric material. For the results presented in this section, the

R10mm

24mm

24mm 72mm

(a) Dimensions of the specimen.

(b) Mesh used in the simulations.

Fig.7 I-shaped viscoelastic specimen
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inspection point corresponds to the center of the specimen.
We use the numerical fractional derivative algorithm G1 of
Eq. (118).

4.2.1 Loading-unloading test

Firstly, we perform a loading-unloading test in order to check
the dynamic response of the motion equation. The specimen
of Fig. 7a s fixed on the left end and subject to an incremental
distributed load on the opposite end with rate 5.0 x 10® N /s
until time r = 0.8 s. After that, unloading is performed with
the same rate in the opposite direction. Damage effect is not
considered. The tolerance of the Newton-Raphson procedure
is 1 x 1078,

Figure 8a shows the stress/strain diagram in the horizontal
direction for some values of @ and p = 214.6x 10* N /m?>s®.
We remark that the residual strains shown in Fig. 8a were
not prescribed in our model; they depend on the variation of
a. The residual strain is larger when « is closer to 1. This
was expected, because when « increases, the viscous effect
grows and the elastic recovery decreases. The behavior of
the curves agrees with the literature for viscoelastic material
under a loading-unloading process [99].

Cauchy Stress o xx (GPa)

—— a=0.70
——= a=0.50
—— a=0.01

0 T T T T :
0 0.03 0.06 0.09 0.12 0.15 0.18
Green-Lagrange Strain Exx)

(a) Load-unload test.

— a=090
——— a=0.70
| === a=050

Cauchy Stress o xx (GPa)

— - _
0005 001 0015 0.02 0.025
Green-Lagrange Strain(Exx)

(b) Tensile test until the specimen breaks.

Fig. 8 Stress/strain diagram for some values of « in the horizontal
direction
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4.2.2 Tensile test with damage evolution

A simple tensile test is performed for the specimen shown
in Fig. 7a. In this case, the effect of the damage evolution
is included and an incremental displacement u = 1.0 x
107> mm/t.s is applied until the specimen breaks. Most
of the parameters adopted in this case are the same as the
previous section, except for p = 69 x 108 N/m?s® and
¢ = 1077 m?/Ns. The latter corresponds to the rate of the
damage increase and appears in Eq. (40). The tolerance of
the Newton-Raphson procedure is 1.0 x 10~8 for the motion
equation and 1.0 x 1073 for the damage equation. Figure 8b
shows the stress/strain curves for some values of «. Here,
the nonlinearity is different from the previous case due to
the several effects considered. As a result of the viscoelastic
behavior, when the specimen breaks the stress/strain curves
return to the origin.

4.3 Fitting with experimental data:
loading-unloading test

In this section, we describe the fitting of experimental results
by using the model proposed in Sect. 2. The experimental
data are obtained from the work carried out by Dusunceli
and Colak [24], who performed loading-unloading tensile
tests to describe some properties of high density polyethylene
(HDPE). The specimens used are collected from extruded
PE100 pipes whose dimensions of the samples are shown
in Fig. 9a following the ISO 6259-1 and ISO 6259-3 stan-
dards. It is important to say that we do not have access to the
exact experimental points. Then, in order to promote qual-
itative comparisons, we collected this information directly
from [24].

80mm

33mm

R14mm

-
]

115mm

25mm
~

(a) Dimensions of the specimen.

(b) Mesh used.

Fig.9 Sample of HDPE used for load-unload tests

The performance of our model in fitting the experimental
data is tested for the case of small (< 5%) and large strains
(> 5%), as presented next.

4.3.1 Small strain

In the loading-unloading tensile test, the specimen of Fig. 9a
is fixed at one end and a uniaxial load in direction x with
a constant strain rate of 1 x 10™* is applied on the other
end. When the specimen achieves 5% strain, an unloading is
performed with the same strain rate in the opposite direction.
The temperature is constant at 24° C.

We ran quasi-static simulations in order to reproduce
the experimental procedure described above for plane strain
state. The effects of damage are included by using Eq. (59)
with the degradation function G of Eq. (55). The fractional
derivative is calculated using the Algorithm G1 presented in
Sect. 3.3. For the results presented in this section, the con-
sidered point corresponds to the center of the specimen.

We perform a curve fitting based on identifying the param-
eters. The effects of the variation of a particular parameter
were investigated by a series of tests. Once the influence of
this parameter on the stress/strain curve is established, we
checked values which lead to the intended behavior for the
fitting.

It is important to emphasize that the fitting process is per-
formed just for the loading case. By imposing the opposite
strain rate for the simulation, we predict the unloading results
which can then be compared with the experimental unloading
results.

The material parameters identified in this procedure were
Young’s modulus E = 0.8 x 10® Pa; rate of the damage prop-
agation & = 0.18 x 1072 m?/N.s; p = 0.56 x 10° N /m?*s*;
and the order of the fractional derivative « = 0.3. Other
required constants are fracture toughness f; = 0.89 x

100 Pa.m%; fracture layer width y = 0.006 mm; Poisson’s
ratio v = 0.45; density p = 0.954 g/m3; and ¢ = 1. The
fracture toughness is used to calculate the Griffith constant
gc using the relation [31]

_ 20—
8 = Ji £ .

(126)
The tolerance of the Newton-Raphson procedure is 10~!2 for
both motion and damage equations. A finite element mesh
of 2240 linear triangular elements is considered as shown in
Fig. 9b and the time step is Af = 0.1 s.

Figure 10 presents the comparison between the stress/
strain curves obtained in the simulation and the experimental
data. The model promoted good curve fitting for the loading
process and recovered the curve pattern in the unloading.
It is advantageous in relation to many models presented in
the literature for viscoelastic materials, which are not able
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Fig.10 Stress/strainrelation in aload/unload test for the HDPE. Degra-
dation function G| was used in the case of small strain
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Fig. 11 Damage distribution in the specimen until 5% strain by using
degradation function G

to recover the unloading process properly. Furthermore, the
model presented in this work allows the strain process and
damage evolution to be coupled. At the end of the load-
ing process, the level of degradation induced by the damage
affects the strain in the unload process, yielding a residual
strain similar with the experimental data. Figure 11 shows
the damage evolution.

We also ran the same test with Az = 1073 s in order to
check the reliability of the analysis obtaining the same quali-
tative results. We observed some numerical issues when using
the fractional derivative algorithm G1 with very small values
of At that brings difficulties in using automatic optimiza-
tion procedures for parameter identification. Algorithm G1
is attractive due to its simple implementation, but it has high
computational cost.

Since the purpose of the present work is to verify the
effectiveness of the proposed viscoelastic model, we do
not investigate these computational aspects of the fractional
derivatives in the present paper. In future works, we will con-
sider more economic fractional derivative algorithms.

@ Springer

4.3.2 Large strain

We now consider the extension of the previous test for the
case of large strain. The specimen shown in Fig. 9a is subject
to an uniaxial load in the x direction until the sample achieves
15% strain, then an unloading is performed with the same
strain rate.

We evaluated the fitting of the experimental data by using
the same conditions and parameters identified in Sect. 4.3.1.
The resulting simulated stress/strain curves can be compared
with the experimental data in Fig. 12a for 5% and 15% strains.
For the experimental data, the stress increases up to about 8%
strain, then it slowly decays until the unloading is performed.
On the other hand, the stress decreases fastly after 5% for
the simulated results. As can be seen in Fig. 12b, the used
degradation function G| decreases quickly as the process

Loading until
5% strain

Engineering Stress (MPa)

i 4 — Loading until

i | ¢ 8% strain

T T T T T
0 0.03 006 0.09 012 0.15
Engineering Strain

(a) Stress/strain curves using the degradation
function Gj. Dashed line represents the load-
ing/unloading process for 5% strain. Solid line
represents the loading until 8% strain.

1 T i
| |
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| |
0.8 --\-- P tooo- ® 5% strain
|
g | ! O 7% strain
— !
3= i A 7.8% strai
5 .60 strain
= 0.6 N
2 ;
|
o |
2 ‘
=
o]
]
=
)
)
A

(b) Degradation function Gj.

Fig. 12 Stress/strain curve in the tensile test using G| for the HDPE a
and the associated evolution of the degradation function G| b. The
geometric symbols correlate the percentage of strains with the corre-
sponding damage values for the degradation function
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evolves. Once this function strongly influences the stress (see
Eq. (51)), it also decreases rapidly. The geometric symbols
presented in Fig. 12a, b correlate the strain and damage values
for function G.

Based on these results, we see that the use of G in the
model does not give a correct damage behavior for viscoelas-
tic materials in the case of large strain. This is so because
G does not correctly describes the degradation mechanisms
described in Remark 4.

To obtain the right degradation behavior, we used the
degradation function G, of Eq. (56) to perform a new fit-
ting. Function G depends on constants a, b and ¢, which are
included in the inverse parameter identification.

The material parameters identified in this procedure were
Young’s modulus E = 0.4 x 108 Pa; rate of damage propa-
gation & = 0.115 x 1072 m?/Ns; p = 0.67 x 10° N /m?*s*;
order of fractional derivative @ = 0.35; and the degradation
function parameters a = 3.8, b = 1.5 and ¢ = 1.15. Other
parameters are fracture toughness f; = 0.89 x 10° Pa.m%;
length of the fracture layer width y = 0.006 mm; Poisson’s
ratio v = 0.45; density p = 0.954 g/m3; and ¢ = 1. The
same mesh, time step and tolerance for the Newton-Raphson
of the preceding section were adopted in this case.

Figure 13a presents the new simulated stress/strain curves.
The new degradation function significantly improved the
fitting, once the function G, was designed to describe the
evolution of damage in the micro-structure (see Sect. 2.3.4).
Figure 13b shows the degradation function G2, and the points
which associate the damage values with the corresponding
strain levels. Figure 14 shows the damage evolution in the
specimen for this case.

The behavior of functions G| and G, are very similar until
the damage achieves approximately ¢ = 0.16289, which
corresponds to 5% strain. In fact, the fitting until 5% of strain
is not significantly affected by the choice of the degradation
functions G or G. In the unloading, both of these functions
predict a rather correct level of degradation for the tested
material. However, only the function G, is appropriate to
predict results for situations where the material are subject
to large strains.

In the previous simulations, we used the irreversible dam-
age version of the model; thus, damage does not decrease
during unloading, as expected from Eq. (59).

To further check our model, we also consider another sim-
ulation, using again the specimen described in Fig. 9a, but
now keeping the tensile loading until it breaks.

We assumed the same conditions and parameters men-
tioned above for the degradation function G;. Figure 15
shown the damage increasing and the localizated fracture
in this case, where the strain achieves 23% in the simulation
time of 2654s.
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(a) Stress/strain curves. Dashed line represents
the loading/unloading process until 5% strain.
Solid line represents the loading until 15%
strain.
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and c=1.15.

Fig. 13 Stress/strain relation in the tensile test for the HDPE a and the
associated evolution of the degradation function G, b. The geometric
symbols correlate the percentage of strains with the damage values for
the degradation function
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Fig. 14 Damage distribution in the specimen until 15% strain using
degradation function G»
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5 Conclusions

We presented a general thermodynamically consistent phase-
field model to describe damage in viscoelastic materials. This
model is constructed in Lagrangian configuration, and dam-
age is described by a dynamic phase-field variable.

Viscoelasticity is included in the model by using a suitable
free-energy potential and a pseudo-potential of dissipation
that lead to stress/strain constitutive relation in terms of frac-
tional derivatives with finite strain and ensure the validity of
the second principle of thermodynamics

We introduced a novel free-energy potential with mem-
ory effects and related to fractional derivatives; this potential
depends on function .4 that can be chosen to represent differ-
ent viscoelastic materials. The free-energy potential allows
damage evolution by including suitable degradation func-
tions, which play an important role in modeling the change
of stiffness between the undamaged and the fractured states.
We proposed a new degradation function having suitable fea-
tures to describe the viscoelastic behavior according to the
evolution of damage in the micro-structure.

The development of the model results in a set of fractional
order differential equations, which describe the evolution of
motion, damage and temperature in a viscoelastic body. The
numerical solutions of this system were obtained by using a
semi-implicit/explicit method.

The behavior of our model was verified by numerical tests
and comparisons with experimental data for the isothermal
case.

To guarantee thermodynamical consistency, our model
has, in addiction to an integral term related to the fractional
derivatives, some extra singular integral terms. To evalu-
ate the importance of those extra-terms, a one-dimensional
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version of the model was considered to quantify their con-
tribution to the stress evolution. We compared the results of
the simulations of the dynamic response of a viscoelastic rod
subject to an external force with and without the extra terms.

We observed that the extra terms do not significantly affect
the stress response and can be disregarded in most cases.
Afterwards, we used the same example to study the effect
of varying the viscoelastic parameters on the displacement
behavior. We obtained displacement curves over time which
agree qualitatively with the results of literature. Simulated
data presented for this case were used as a reference to
obtain a suitable two-dimensional extension. Subsequently,
two tests for an I-shaped specimen were performed in plane
the stress state. One of these introduced the damage evolu-
tion, resulting in stress/strain curves for a tensile test.

Fitting of experimental data was performed to describe the
viscoelastic response of HDPE samples in loading/ unload-
ing tensile tests for two cases: small strains (5% strain) and
large strains (15% strain). Fittings were done just by using
loading data; the predict unloading were then compared with
the experimental unloading results. We obtained results with
the usual quadratic degradation function G; and also with
function G, proposed in this work. The predicted results
were both adequate for the case of small strains. However,
for large strain, G| gave incorrect results, while G, gave
rather good results.

We observed numerical limitations related to the fractional
derivative algorithm G1 when used with very small values for
At that made difficult the implementation of automatic opti-
mization procedures for parameter identification. Algorithm
G1 is attractive due to its simple implementation, however, it
requires a very high computational time. Since the purpose of
the present work is to verify the effectiveness of the proposed
viscoelastic model, we did not investigate here the computa-
tional aspects of the fractional derivatives. Future work will
consider more economical algorithms for fractional deriva-
tives.

Finally, the results presented indicate that the proposed
model is successful in describing the response of viscoelastic
materials under the conditions tested. It is also an adequate
thermodynamically consistent alternative to account for the
viscoelastic behavior under damage.
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A Conditions on ./ and Derivativation of fpm

Consider ¥,, and ¥, given respectively by Egs. (18) and
(19). Function .4 (Z1, Z>) of Eq. (19) is a suitable contin-
uous function of second-order symmetric tensors with the
following properties:

(@) N (Z1,Z7) =20,V Z;

(b) [N (Z1, Z2)| < C(Z1, Z)|Z1—Z>||P, with B > 1+«
and C(Z1, Z,) bounded as Z| — Z, — O4;

©) 182, M (Z1, Z)|| < Ci(Z1, ZDIZ1 — Z>|P', with
B1 > o and C1(Z;, Z>) bounded as Z| — Z, — 0.

From the previous properties and using the mean value
theorem, we obtain

| A (E,, E¢)| < C(E,, E;)||E; — E||”
< C(E;, E;)max{||Es|,s € [0,0}f|r —z|f,  (127)
and
82, (E;, Ex)|| < C1(E;, E))|E; — E||P'
< Ci(E;, E;) max{||Eg|, s € [0,))F']r — z/f1. (128)
By using inequality (127), we have
N (E(p,t), E(p,
fim L E@DEWBD) _ g (129
T—>1— (t —1)lte

N(E(p,t), E(p, T
Moreover, we also consider that (E(p.1). E(p. 7))
(t — -[)2+a
aZl '/V(E(p’ t)v E(pa T))
and
(t — .[)1+a
respect to t.
Under the previous conditions for .4, the time derivative
Y, for strains such are continuous at time t = 0+ and have
bounded rates (i.e, | E(p, t)|| bounded as t — 04), can be

obtained as

, are integrable in [0, t) with

Um (@, H(E))
G
@5 ey + Enl? (“’) Im ) g (BN
— S, B+ 80 eEne - R, (130)

1389
where
__Gn@ [8E,</V(Et,Eo)
" pr(l —a) 1
+a /Ot%dr], (131)
and
G |:</V(E,,Eo)
T opI(1—a) tlte
+(1 + )f ‘/V(E”)M dti|. (132)

Note that R > 0, due to the property (b) defined previously
for A,

B Examples for ./

Example 1 By considering A (Z1, Z2) = (Z1 — Z2) 1 A
(Z1 — Z3), with A a fourth order symmetric-positive definite
constitutive tensor, it is easy to check that the conditions for
A given in Appendix A are satisfied. Replacing it in (19),
we have

U (A (E))(p, 1)
_ [[Ef - Eo)] : A- [E; — Eo]

/ [E: — E] dsi|

where k = 1/2I'(1 — «) and I' is the standard Gamma
function [4]. In this case, we obtain

Gu(p)
0

X (A : ODta(Et)) =

A [E; —
(t — 7)lte

(133)

S =

Gn(p)

(ODta(Et) : -A)) )
(134)
where ¢D;“ E is the Caputo fractional derivative of E.
Example2 Now, we take A (Zi,Z2) = 3(M(Z)) —
M(Z2)) + A (M(Z1) — N(Z)) in (19), where A is
as in the previous example and 4] (Z) is a suitable second-

order-tensor valued function which satisfies the additional
condition

(d) |M(Z1) = M (Z2)| < C(Z1. Z2)|Z1 — Z2|1P, but now
with 8 > 1 and C(Z;, Z;) bounded as Z;, Z, — 0+.

Then, (19), becomes
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T = K|:[</V1(Et) — M(Ep)]: A: [M(E;) — M(E)]
m — [“
/’ [M(E) — M(E)]: Az [M(E) — M(EL)]) ]
+a dr |,
0 (t — T)I-Hx

(135)

For the special choice of .4 in this case and the previous
property (d), one can easily either prove that the required
properties (a), (b) and (c) are satisfied or observe directly
that

ILA(ED) — ME)| < C(E), EDIE; — E-|)?

< C(Ey, Eo)ymax{|E. s € [0, D)} — 7|F, (136)

and so

1A (E) — MEN) : A [H(E) — MEDD
< |LAIC*(E,), E;) max{||Es|, s € [0, )}*|t — 7|?*.

(137)
Thus, we have that
i [MN(Et) — M(E)]: Az [MN(Er) — M(Er)]
im =0.
T—>t— (t — 1:)1+Ol
(138)
Again we obtain relation (130), but now with
S _ Gulp) . 1 [MN(E; — M(Eo]
T ) "Il —a) 1o
t
[M(E; — M(E5)]) )
+a/0 @ o dr] c 0z M(E;
G
m () (139)

== A 0D (M(ED)) : 9z M (Ey).

Example3 Now we take A (Z1,22) = A(Z1 — Z»)
A(Z)) : (Z) — Z) with A(Z)) a fourth order symmetric-
positive definite tensor continuously depending on Z1. Then
(19) becomes

m =

. _g[wt—Eo)]:A:[E,—Eo]

P %
t . .
[E;—E.]: A:[E, — E]
dr|. 14
+“/o (=)o f} (140
In this case, we obtain
G o
S = — [A oD/“(E;)
t . .
[E; —E;]:0pA:[E, — E;]
+ouc/0 o dr] . (141)

@ Springer

As before, gD,;“E is the Caputo fractional derivative of E.

An interesting possibility is to take A(E) = 8% Vo (E),
where . (E) is any standard elastic specific free-energy with
continuous derivatives with respect to E up to order 3.

It is important to emphasize that Equation (140) is a mod-
ification of the free-energy potential proposed by Fabrizio
[25]; in that work, the author shows that his proposal for the
free-energy implies in a stress equation in terms of fractional
derivatives. However, the arguments presented in [25] do not
make clear why the definition of fractional derivatives must
appear. In the present paper, we modified Fabrizio’s sugges-
tion including the first term of Eq. (140) to properly lead to the
fractional derivative definition that appears in the associated
stress Sys (see Eq. (141)). We also extended his suggestion
for the three-dimensional case, and added the possibility to
consider ,A(E) nonlinear in relation to E.

Example 4 Another possibility is to take .41 (Z) = ¥.(Z) in
(19), where now v.(Z) is again a standard elastic specific
free-energy but now normalized such that v, (Z) > 0 for all
Z, ¥.(0) = 0 and with continuous derivatives with respect
to E up to order 2. Such conditions ensure that the required
properties (a), (b) and (c) are satisfied. In this case, we then
are left with

G ml_ . [we(E;a— Eo)

ta Ot —“’(et(fft;f;) df} , (142)
and
R [aE,we(E, — Eo)

pl'(1 —a) t*

ta /0 t —8E(I/t’_(b;’) ;f’)dr]. (143)

C Alternative expression for the caputo
fractional derivative

Caputo [11] proposed a fractional derivative definition for a
function f(¢) € Cla,b] anda < t < b given by

1 ARG
CIr(l-a) ), t—1)

DY (1) dr, (144)

where m = [«/] (ceiling function) such that « € R and I" is
the usual Gamma function defined by

o0
() = / e Tr¢7l dr, (145)
0
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with ¢ € R. If « € [0, 1], then the particular definition is
obtained

o _ 1 Tl
DY f (1) = oo ) G dr. (146)

Equation (146) may be rewritten as

1 / S d
T
F(l —a) e—)t* (I — )«
—

1

oD f (1) = (147)

Applying integration by parts, we obtain
_ f@
(=0,

‘ / fo
(t — -[)oe—t—l
f(€) f(o)

_ _ f@ /
T G- (t—a)X (t — r)“““
AC) G
o [t | i o
_Je  f@ +a/ f(é)—f(f)
- (1-a)X « (=1t

—af(e)/a —(t — i)a+l dr
_ fle  fla) o
t—e)¥ (@¢—a) a
A, S
t—e)2 (C—a)*
_fl@) € fle)— f(r)

Ta—ar UL e

f(é)—f(f)

(t — r)at!

Q)
(t—a)®
(148)

By replacing the above expression in Eq. (147), then

aD?f(l)=m
<f(t)—f(a) 0 - f() )
X | = —dr ).
t—a) a (=1t

(149)

This alternative expression plays a central role in this work
for the definition of the viscoelastic pseudo-potential of dis-
sipation of Eq. (140).

D Matrices for the numerical evaluation
of the motion equation

In the two-dimensional case, the matrices E, F and s, that
appear in Egs. (94) and (96), are given respectively by

- gu §12 Fii 0 Fy 0
S = 12 22S s F=|0 Fio 0 F»n|,
11 Si2
Fir» Fi11 F»» F
S12 Sp 12 F11 2o Iy
(150-151)
and
s =[S S Si2l. (152)
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