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Abstract
We extend the classical SIR model of infectious disease spread to account for time dependence in the parameters, which also
include diffusivities. The temporal dependence accounts for the changing characteristics of testing, quarantine and treatment
protocols, while diffusivity incorporates a mobile population. This model has been applied to data on the evolution of the
COVID-19 pandemic in the US state of Michigan. For system inference, we use recent advances; specifically our framework
for Variational System Identification (Wang et al. in Comput Methods Appl Mech Eng 356:44–74, 2019; arXiv:2001.04816
[cs.CE]) as well as Bayesian machine learning methods.
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1 Background

Starting from their origins in the the work of Kermack and
McKendrick [1], the use of differential equation models of
the course of infectious diseases has grown to become one
of the more accessible instances of the reach of mathemat-
ics. The current COVID-19 Pandemic has brought them into
the common parlance. Even before this, however, the base-
line Susceptible-Infected-Recovered (SIR) model had been
extended to include Exposed (E) and Deceased (D) compart-
ments and applied with considerable success to influenza,
ebola, malaria, cholera, tuberculosis and several other infec-
tious diseases [2–5]. (Some of this literature also includes
agent-based models, which we do not consider here.) During
the COVID-19 Pandemic, the widespread availability of data
in the public domain [6–11] has served to attract methods of
mathematics, computation and data science to analyzing this
information, inferring the disease’s dynamics and making
projections. The present communication is in this spirit, and
brings our recent work in large scale computations of partial
differential equations (PDEs), system inference andmachine
learning to this problem [12–17].
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Of particular interest to us are two lines of enquiry: The
first is that for a rapidly evolving disease such as COVID-19,
with its public health, population-based, political, travel and
economic manifestations, the classical SIR model of ordi-
nary differential equations (ODEs) with constant coefficients
seems inadequate. Driven by data that extends the compart-
ments to the deceased (D), we have adopted the SIRDmodel.
This choice is based entirely on the nature of the data avail-
able on the epidemic in the state of Michigan, where the
numbers of deceased are reported on a daily basis. The clas-
sical SIR model can be extended to compartments additional
to the exposed and deceased ones. Thesemodels are typically
designated as SIS (Susceptible-Infected-Susceptible again,
such as in the common cold); MSIR (Maternal-Susceptible-
Infected-Recovered, where immunity is derived from the
mother in theM compartment); SEIS (Susceptible-Exposed-
Infected-Susceptible again, also typical of the common cold);
MSEIR and MSEIRD, which combine more of the com-
partments. However, data are not available to us on the
exposed and maternally immune-protected sub-populations
in the state of Michigan, and the Maternal compartment
is not known to be relevant to COVID-19. We have there-
fore worked with the SIRD model. The interested reader is
directed to Ref. [18] for details of the other SIR model vari-
ants.

The first extension that we have undertaken is to allow
the ODE coefficients to vary in time to reflect the evolv-
ing contours of testing, quarantine and treatment protocols.
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This is not necessarily novel, and has been addressed in
other work [2,19], although perhaps not with the infer-
ence approach ofVariational System Identification (VSI) and
ODE-constrained optimization that we have adopted.

The second is the fact of a mobile population. Population
mobility has been addressed through metapopulation mod-
els that characterize how diseases move between population
hubs, across countries, or even intercontinentally. The most
widely known are gravitymodels (e.g. [20]), and network and
agent based models [21]. Given the prominence that quar-
antine protocols—adorned with the current-day euphemism
of “social distancing”—have played in the COVID-19 Pan-
demic, it appears natural to seek an extension of the SIRD
model to a spatio-temporal PDE model. As the world went
into lockdown, but at different rates and degrees of rigor,
and then began to emerge from it, the detection of pat-
terns of mobility in space and time presents a compelling
avenue for investigation. Such an extension also has been
considered—chiefly in the setting of the mathematical anal-
ysis of reaction–diffusion systems [22–24]. Our contribution
to this aspect of the mathematical treatment is to also allow
the diffusivity of the S, I and R sub-populations to vary with
time.

To these tasks we have brought the abundance of high-
quality, public domain, data on the evolution of the various
compartment pertaining to the SIRD model in the US state
of Michigan. The temporal resolution by days and spatial
resolution by the 85 counties of Michigan has allowed us
to apply our methods of Variational System Identification
[12,13], PDE-constrained optimization andmachine learning
[14–17] to these data.

In Sect. 2 we review the foundational SIRD ODE model.
Section 3 is on data preparation. The application of system
identification and machine learning to the ODE system are,
respectively, in Sects. 4 and 5. The results for inferred param-
eters and forward prediction are presented in Sect. 6. The
extension to inferring mobility via reaction–diffusion sys-
tems is in Sect. 7. Our conclusions appear in Sect. 8.

2 The compartmental model of infectious
disease dynamics

We use the SIRD version of compartmental epidemiology
models. The population, taken to remain constant at N , is
divided into four disjoint compartments with time-dependent
sub-populations: S(t) for susceptible, I (t) for infected, R(t)
for recovered and D(t) for deceased individuals. The gov-
erning ODEs are:

dS

dt
= − β

N
SI + γ R (1)

dI

dt
= β

N
SI − μI − α I (2)

dR

dt
= μI − γ R (3)

dD

dt
= α I (4)

N = S(t) + I (t) + R(t) + D(t). (5)

This is the canonical form of the model where the sub-
populations are assumed to be well-mixed so that spatial
variations can be ignored over the domain of interest. Here
β(t) is the infection rate, μ(t) is the recovery rate, γ (t) is
the rate of immunity loss, and α(t) is the death rate—all
allowed to vary with time. Using the natural temporal unit of
one day, we note that 1/μ(t) is also the number of days an
individual remains infectious. It follows that β(t)/μ(t) is the
effective reproduction number: the total number of the sus-
ceptible population that an infectious individual passes the
disease to. This quantity is commonly denoted by R0, but we
use r0(t) = β(t)/μ(t), to distinguish it from the recovered
population, and emphasizing that it, too, varies with time.

We reiterate what we have outlined in the Background
(Sect. 1). Given the rapidly varying nature of testing, report-
ing, treatment protocols and quarantine conditions over the
course of an epidemic, it is natural to allow the coefficients
in the SIRD model, Eqs. (1–4) to vary with time. Such vari-
ation is evident in epidemiological data. The reader may be
familiar with the time varying nature of such factors over the
course of the COVID-19 Pandemic. It is a central feature of
data preparation in the following section.

3 Data preparation

Counts of new confirmed infected cases I (t) and deaths D(t)
were reported in the public domain on a daily basis by the
state of Michigan for each county [26], while total recov-
ered cases in the state R(t) were reported weekly [27]. See
Fig. 1 for the counties and regions that Michigan is par-
titioned into. Since county specific recovery data was not
reported, the distribution of recovered cases across counties
was approximated to be the same as the distribution of cumu-
lative infected cases,

∫ t
0 I (τ )dτ across counties. Estimates

for the populations of Michigan’s counties [28] were used to
determine the susceptible population, S(t), from Eq. (5).

Some amount of data smoothing was necessary, partic-
ularly to account for the weekly instead of daily reporting
of the number of recovered cases. To compare the effect of
the smoothing method on the data, a moving average filter
was applied using 7, 11, and 15-day windows, guided by the
week-long period of oscillation in the raw data for daily new
infections I (t) − I (t − 1). The 7-day window was applied
one, two, and three times. As seen in Fig. 2, the method of
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Fig. 1 The map of Michigan
delineating the counties and
regions (modified from [25])

smoothing has little effect on the trends of the data. However,
and as expected, there is a strong effect on the numerical time
derivatives (see Fig. 3). It is clear that multiple passes of the
filter are required to remove jumps in dR/dt and dI/dt . Since
the additional smoothing is helpful for system inference in
Sect. 4 and does not negatively affect the data, the 7-day
moving average filter applied three times was used for data
smoothing.

The lockdown in Michigan began onMarch 23, 2020. For
brevity, we use C for the date when the outdoor construc-
tion industry was allowed to resume on May 1, 2020, M for
the restart of some manufacturing on May 7, 2020, R for
reopening of research laboratories on May 15, 2020, O for
broader opening of most other activities and lifting of the
stay at home order on June 1, 2020 (albeit with distancing
guidelines in place), and E for the end of the data period that
we considered (June 28, 2020). This notation is used for the
rest of this communication.

4 System identification and
ODE-constrained optimization

The SIRD model, Eqs. (1–4) was time-discretized using the
Backward Euler method and written as:

Sdm − Sdm−1

�t
+ β

N
Sdm I

d
m − γ Rd

m = 0 (6)

I dm − I dm−1

�t
− β

N
Sdm I

d
m + μI dm + α I dm = 0 (7)

Rd
m − Rd

m−1

�t
− μI dm + γ Rd

m = 0 (8)

Dd
m − Dd

m−1

�t
− α I dm = 0 (9)

where Sdm, I dm, Rd
m, Dd

m are the corresponding data (smoothed
as in Sect. 3) at time tm (the end of themth day), �t = 1 day
and Eq. (5) holds: Sdm = N − I dm − Rd

m − Dd
m .
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Fig. 2 Cumulative data with different kernel widths and multiples of
application of the smoothing filter: 7days_1× represents a 7-day fil-
ter applied once. Important dates are marked with the lockdown on
March 23, reopening of construction and real estate sites (C) on May 1,

reopening of manufacturing sites (M) on May 7, permission. to restart
laboratory research (R) on May 15, lifting of the stay-at-home order
(O) on June 1, and the end of our data collection (E) on June 28

The system identification problem is to infer the time-
dependent coefficientsβ(t), γ (t), μ(t), α(t),whichwechoose
to expand in a polynomial basis (other choices of bases are
admissible).

β(t) = θ0 + θ1t + θ2t
2 + θ3t

3 (10)

γ (t) = θ4 + θ5t + θ6t
2 + θ7t

3 (11)

μ(t) = θ8 + θ9t + θ10t
2 + θ11t

3 (12)

α(t) = θ12 + θ13t + θ14t
2 + θ15t

3 (13)

The parameters to be inferred are collected into a vector θ =
〈θ0, . . . , θ15〉T. Since the data are known the label vector can
be constructed as:

ym =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sdm−Sdm−1
�t

I dm−I dm−1
�t

Rd
m−Rd

m−1
�t

Dd
m−Dd

m−1
�t

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(14)

and a matrix can be assembled from the reaction terms in the
time-discretized SIRD equations (6–9):

�m

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Sdm Idm
N 〈1 tm t2m t3m 〉 −Rdm 〈1 tm t2m t3m 〉 〈0 0 0 0〉 〈0 0 0 0〉

− Sdm Idm
N 〈1 tm t2m t3m 〉 〈0 0 0 0〉 Idm 〈1 tm t2m t3m 〉 Im 〈1 tm t2m t3m 〉

〈0 0 0 0〉 Rdm 〈1 tm t2m t3m 〉 −Idm 〈1 tm t2m t3m 〉 〈0 0 0 0〉
〈0 0 0 0〉 〈0 0 0 0〉 〈0 0 0 0〉 −Idm 〈1 tm t2m t3m 〉

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(15)

The columns of�m can be regarded as discretized versions of
the basis operators that appear as reaction terms on the right
hand-side of the SIRD model (1–4). The label vectors and
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Fig. 3 Time derivatives (daily change) of sub-population data with dif-
ferent kernel widths andmultiples of application of the smoothing filter.
Important dates are marked with the lockdown on March 23, reopening
of construction and real estate sites (C) on May 1, reopening of manu-

facturing sites (M) on May 7, permission. to restart laboratory research
(R) on May 15, lifting of the stay-at-home order (O) on June 1, and the
end of our data collection (E) on June 28

matrices of basis operators at times t0, . . . tM are collected
into

y =

⎧
⎪⎨

⎪⎩

y0
...

yM

⎫
⎪⎬

⎪⎭

︸ ︷︷ ︸
4(M+1)×1

, � =
⎡

⎢
⎣

�0
...

�M

⎤

⎥
⎦

︸ ︷︷ ︸
4(M+1)×16

(16)

and the residual vector is defined:

R(θ) = y − �θ (17)

Our approach to inference combines system identifica-
tion by stepwise regression [12,13] and ODE-constrained
optimization using adjoints. We define a loss function that
incorporates penalization on θ (leading to ridge regression

below):

�(θ) = |R(θ)|2 + 1

2
λ|θ |2 (18)

Our stepwise regression techniques incorporate two algo-
rithms listed next:
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Algorithm 1: Model selection by Stepwise regression:

j = 0, Q = 0,
While j ≤ P − 1 − Q do
Step 0:

Establish target vector y and matrix of bases �.

Step 1:
Solve for θ j by ridge regression:

θ j = arg min
θ̃

�(̃θ) (19)

=
(
�T� + λ1

)−1
�T y

Calculate the loss function at this iteration, � j.

Step 2:
Apply the F-test introduced below.
IF F-test eliminates an operator
THEN Set Q = Q + 1
Set to zero the corresponding component of θ.
GOTO Step 1. %Loss function remains small (� j ∼ � j−1); solution may be

overfit.
ENDIF

Step 3:
Stop if the F-test does not allow elimination of any more basis

operators.
% Beyond this, the loss function increases dramatically for any further

reduction.

There are several possible criteria for eliminating basis
terms.Here,we adopt awidely used statistical criterion called
the F-test, also used by us previously [12,13]. The signifi-
cance of the change between the model at iterations j and
j − 1 is evaluated by:

F =
� j−� j−1
p j−1−p j

l j−1
P−p j−1

(20)

where p j is the number of bases at iteration j and P = 16
is the total number of operator bases. The F-test is achieved
through the application of Algorithm 2:

Model selection thus finds θ consisting of a minimal
set of non-zero components, ensuring that the coefficients
β(t), . . . , α(t) admit a parsimonious representation as poly-
nomials in t . For clarity, we collect this set of non-zero
coefficients into another vector, ϑ0. Using dim(•) to repre-
sent the dimension of a Euclidean vector, we have dim(ϑ0) ≤
dim(θ).

The next step is to further refine the values of the
non-zero polynomial coefficients using ODE-constrained
optimization starting from the initial guess ϑ0, and regard-
ing Sm(ϑ̃), Im(ϑ̃), Rm(ϑ̃), Im(ϑ̃) as the forward solution
to the discretized SIRD model (22–25) with coefficient
β(t), . . . , α(t) values drawn from ϑ̃ :

ϑ = arg min
ϑ̃

M∑

m=0

(
Sm(ϑ̃) − Sdm

W1

)2

+
(
Im(ϑ̃) − I dm

W2

)2

+
(
Rm(ϑ̃) − Rd

m

W3

)2

+
(
Dm(ϑ̃) − Dd

m

W4

)2

(21)

Subject to the discretized SIRD model:

∀ m ∈ {0, . . . , M}
Sm(ϑ̃) − Sm−1(ϑ̃)

�t
+ β

N
Sm(ϑ̃)Im(ϑ̃) − γ Rm(ϑ̃) = 0 (22)

Im(ϑ̃) − Im−1(ϑ̃)

�t
− β

N
Sm(ϑ̃)Im(ϑ̃) + μIm(ϑ̃)
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+ α Im(ϑ̃) = 0 (23)

Rm(ϑ̃) − Rm−1(ϑ̃)

�t
− μIm(ϑ̃) + γ Rm(ϑ̃) = 0 (24)

Dm(ϑ̃) − Dm−1(ϑ̃)

�t
− α Im(ϑ̃) = 0 (25)

Algorithm 2: Application of the F-test:

Step 1: %Find the least significant basis
i = 0
While i ≤ P − 1 − Q Tentatively eliminate each basis corresponding to
non-zero coefficients in θ

Set the corresponding coefficient to zero in θ.
Evaluate the loss function followed by ridge regression on the reduced

basis set.
Compute the F-value on the reduced basis set with smallest loss

function. Label this coefficient θk

Step 2:
IF F < α

THEN formally eliminate the term corresponding to θk in matrix �, by
deleting the corresponding column.

ENDIF

where

W1 = max
m

Sdm − min
m

Sdm

W2 = max
m

I dm − min
m

I dm

W3 = max
m

Rd
m − min

m
Rd
m

W4 = max
m

Dd
m − min

m
Dd
m

TheODE-constrained optimization problem is solved iter-
atively, and requires the gradient of the ODE constraint
(22–25) with respect to ϑ̃ . We adopt the classical approach
requiring a single solution of the adjoint equation of the origi-
nal ODE-constraint in each iteration. In this work we use the
L-BFGS-B optimization algorithm from SciPy [29] and
the dolfin-adjoint software library [30] to compute
the gradient.

5 Deep and Bayesian neural networks

We also explore multilayer feedforward neural networks
(NNs), which are universal function approximators [31], to
learn the disease’s dynamics via the data Sdm, I dm, Rd

m, Dd
m at

discrete times and to infer the coefficients in Eqs. (1–4), as
an alternative to the approach presented in Sect. 4. Specifi-
cally, we construct two NNs to represent the data, with one
as a deterministic model and the other being a probabilistic
model.

Both NNs take {I dm, Rd
m, Dd

m �t} as features and
{I dm+k, R

d
m+k, D

d
m+k} as labels. Thus, the twoNNsmake pre-

dictions on case numbers at daym+k based on case numbers
reported at day m. In this work, k is chosen to vary from 1 to
M − m, where M = 97 is the number of days that we used
data for. In both types of NNs, Sdm and Sdm+k are computed
based on the constraint Eq. (5).

The deterministic model is a deep neural network (DNN)
that consists of multiple fully connected layers, whosemodel
parameters (i.e. weights and bias) can be obtained in a
straightforward manner by minimizing the loss function

LDNN = MSE (26)

through an optimization algorithm, such as stochastic gra-
dient descent, via backpropagation. The probabilistic model
is a Bayesian neural network (BNN), which also consists of
multiple fully connected layers, but with its model parame-
ters (i.e. weights and bias) being sampled from a posterior
distribution P(θ |D) that is computed based on Bayes’ theo-
rem

P(θ |D) = P(D |θ)P(θ)

P(D)
, (27)

where D denote the i.i.d. observations (training data) and
P represents the probability density function. In Eq. (27),
P(D |θ) is the likelihood, P(θ) is the prior probability, and
P(D) is the evidence, respectively. The posterior distribu-
tion of θ is computed based on variational inference (VI),
which approximates the exact posterior distribution P(θ |D)

with a more tractable distribution Q(θ) by minimizing the
Kullback–Leibler (KL) divergence [32–34]

Q∗ = arg min KL(Q(θ)||P(θ |D)). (28)
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The KL divergence is computed as

KL(Q(θ)||P(θ |D)) = E[log Q(θ)] − E[log P(θ ,D)] + log P(D), (29)

which requires computing the logarithm of the evidence,
logP(D) in Eq. (27) [33]. Since P(D) is hard to compute,
it is challenging to directly evaluate the objective function
in Eq. (28). Alternately, we can optimize the evidence lower
bound (ELBO) defined as

ELBO(Q) = E[log P(θ ,D)] − E[log Q(θ)], (30)

which is equivalent to the KL-divergence up to an additive
constant coming from the evidence. Thus, maximizing the
ELBO is equivalent to minimizing the KL-divergence. The
loss function for the BNN has the following form:

LBNN = ω1MSE + ω2ELBO, (31)

where ω1 and ω2 are weighting parameters, with ω1 = 50
andω2 = 1 being chosen in this work. A specific weight per-
turbation method, known as Flipout [35], is followed to infer
Q(θ) by minimizing Eq. (31) through mini-batch training
via backpropagationwith stochastic optimization algorithms.
Flipout has been implemented in the TensorFlow Proba-
bility Library. The architectures of both NNs are summarized
in Table 1. Both NNs were trained by using the Adam opti-
mizer following an exponentially decaying learning rate

lr = lr0 · pow
(

vdecay,
Ntotal

Ndecay

)

(32)

with an initial learning rate lr0 = 0.001, a decay rate vdecay =
0.91, a decay step Ndecay = 100, and a final Ntotal = 10,000
epochs.

6 Results

Because of the extremely nonuniform distribution of the pop-
ulation of Michigan, we first studied the SIRD model for
the entire state consisting of the lower and upper peninsu-
las (Fig. 1). Following this, the SIRD models were inferred
for the eight Regions (also shown in Fig. 1) individually as
one direct approach to study the effect of spatial variations
in the populations and sub-populations corresponding to the
model’s compartments.

6.1 System identification and ODE-constrained
optimization

Figure 4 shows the progression of stepwise regression to infer
the active time-dependent terms in Eqs. (10–13) via Algo-
rithms 1 and 2. The stem-and-leaf plots on the left illustrate

the fate of the terms θ0 − θ15t3 over eight iterations of step-
wise regression. Each stem-and-leaf represents one term out
of θ0 − θ15t3 and the values are scaled to 1 (active) or 0
(inactive) for each iteration. On the right is the loss, which
remains low until Iteration 10 and increases dramatically in
Iteration 11, if any further terms are eliminated. Following
the F-test used in Algorithm 2, the large increase in loss after
Iteration 10 exceeds the threshold for acceptablemodel error.
Thus system identification converges to the inferred model
in ten iterations.

Figure 5 shows, on the left, the evolution of SIRD model
parameters and, on the right, a comparison of the predictions
of the inferred model versus the data after ODE-constrained
optimization that follows the system identification step. It is
important to recall that these results are representative of the
population of the entire state of Michigan. The SIRD model,
having only four compartments, and applied to data that are
the outcomeof changing characteristics of testing, quarantine
and treatment protocols, does not resolve many details of the
public health aspects of the epidemic. The immunological
characteristics of the disease itself are accounted for only in
a very aggregated sense.

In Fig. 5, the important dates when the lockdown was
imposed, and its gradual lifting are indicated by vertical lines
to aid an understanding of the results. We first draw attention
to the conclusion that γ (t) = 0; the inference indicates that
recovery from COVID-19 confers permanent immunity—an
important conclusion, that remains to be confirmed by immu-
nologists. As may be expected, the population’s infection
rate, β(t), declined as the initially higher rates of positive
diagnoses fell with fewer infected individuals. However, it
began to rise again upon the opening of construction activ-
ities (C), and continued to do so through the lifting of stay
at home orders (O). The recovery rate, μ(t), showed a long
initial increase as growing numbers of infected individuals
recovered. Our interpretation of the initially high death rate,
α(t), is that many of the early cases already had advanced
progression of the disease. Its rapid decline can be attributed
to the ramp up of the public health campaign, hospitalization
and emergency response of the medical system. The success
that the state ofMichigan gained bymandating an aggressive
lockdown of nearly all societal, educational, commercial and
industrial activity is best reflected in the rapid decline of the
effective reproduction number, r0(t). According to the infer-
ence presented here, r0(t) < 1.0 form > 32 (April 24, 2020),
after which the typical infected individual passed the disease
on to less than one other person. The death rate increased
over the last few days for which data were obtained, perhaps
as some number of individuals who had been infected for
a longer time failed to recover. This affected the recovery
rate as well, which fell. The close match between the simu-
lations with the inferred ODE SIRD model and data (Fig. 5,
right plot) validate the systems inferred. Such validation
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Table 1 Model architecture for
the DNN and BNN. Dense and
DenseFlipout refer to
specific NN architectures
(layers) used in the
TensorFlow Library

Layer type Description

DNN

Input layer (features) I dm , Rd
m , Dd

m �t

Dense layer neurons = 40 (Sigmoid)

Dense layer neurons = 40 (Sigmoid)

Output Dense Layer (labels) I dm+k , R
d
m+k , D

d
m+k (Softplus)

BNN

Input layer (features) I dm , Rd
m , Dd

m �t

DenseFlipout layer neurons = 40 (Sigmoid)

DenseFlipout layer neurons = 40 (Sigmoid)

Output DenseFlipout Layer (labels) I dm+k , R
d
m+k , D

d
m+k (Softplus)

Fig. 4 Left: Stem-and-leaf plot illustrating system identification of
active time-dependent SIRD parameters using data for the entire state
of Michigan. Each stem-and-leaf represents one term of θ0, . . . θ15t3,
scaled to 1 (active) or 0 (inactive). Right: The changing loss as terms are

eliminated from the set of time-dependent coefficients. System identi-
fication converges at Iteration 10 as the loss increases dramatically for
further elimination of terms

against the data holds for all the inferred results presented in
this communication, although the non-uniqueness of inverse
problems does not preclude the existence of multiple sets of
inferred coefficients.

Figures 6 and 7, respectively, illustrate the time-dependent
SIRD coefficients and comparison between data and simula-
tion using the inferred model (with the inferred ODE SIRD
model) of the disease for Regions 1–8 delineated in Fig. 1.
This is an important step toward a more fine-grained under-
standing of the geographical distribution of the disease in
the state. The Southeastern part of the state is more heav-
ily populated, especially Regions 2 and 3, which also bore
the greatest burden of the disease. The city of Detroit, at the
Western tip of Region 3, was the worst affected, reflecting its
well-known socio-economic challenges. By contrast, Washt-
enaw County, about 50 km to the West, but also in Region
3, bore among the lowest burdens, per capita. At the risk of
stating the obvious, we note that Regions 1-4, which account

for nearly 80% of the state’s population displayed very sim-
ilar characteristics in the evolution of the data, as well as in
SIRD coefficients and forward simulation results. We do not
enter a more detailed analysis of these results here, deferring
a different approach to spatial aspects of the spread of the
disease to Sect. 7.

6.2 Deep and Bayesian neural networks

To infer the coefficients β(t), γ (t), μ(t), α(t), we first com-
pute the time derivatives of S(t), I (t), R(t), D(t) by using
the automatic differentiation API from TensorFlow. The
coefficients are then computed by invertingEqs. (1–4) at each
time instant. For DNNs, we obtained deterministic results for
all the coefficients. With BNNs, a Monte Carlo Sampling is
performed to compute the mean and the standard deviation
of the coefficients.
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Fig. 5 Left: The time-dependent SIRD parameters after tuning by
ODE-constrained optimization following system identification are:
β(t) = 0.0756 − 0.0029t + 3.33 × 10−5t3, γ (t) = 0, μ(t) =

1.78× 10−5t2, α(t) = 0.0053− 2.8× 10−6t2 + 2.93× 10−8t3. Right:
Simulation of the four compartments using the inferred ODE SIRD
model, in comparison with the data

The constraintEq. (5) is used toobtain Sdm from I dm, Rd
m, Dd

m .
This ensures that the discrete time derivatives in Eqs. (22–25)
satisfy

Sdm − Sdm−1

�t
= − I dm − I dm−1

�t
− Rd

m − Rd
m−1

�t
− Dd

m − Dd
m−1

�t
(33)

The constraint Eq. (5) also has been imposed in the DNN
and BNN representations by training networks for I , R and
D and then defining the network for S by this conservation
of total population. Therefore, in using Eqs. (1–4) to invert
the DNN/BNN representations for β(t), γ (t), μ(t), α(t) at
each time instant, a linear dependence is encountered: The
summed left and right hand-sides of (2–4) exactly equal
the left and right hand-side of (1), respectively. A unique
solution for β(t), γ (t), μ(t), α(t) is not possible due to lin-
ear dependence introduced by the population constraint. To
circumvent this indeterminacy, we endow the system with
additional information by requiring that γ (t) = 0. This
represents the conferral of immunity on the recovered pop-
ulation, and importantly, is detected by our inference results
using system identification and ODE-constrained minimiza-
tion, as discussed in Sect. 6.

The inferred values, extended to a 30-day prediction (until
July 28, 2020) forβ(t), μ(t), α(t), r0(t) and S(t), I (t), R(t),
D(t) obtained from both DNNs and BNNs for Michigan are
presented in Figs. 8 and 9, while the results for the eight
Regions are given in Appendices “DNN results for different
regions” and “BNN results for different regions”. One can
observe that these time-dependent coefficients in Figs. 8a
and 9a have a similar initial trend as those inferred by the
system inference approach in Fig. 5. The effective repro-

duction number r0(t) < 1 for m > 30 (April 23), in good
agreement with its value obtained via system inference in
Fig. 5. As polynomial approximation is used by the system
inference approach, the inferred coefficients in Fig. 5 are very
smooth, whereas inversion using the NN approach captures
the detailed fluctuation of these coefficients, particularly, the
rising infection rate after the open of the lockdown on June 1,
2020. In Fig. 9, the band around the inferred coefficients and
the NN predictions shows themean± one standard deviation
of the corresponding results. Note the high standard devia-
tion in parameters at early times, due to the noise in the data
at small numbers. The regional results in Appendices “DNN
results for different regions” and “BNN results for different
regions” indicate that an accelerating infection rate for all the
regions after the open of the lockdown. In particular, Region
7 and 8 have a predicted r0(t) value that is greater than 1. In
addition, we observed that the BNN inferred coefficients in
the regional results have a narrower range compared to those
from the DNN.

More broadly, we note the difference in trends between
the inferred time-dependent coefficients with the DNNs and
BNNs in Figs. 8 and 9 in comparison with those in Fig. 5.
This is due to the local inversion at each data point to infer
the coefficients with the DNNs and BNNs versus the global
optimization of losses for system inference in Sect. 6. As
was referred to above, inverse problems allow non-unique
solutions. It will be instructive to compare the predictions
made by the DNN and BNN representations with the data
when they become available.

A result that is consistent across all inference methods:
system identification with ODE-constrained optimization,
DNNs and BNNs, and for the state as a whole as well as its
Regions is the following: The infection rate, β(t), initially
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(a) Region 1 (b) Region 2

(c) Region 3 (d) Region 4

(e) Region 5 (f) Region 6

(g) Region 7 (h) Region 8

Fig. 6 Parameters of time-dependent SIRD coefficients, β(t), μ(t), α(t), and the effective reproduction number, r0(t), for Regions 1–8 (see Fig. 1)
of Michigan
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(a) Region 1 (b) Region 2

(c) Region 3 (d) Region 4

(e) Region 5 (f) Region 6

(g) Region 7 (h) Region 8

Fig. 7 Comparison of the simulation using inferred SIRD parameters (Fig. 6) for Regions 1–8 of Michigan
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(a) time-dependent coefficients (b) DNN prediction

Fig. 8 a Time-dependent coefficients identified by DNNs, where an increased infection rate after the opening (O) of the lockdown on June 1st is
observed. b DNNs learned S(t), I (t), R(t), D(t) based on the full extent of data points, and made a 30-day prediction

(a) time-dependent coefficients (b) BNN prediction

Fig. 9 a Time-dependent coefficients identified by BNNs, where an increased infection rate after the opening (O) on June 1st is observed. b BNNs
learned S(t), I (t), R(t), D(t) based on the full extent of data points, and made a 30-day prediction. Bands correspond to ± standard deviation over
the mean

fell with the public health campaign, especially driven by the
lockdown orders. However, it began to rise with the first step
of opening (C), and even accelerated as more aspects of pub-
lic, recreational, commercial and industrial activities were
relaxed (M, R, O). Yet, every one of the versions of forward
simulations with corresponding and consistently inferred
systems matched very well with the data, which confirm that
the state has largely controlled the pandemic, and continues to
do so. As the number of remaining infected individuals, I (t),
has fallen steeply, there are fewer conveyors of infection, and
even the higher β(t) has not yet led to another explosion of

infection. This also can be seen by the sharply rising recov-
ery rate, μ(t), and is verified by the effective reproduction
number r0(t) falling below 1.0 after April 20 or 23 (the later
date according to the DNN and BNN inference methods). A
warning bell, however, must be rung as the results also indi-
cate that r0(t) → 1.0 from below as we approach the end
of our data and the time of writing. Michigan’s numbers for
I (t) are rising, although not yet exponentially. See Figs. 5,
6, 7, 8, 9, and Appendix sections “DNN results for different
regions”, “BNN results for different regions”.

123



1166 Computational Mechanics (2020) 66:1153–1176

7 Two dimensional SIRDmodel with
diffusion

Classical epidemiological models hold in the well-mixed
limit, which is reflected in the compartments and sub-
populations, S, I , R, D being being total numbers over some
geographical region. Spatial effects have been introduced
by simply resolving smaller regions and treating them indi-
vidually, as demonstrated here with our inference of SIRD
coefficients over the regions of Michigan’s lower peninsula
(Figs. 6, 7). However, while affording a spatially finer-
grained treatment, this approach cannot, of course, address
the mobility of the population. This is an important con-
sideration, especially in light of the imposition and lifting
of quarantines. In the COVID-19 Pandemic, the effects of
social distancing, and the possibility of surges with their lift-
ing revolve on the question of the time (and spatially) varying
mobility of the population. At the finest resolution, this must
be approached via agent-based models refined to resolve
individuals. However, an intriguing question to explore is
whether simple reaction–diffusionmodels can detect the evi-
dence of mobility in these data. With our approach to model
inference, we have access to methods of identifying mech-
anisms from data in which their action, while weak, may
hold the key to important insights to the system. In this
section, we embark down such a path, while noting that
reaction–diffusion models of epidemiology have been con-
sidered previously from the perspective of analysis of the
corresponding PDEs [22–24].

We now extend the SIRD model to PDEs in two spatial
dimensions using the same compartments. However, the pop-
ulation variables are now replaced with spatio-temporally
varying densities, Ŝ(x, t), Î (x, t), R̂(x, t), D̂(x, t) defined
as numbers per unit area.

∂ Ŝ

∂t
= DS∇2 Ŝ − β

N̂
Ŝ Î + γ R̂ (34)

∂ Î

∂t
= DI∇2 Î + β

N̂
Ŝ Î − μ Î − α Î (35)

∂ R̂

∂t
= DR∇2 R̂ + μ Î − γ R̂ (36)

∂ D̂

∂t
= α Î (37)

Where DS,DI,DR are diffusivities of the corresponding
compartments, and represent the mobility of the population
via random walks. We define (̂•) = (•)/

∫
�
dA where � is

the domain of the lower peninsula of Michigan, to which
we restrict our PDE SIRD studies. Furthermore the popula-
tion constraint holds:

∫
�
N̂dA = ∫

�
Ŝ(t)dA + ∫

�
Î (t)dA +∫

�
R̂(t)dA + ∫

�
D̂(t)dA.

7.1 Inference on the PDE form of the SIRDmodel

We adopt the weak form, and specifically, the finite element
framework for inference on the above system of PDEs. For
a generic, finite-dimensional field uh , the problem is stated
as follows: Find uh ∈ S h ⊂ S , where S h = {uh ∈
H 1(�) | uh = ū on u}, such that ∀ wh ∈ V h ⊂ V ,
where V h = {wh ∈ H 1(�) | wh = 0 on u}, the
finite-dimensional (Galerkin) weak form of the problem is
satisfied. The variationswh and trial solutions uh are defined
component-wise using a finite number of basis functions,

wh =
nb∑

a=1

caNa, uh =
nb∑

a=1

daNa, (38)

where nb is the dimensionality of the function spaces S h

and V h , and Na represents the basis functions. To obtain
the Galerkin weak forms, we multiply each strong form by
the corresponding weighting function, use Backward Euler
method for time-discretization, integrate by parts and apply
boundary conditions appropriately, leading to:

∫

�

wh
1

Ŝhm − Ŝhm−1

�t
ds = −

∫

�

DS∇wh
1 · ∇ Ŝhmds

−
∫

�

wh
1

(
β

N̂
Ŝhm Î

h
m − γ R̂h

m

)

ds (39)

∫

�

wh
2

Î hm − Î hm−1

�t
ds = −

∫

�

DI∇wh
2 · ∇ Î hmds

+
∫

�

wh
2

(
β

N̂
Ŝhm Î

h
m − μ Î hm − α Î hm

)

ds (40)

∫

�

wh
3

R̂h
m − R̂h

m−1

�t
ds = −

∫

�

DR∇wh
3 · ∇ R̂h

mds

+
∫

�

wh
3

(
μ Î hm − γ R̂h

m

)
ds (41)

∫

�

wh
4
D̂m − D̂m−1

�t
ds =

∫

�

wh
4α Î

h
mds (42)

Where, boundary terms disappear because we assume that
the populations do not cross the state boundary, or into the
upper peninsula. The system identification problem is to infer
the time-dependent coefficientsDS(t),DI(t),DR(t), and we
also choose to expand them in a polynomial basis

Ds(t) = θ16 + θ17t + θ18t
2 + θ19t

3 (43)

Di (t) = θ20 + θ21t + θ22t
2 + θ23t

3 (44)

Dr (t) = θ24 + θ25t + θ26t
2 + θ27t

3 (45)

alongwith the time-dependent coefficientsβ(t), γ (t), μ(t), α(t)
shown in Eq. (10–13). We expect that the effect of mobility
on the evolution of population densities is small over the
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course of the COVID-19 Pandemic. However, our interest
is in inferring the presence of this effect in the data follow-
ing the relaxation of lockdown orders. In order to identify
the diffusivities despite the expected dominance of the reac-
tion terms in the data obeying Eqs. (42), we adopt two stage
Variational System Identification [13].

We define Stage 1 by choosing wh
i = 1, i = 1, . . . , 4,

yielding:

∫

�

Ŝhm − Ŝhm−1

�t
dA = −β

∫

�

1

N̂
Ŝh Î hds − γ

∫

�

R̂hdA

(46)
∫

�

Î hm − Î hm−1

�t
ds = β

∫

�

1

N̂
Ŝh Î hds −

∫

�

μ Î hds

− α

∫

�

Î hdA (47)

∫

�

R̂h
m − R̂h

m−1

�t
ds = μ

∫

�

Î hds − γ

∫

�

R̂hds (48)

∫

�

D̂h
m − D̂h

m−1

�t
ds = α

∫

�

Î hdA (49)

The diffusion operators vanish since, for a constant
weighting function, ∇w = 0. In order to avoid a prolifera-
tion of superscripts and subscripts, we simply denote the data

interpolated over the finite element mesh at time m by (̂•)
d
m ,

dispensingwith the superscipt (•)h for the finite-dimensional
fields The label vector andmatrix of bases can be constructed
as:

ym =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
�

Ŝdm−Ŝdm−1
�t dA

∫
�

Î dm− Î dm−1
�t dA

∫
�

R̂d
m−R̂d

m−1
�t dA

∫
�

Dd
m−Dd

m−1
�t dA

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(50)

�m =

⎡

⎢
⎢
⎢
⎣

∫
�

Ŝdm Î dm
N ds〈1 tm t2m t3m〉 ∫

�
−R̂d

mds〈1 tm t2m t3m〉 〈0 0 0 0〉 〈0 0 0 0〉
∫
�

− Ŝdm Î dm
N ds〈1 tm t2m t3m〉 〈0 0 0 0〉 ∫

�
Î dmds〈1 tm t2m t3m〉 ∫

�
Imds〈1 tm t2m t3m〉

〈0 0 0 0〉 ∫
�
R̂d
mds〈1 tm t2m t3m〉 ∫

�
− Î dmds〈1 tm t2m t3m〉 〈0 0 0 0〉

〈0 0 0 0〉 〈0 0 0 0〉 〈0 0 0 0〉 ∫
�

− Î dmds〈1 tm t2m t3m〉

⎤

⎥
⎥
⎥
⎦

(51)

Once the reaction terms are identified, we return to the
original weak forms Eqs. (39–42). Accounting for the arbi-
trariness of wh in V h , the finite-dimensionality leads to a
system of residual equations for each degree of freedom
(DOF):

Ri = Fi

(
Sdm−1, S

d
m ,∇Sdm , . . . , Ds〈1 tm t2m t3m 〉, . . . , N , ∇N . . .

)
,

(52)

Fig. 10 A finite element mesh of the map of Michigan delineating the
counties. Only Regions 1–7 were used in the PDE inference problem

whereRi is the i th component of the residual vector. The dif-
fusion terms can then be identified by the two stage approach
to Variational System Identification detailed in [12].

7.2 Data preparation on the 2Dmap of Michigan

We first construct a two-dimensional mesh that fully
resolves the counties as shown in Fig. 10. Recall that only the
lower peninsula, consisting of Regions 1–7 was included in
the PDE inference problem.The data are available as cumula-
tive sub-population numbers I dm, Rd

m, Dd
m at the county level

(Michigan’s lower peninsula has 68 counties). We use a uni-
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Fig. 11 Left: stem-and-leaf plot illustrating system identification of
active reaction parameters in the PDE SIRD model in Stage 1 of Vari-
ational System Identification. Each stem and leaf represents one term
of θ0, . . . θ15t3, scaled to 1 (active) or 0 (inactive). Right: The changing

loss as terms are eliminated from the set of time-dependent coefficients.
System identification converges at Iteration 10 as the loss increases dra-
matically for further elimination of terms

Fig. 12 Left: stem-and-leaf plot illustrating system identification of
active diffusion parameters in the PDE SIRDmodel in Stage 2 of Varia-
tional System Identification. Each stem and leaf represents one term of
θ16, . . . θ27t3, scaled to 1 (active) or 0 (inactive). Right: The changing

loss as terms are eliminated from the set of time-dependent coefficients.
System identification converges at Iteration 8 as the loss increases dra-
matically for further elimination of terms

form density of each sub-population to compute Î dm, R̂d
m, D̂d

m
within the county, and applied Gaussian filtering to smooth
the discontinuities between counties. Note that the discrete
Gaussian filter can not be applied in a straightforward man-
ner to unstructured meshes. Here we start with continuous
Gaussian filtering over the infinite domain:

u(x0) =
∫ ∞

−∞
G(x0, x)uraw(x)dv (53)

=
∫

�

G(x0, x)uraw(x)dv (54)

where u could be any of the four sub-population densities,

and G(x0, x) = 1
2πσ 2 e

− ||x||2
2σ2 is the two dimensional Gaus-

sian distribution function. The parameter σ is the standard
deviation of the Gaussian distribution which is related to the
kernel size in the discrete Gaussian filter. Since

∫
�
GdA < 1

we scale up the filtered displacement at each node:
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Fig. 13 Left: The time-dependent reaction parameters in the 2D SIRD
model after tuning by PDE-constrained optiization: β(t) = 0.00798 −
1.82×10−4t+1.49×10−6t2, γ (t) = 0, μ(t) = 2.65×10−5t2, α(t) =

2.82 × 10−4t − 2.83 × 10−6t2. Right: The sole time-dependent diffu-
sivity is for the infected sub-population:DI = 2.146−8.12×10−5t2−
7.914 × 10−7t3

Fig. 14 Comparison of the data on distributions of the infected (a) and
recovered (c) sub-populations against forward PDE SIRD simulations
with inferred quantities, (b) and (d), respectively. Data and simulation
results are shown forDay0 (lockdown,March 23),Day40 (May2,when

the infected sub-population had its greatest spread across the state, but
still restricted to Southeastern Michigan) and Day 96 (end of our data
range, June 28, 2020)

u(x0) =
∫ ∞
−∞ G(x0, x)dv
∫
�
G(x0, x)dv

∫

�

G(x0, x)uraw(x)dv (55)

= 1
∫
�
G(x0, x)dv

∫

�

G(x0, x)uraw(x)dv (56)

The spatio-temporal evolution of these fields was used
in PDE inference via two-stage Variational System Identi-
fication as described in Sect. 7.1 followed by optimization
constrained by the PDEs in (39–42) using adjoints. Stem-
and-leaf plots and the losses for Stage 1 ofVariational System

Identification appear in Fig. 11. Recall that in this stage only
the reaction terms β(t), γ (t), μ(t), α(t) are identified. These
inference results for active coefficients should be compared
with the ODE SIRD model in Fig. 5. This is followed by
Stage 2 of Variational System Identification with stem-and-
leaf plots and losses appearing in Fig. 12. Note that the
diffusivities of the susceptible and recovered populations,
DS = 0 and DR = 0. However, the infected population has
a time-varying diffusivity DI that declines.
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7.3 Results of system identification of two
dimensional SIRDmodel with diffusion

Figure 13 shows the inference (two stage Variational System
Identification followed by PDE-constrained optimization)
for the coefficients β(t), μ(t), α(t), the effective reproduc-
tion number, r0(t) as well as the diffusivityDI(t) in the PDE
SIRDmodel. On comparing with Fig. 5 some differences are
revealed in the time dependence of β(t), μ(t), r0(t), α(t).
This is to be expected in adopting the PDE SIRD model
over the ODE form. The inference of time-dependent dif-
fusion in the mobility of the infected sub-population, DI,
naturally affects the other quantities. While the preliminary
nature of these results warrants caution, it is worth noting
the inference of decreasing mobility of the infected sub-
population in DI. Figure 14 compares data and the forward
simulation with inferred quantities for the distribution of
the infected and recovered sub-populations on days corre-
sponding to the initial lockdown, the maximum spread of
the infected sub-population (May 2), and at the end of our
data collection. Notably, the restriction of the high density of
the infected population, Î to Southeastern Michigan reflects
the success, to date, of the state’s public health response.
While the correspondence is reasonable, the statewide sub-
populations S(t), I (t), R(t), D(t) obtained by integrating
the corresponding densities over the lower peninsula, show
a poorer match in Fig. 15. While the trends are reproduced,
there are notable errors over time. A major improvement is
possible in the PDE SIRD model by allowing the coeffi-
cients β, γ, μ, α,DS, . . . ,DR to also vary over space. This
would allow better representation of the system, in keeping
with the inferred difference in β(t), μ(t), r0(t), α(t) over the
eight Regions in Fig. 6, which led to the excellent agree-
ment between data and the forward ODE SIRD simulations
in Fig. 7. From a purely data representation standpoint, the
greater number of parameters will allow lower errors.

The code used for the inference, machine learning and
forward simulations is available in the mechanoChem and
mechanoChemML libraries at https://github.com/mechano
Chem/.

8 Conclusion

We have brought machine learning inference techniques to
bear upon the data on progression of COVID-19 across the
state of Michigan by applying three distinct approaches: (a)
Our methods of system identification to delineate the oper-
ational mechanisms, followed by (b) adjoint-based model-
constrained optimization for refinement of the parameters,
and (c) deep and Bayesian neural networks. Our interest in
this study has been two-fold.

Fig. 15 Simulation of the four compartments using the inferred PDE
SIRD model, in comparison with the data

The first has been to seek to infer the time-dependence of
the coefficients in the classical ODE SIRDmodel, motivated
by the evolving characteristics of testing, quarantine and
treatment protocols over the 97-day course of the pandemic
as reflected in the data. As discussed in Sect. 6, our infer-
encemethods reveal the course of rates of infection, recovery
and death over the state and its eight regions, assuming uni-
form mixing in each case. Notably, our methods suggest that
recovery confers immunity, but we hasten to add that this is a
very preliminary conclusion. More detailed and fine-grained
studies need to be undertaken to verify it, and of course,
immunology will have the final say here. Also of note are
our conclusions that while the infection rate has increased
after an initial decline, as the state relaxed restrictions, the
lower numbers of infectious individuals has meant a lower
overall extent of transmission. This is also seen in the effec-
tive reproduction rate, which, while below one, has trended
dangerously closer to that threshold of exponential growth.
The uncertainty in our inference, given the data, is reflected
in the results of the Bayesian neural networks in the same
section. Of some interest here are the predictions made by
BNNs for 30 days beyond the end of the data we have con-
sidered; that is until July 28, 2020.

The second facet of our interest is to try and infer spa-
tial dependence by extending the SIRD models to PDEs by
incorporating the population’s mobility via diffusion. This
is a different, and potentially intriguing, approach that com-
plements the resolution of the problem down to the smaller
Regions of the state as we did with the ODE SIRDmodel. On
this front, we note that the inference needs to be extended to
our methods of two-stage Variational System Identification
followed byPDE-constrained optimization.Here, it is of note
that the susceptible and recovered populations were found to
have vanishing diffusivities (mobilities), while the infected
population had a diffusivity that declined over the 97-day
extent of the data that we used. This first extension to sys-
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tem inference of the PDE SIRD model returned reasonable
comparisons with data on distributions of the sub-population
densities, although the total numbers integrated over the state
were not as well reproduced. As suggested by the notable dif-
ferences in the ODE SIRD model coefficients for the eight
regions of the state, the PDE SIRD model with spatially
varying coefficients may be a better representation. This will
allow us to make connections with the well-knownmetapop-
ulation variants [20,21] of the network-based SIRmodel that
account for themobility of individuals or groups, and thereby
represent spatially and group-wise varying diffusivity. Build-
ing on these initial results, we see many possibilities for
analysis and prediction of the future course and geographi-
cal spread of the COVID-19 Pandemic using the PDE SIRD
model.
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Appendix: Additional regional results

This appendix contains the inferred time-dependent coeffi-
cients and the NN prediction results for the eight regions of
the Michigan state.

A.1 DNN results for different regions

See Figs. 16 and 17.

A.2 BNN results for different regions

See Figs. 18 and 19.
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Fig. 16 Regions 1–8:
Time-dependent coefficients
identified by DNNs, where an
increased infection rate after the
opening (O) of lockdown on
June 1st is observed

(a) region 1 (b) region 2

(c) region 3 (d) region 4

(e) region 5 (f) region 6

(g) region 7 (h) region 8
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Fig. 17 Regions 1–8: DNNs
learned S(t), I (t), R(t), D(t)
based on the existing discrete
data point, where a 30-day
prediction is made by DNNs

(a) region 1 (b) region 2

(c) region 3 (d) region 4

(e) region 5 (f) region 6

(g) region 7 (h) region 8
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Fig. 18 Regions 1–8:
Time-dependent coefficients
identified by BNNs, where an
increased infection rate after the
opening (O) of lockdown on
June 1st is observed. Bands
correspond to ± standard
deviation over the mean

(a) region 1 (b) region 2

(c) region 3 (d) region 4

(e) region 5 (f) region 6

(g) region 7 (h) region 8
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Fig. 19 Region 1–8: BNNs
learned S(t), I (t), R(t), D(t)
based on the existing discrete
data point, where a 30-day
prediction is made by BNNs.
Bands correspond to ± standard
deviation over the mean

(a) region 1 (b) region 2

(c) region 3 (d) region 4

(e) region 5 (f) region 6

(g) region 7 (h) region 8
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