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Abstract Large, incompressible elastic deformations are
governed by a system of nonlinear partial differential equa-
tions. The finite element discretisation of these partial
differential equations yields a system of nonlinear algebraic
equations that are usually solved usingNewton’s method. On
each iteration of Newton’s method, a linear system must be
solved.We exploit the structure of the Jacobianmatrix to pro-
pose a preconditioner, comprising two steps. The first step is
the solution of a relatively small, symmetric, positive definite
linear system using the preconditioned conjugate gradient
method. This is followed by a small number of multigrid V-
cycles for a larger linear system. Through the use of exemplar
elastic deformations, the preconditioner is demonstrated to
facilitate the iterative solution of the linear systems arising.
The number of GMRES iterations required has only a very
weak dependence on the number of degrees of freedom of
the linear systems.

Keywords Elasticity · Finite element · Preconditioning ·
Linear system

1 Introduction

Incompressible, nonlinear elasticity has been used as a math-
ematical model underpinning several applications; see, for
example, [1–6]. The system of partial differential equations
describing this model are often solved numerically using
the finite element method [7–13]. One step in the prac-
tical computation of the finite element approximation is
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the solution of a system of nonlinear algebraic equations,
often containing a large number of degrees of freedom.
These algebraic equations are usually solved using Newton’s
method, requiring the solution of an equally large linear sys-
tem of algebraic equations on each iteration of Newton’s
method.

Should the number of degrees of freedom of a linear sys-
tem of algebraic equations be sufficiently large, it is not
feasible to solve the system using direct methods such as
LU factorisation. For linear systems such as this an iterative
solution method is usually employed. The choice of iterative
method depends on the properties of the linear system being
solved. For example, should the linear system be described
by a matrix that is symmetric and positive definite, then the
conjugate gradient method is an appropriate choice of itera-
tive technique [14]. In this study we will be concerned with
the linear systems that arise when using Newton’s method to
compute a finite element solution of the equations governing
incompressible, nonlinear elasticity. As we will see later, the
matrices arising in this context do have a particular struc-
ture which we will exploit. However, they are not symmetric
or positive definite, and so we may not solve these systems
using the conjugate gradientmethod. Insteadwe use theGen-
eralised Minimal RESidual (GMRES) method, the iterative
method of choice for general linear systems; see, for exam-
ple, [14].

Convergence of iterative schemes may often be dramati-
cally accelerated using a preconditioner; see the review [15]
and references therein. In this study we propose a precondi-
tioner for the linear systems that arise when using Newton’s
method to compute the finite element solution to the equa-
tions governing large deformation, incompressible elasticity.
The key observation is that the (nonlinear) incompressibility
constraint may be handled by a preconditioner in a similar
way to that for the incompressibility constraint arising from
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Stokes equations [16–19]. Indeed, the equations governing
isotropic, incompressible, small deformation (linear) elastic-
ity are identical to Stokes equations [8]. In the limit that an
elastic deformation is sufficiently small, the preconditioner
proposed in this study is identical to that used for Stokes
equations. The resulting preconditioner may be decomposed
into two steps. The first step requires the solution of a rela-
tively small linear system, governed by amatrix that is amass
matrix arising from the finite element method. This matrix
is symmetric and positive definite, and the resulting linear
system may be solved very efficiently using the precondi-
tioned conjugate gradient method [20]. The second step is
the application of a small number of multigrid cycles of a
larger system; such an approach has been demonstated to
be a very effective preconditioner for the GMRES iterative
solver [21,22].

We note that some authors have successfully used a non-
linear version of multigrid, rather than Newton’s method,
to solve the nonlinear algebraic equations arising from dis-
cretisations of other nonlinear elliptic partial differential
equations; see, for example, [23–25]. We shall discuss later
the application of the nonlinear multigrid method to the non-
linear systems of equations arising in this study.

This paper is structured as follows. We write down the
equations governing large deformation, incompressible elas-
tic deformations in Sect. 2. We then briefly summarise a
finite element method for computing the numerical solution
of these equations in Sect. 3, paying particular attention to
the nonlinear system of algebraic equations that arises, and
the linear systems that must be solved when using Newton’s
method to solve these equations. The main contribution of
this study—the development of a preconditioner for these
linear systems—is given Sect. 4.We then use exemplar defor-
mations to demonstrate the use of this preconditioner in
Sect. 5, before presenting our conclusions in Sect. 6.

2 The governing equations

We give only a brief summary of the governing equations in
this section. For a more detailed discussion see, for example,
[1]. Let X denote the coordinates of an undeformed, incom-
pressible body that occupies a bounded region Ω ⊂ �d

where d is the number of spatial dimensions. If d = 2
we write X = (X1, X2)

�, and if d = 3 we write X =
(X1, X2, X3)

�; we will use the same convention for other
vectors and their components. Denoting the coordinates of
the deformed body by x, the deformation gradient tensor F
has entries defined by

FiM = ∂xi
∂XM

, i, M = 1, . . . , d,

where we have followed the convention of writing indices
associated with the undeformed body in upper case, and
indices associated with the deformed body in lower case.
Incompressible, elastic deformations are then governed by,
for X ∈ Ω:

∂SMi

∂XM
+ ρgi = 0, i = 1, . . . , d, (1)

det F = 1, (2)

where S is the first Piola–Kirchhoff stress tensor, g is the
body force per unit mass, ρ is the constant density of the
incompressible body, and we have used the summation con-
vention (and will do so throughout this study). We partition
the boundary into one component ∂ΩD where Dirichlet (dis-
placement) boundary conditions are applied, and a second
component ∂ΩN where Neumann (traction) boundary con-
ditions are applied. Boundary conditions are then given by

xi = x0i , i = 1, . . . , d, X ∈ ∂ΩD, (3)

SMi NM = s0i , i = 1, . . . , d, X ∈ ∂ΩN , (4)

where x0i , s
0
i , i = 1, . . . , d, are given functions, and N is the

outward pointing unit normal to the undeformed body.
Finally, we require a constitutive relation to specify S. We

assume that the body is hyperelastic, and hence that there
exists a strain energy density function W such that

SMi = ∂W

∂FiM
− p det(F)F−1

Mi , M, i = 1, . . . , d, (5)

where p is the Lagrange multiplier that is used to enforce
the incompressibility constraint given by Eq. (2). We have
kept the factor of det(F) in the definition of the first
Piola–Kirchhoff stress tensor in Eq. (5) even though the
incompressibility constraint given by Eq. (2) may be used
to set det(F) = 1; persisting with this term will allow us
to demonstrate more clearly the structure of the Jacobian
matrix that arises when solving the resulting nonlinear alge-
braic equations using Newton’s method.

3 The finite element scheme

Wewill calculate a numerical solution of the governing equa-
tions using the finite element method described by Whiteley
and Tavener [13]. In this section we first briefly summarise
this scheme. We then write down the nonlinear algebraic
system of equations that arises from this finite element dis-
cretisation. This allows us to identify the structure of the
Jacobian matrix that arises when solving these nonlinear
equations using Newton’s method, and hence to propose a
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suitable preconditioner for the solution of the linear system
embedded within each Newton iteration.

3.1 Mathematical preliminaries

Defining L2(Ω) to be the space of square integrable functions
on Ω , i.e.:

L2(Ω) =
{
v :

∫
Ω

v2 dV < ∞
}

,

we may define the Sobolev space H1(Ω) and some subsets
of this space by

H1(Ω) =
{
v ∈ L2(Ω) : ∂v

∂XM
∈ L2(Ω),

M = 1, . . . , d

}
,

H1
E (Ω) = {

v ∈ H1(Ω) : v satisfies Dirichlet boundary

conditions
}
,

H1
E0

(Ω) =
{
v ∈ H1(Ω) : v = 0 for X ∈ ∂ΩD

}
.

We assume that the domain Ω has been partitioned into a
mesh T h of quadrilateral elements if the equations are posed
in two dimensions, or a mesh of hexahedral elements if the
equations are posed in three dimensions, and that there are
no hanging nodes in the mesh. We then define Qk(Ω, T h)

to be the set of continuous functions that are tensor product
polynomials of degree k in each coordinate direction on each
element when the element is mapped to the unit square (in
two dimensions) or the unit cube (in three dimensions). We
will require the following subspaces of Qk(Ω, T h):

Qk
E (Ω, T h) = {

v ∈ Qk(Ω, T h) : v satisfies Dirichlet

boundary conditions
}
,

Qk
E0

(Ω, T h) =
{
v ∈ Qk(Ω, T h) : v = 0 for X ∈ ∂ΩD

}
.

3.2 The weak solution and finite element approximation

Before writing down the finite element solution we first write
down the weak solution of the governing equations. Defining
x̂, v̂ by

x̂ =
(
x
p

)
, v̂ =

(
v
q

)
,

the weak solution of Eqs. (1) and (2), subject to the boundary
conditions Eqs. (3) and (4), may be written [13]: find x̂ ∈

[
H1
E (Ω)

]d × L2(Ω) such that, for all v̂ ∈
[
H1
E0

(Ω)
]d ×

L2(Ω),

A(x̂, v̂) = L(v̂), (6)

where

A(x̂, v̂) =
∫

Ω

SMi
∂vi

∂XM
− q det F dV, (7)

L(v̂) =
∫

Ω

ρgivi − q dV +
∫

∂ΩN

s0i vi dS. (8)

We note that the definition of A(·, ·) and L(·) in Eqs. (7)
and (8) differs very slightly from that used in [13] through
q being replaced by −q. This has the effect of multiplying
the discretisation of the constraint Eq. (2) used in [13] by a
factor of−1, and will allow us to write the Jacobian matrices
arising from Newton’s method in a more convenient form.

The finite element solution follows a similar pattern to the
weak solution. Defining x̂h, v̂h by

x̂h =
(
xh

ph

)
, v̂h =

(
vh

qh

)
,

the finite element solution of Eqs. (1) and (2), subject to
the boundary conditions Eqs. (3) and (4), is given by: find

x̂h ∈ [
Qk

E (Ω, T h)
]d × Qk−1(Ω, T h) such that, for all v̂h ∈[

Qk
E0

(Ω, T h)
]d × Qk−1(Ω, T h),

A(x̂h, v̂h) = L(v̂h), (9)

where k is an integer greater than or equal to 2.

3.3 Computation of the finite element solution using
Newton’s method

Let φ j (X), j = 1, 2, . . . , Nx , be a basis for the space
Qk(Ω, T h), where k is an integer greater than or equal to
2, and let ψ j (X), j = 1, 2, . . . , Np, be a basis for the space
Qk−1(Ω, T h). Writing

xhi =
Nx∑
j=1

xhi, jφ j (X), i = 1, . . . , d,

ph =
Np∑
j=1

p jψ j (X),

and substituting these expressions into Eq. (9), the finite
element solution satisfies a nonlinear system of algebraic
equations that we write as

R(xh, ph) = 0.
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To solve this nonlinear system of algebraic equations using
Newton’smethodweneed to compute both the residualR and
the Jacobian matrix J arising on each Newton iteration. We
nowwrite down explicit expressions for both the residual and
Jacobian in two dimensions. These expressions may easily
be generalised into three dimensions.

We order the entries of R so that, for k = 1, 2, . . . , Nx ,

Rk(xh, ph) = A

⎛
⎝x̂h,

⎛
⎝φh

k
0
0

⎞
⎠

⎞
⎠ − L

⎛
⎝

⎛
⎝φh

k
0
0

⎞
⎠

⎞
⎠

=
∫

Ω

SM1
∂φk

∂XM
− ρg1φk dV

−
∫

∂ΩN

s01φk dS, (10)

Rk+Nx (x
h, ph) = A

⎛
⎝x̂h,

⎛
⎝ 0

φh
k
0

⎞
⎠

⎞
⎠ − L

⎛
⎝

⎛
⎝ 0

φh
k
0

⎞
⎠

⎞
⎠

=
∫

Ω

SM2
∂φk

∂XM
− ρg2φk dV

−
∫

∂ΩN

s02φk dS, (11)

and, for k = 1, 2, . . . , Np,

Rk+2Nx = A

⎛
⎝x̂h,

⎛
⎝ 0

0
ψh
k

⎞
⎠

⎞
⎠ − L

⎛
⎝

⎛
⎝ 0

0
ψh
k

⎞
⎠

⎞
⎠

=
∫

Ω

ψh
k (1 − det(F)) dV . (12)

The unknowns are ordered so that

x̂h =
(
xh1,1, x

h
1,2, . . . , x

h
1,Nx

, xh2,1, . . . , x
h
2,Nx

, ph1 , . . . , p
h
Np

)�
.

On using the identity

∂

∂FkM
(det(F)) = det(F)F−1

Mk, k, M = 1, . . . , d,

we see that the Jacobian matrix J is given by

J =
(
A B�
B 0

)
, (13)

where

A =
(
A11 A12

A21 A22

)
,

B = (
B11 B12

)
,

A11, A12, A21, A22 are Nx × Nx matrices with entries, for
k, j = 1, 2, . . . , Nx , given by

A11
k, j =

∫
Ω

∂SM1

∂x1, j

∂φk

∂XM
dV,

A12
k, j =

∫
Ω

∂SM1

∂x2, j

∂φk

∂XM
dV,

A21
k, j =

∫
Ω

∂SM2

∂x1, j

∂φk

∂XM
dV,

A22
k, j =

∫
Ω

∂SM2

∂x2, j

∂φk

∂XM
dV,

and B11, B12 are Np × Nx matrices with entries given by,
for k = 1, 2, . . . , Np , j = 1, 2, . . . , Nx ,

B11
k, j = −

∫
Ω

ψk det(F)F−1
M1

∂φ j

∂XM
dV,

B12
k, j = −

∫
Ω

ψk det(F)F−1
M2

∂φ j

∂XM
dV .

Note that the expressions above for the matrices A11, A12,
A21, A22 allow us to deduce that the matrix A appearing in
Eq. (13) is not symmetric, and hence that J is not symmetric.

When using multigrid we are required to specify a relax-
ation for the linear system. The most common choice of
relaxation is the Gauss–Seidel relaxation, which assumes
that the matrix is diagonally dominant. However we see in
Eq. (13) that the Jacobian matrix has a zero block on the
diagonal, and so cannot possibly be diagonally dominant.
Similar difficulties would be encountered should we attempt
to use the nonlinear multigrid method to solve this system
of algebraic equations. Fortunately linear systems with the
structure of the Jacobian may avoid this problem by the use
of a suitable preconditioner that we now describe.

4 The preconditioner

In the spirit of [26,27] we note that the Jacobian matrix given
by Eq. (13) may be factorised as

J =
(

I 0
BA−1 I

)(
A B�
0 −BA−1B�

)
. (14)

Hence, if we define

P =
(
A B�
0 −BA−1B�

)
,

we may write Eq. (14) as

JP−1 =
(

I 0
BA−1 I

)
.
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As the matrix JP−1 has only one eigenvalue (the value 1)
we may deduce that, if we were able to explicitly calculate
the action of P−1 on a vector, then the GMRES method
would converge in at most one iteration using P as a right
preconditioner. Unfortunately, calculating the action of P−1

on a vector requires calculation of A−1, which is not feasible
other than for problemswith very few unknowns. Instead, we
construct a right preconditioner Ph that is an approximation
to P .

Wehave already noted that the equations governing small–
deformation (linear) incompressible elasticity are identical
to Stokes equations. For the finite element discretisation
of Stokes equations, the Schur complement BA−1B� that
appears in P is spectrally equivalent to the the mass matrix
in the pressure space [28], i.e. thematrixM with entries given
by, for i, j = 1, 2, . . . , Np,

Mi j =
∫

Ω

ψi (X)ψ j (X) dV .

We therefore define our approximate preconditioner by

Ph =
(
Ah B�
0 −M

)
,

where A−1
h is an approximation to A−1 that will be discussed

later.
To usePh as a preconditioner in conjunctionwithGMRES

wewill require computation of the action ofP−1
h on a general

vector. Writing

ŷ1 =
(
y1
p1

)
, ŷ2 =

(
y2
p2

)
,

then, if the action ofP−1
h on a given vector ŷ1 may be written

P−1
h ŷ1 = ŷ2,

for some ŷ2 that is to be determined, we may write this as
the linear system

(
Ah B�
0 −M

) (
y2
p2

)
=

(
y1
p1

)
.

An approximate solution to this linear system may be com-
puted in two steps. First we solve (approximately) the linear
system

Mp2 = −p1. (15)

The solution of this linear system may be approximated very
efficiently and very accurately using the preconditioned con-
jugate gradient method [20]. Having approximated p2 we
then evaluate y2 from

Ahy2 = y1 − B� p2, (16)

by using a small number of V-cycles of a multigrid approxi-
mation based on thematrix A. By approximating the solution
of Eqs. (15) and (16) as described above, the action of P−1

h
on a given vector may be computed very easily.

5 Numerical experiments

We now investigate the performance of the preconditioner
proposed in Sect. 4 through simulations in both two and three
dimensions. One metric that may be used to indicate the size
of the deformation is the magnitude of the eigenvalues of
Green–Lagrange strain tensor E defined by

E = 1

2

(
F�F − I

)
, (17)

where I is the identity matrix. An undeformed body has
all entries of E equal to zero. When E is written in terms
of the displacement u = x − X, one of the assumptions
implicit in deriving the equations of linear elasticity is that
only the linear contributions to E from u are required. We
therefore give themaximum eigenvalue of the strain tensor in
all simulations in this section to indicate why linear elasticity
is not an appropriate model for these simulations.

We use a nonlinear strain energy function that has previ-
ously been used tomodel biological soft tissues [3,29], given
by

W = c1 exp (c2 (FiM FiM − d)) ,

where c1, c2 are positive constants. In all simulations we
use the parameters c1 = c2 = ρ = 1. We compute a finite
element solution that uses a tensor product quadratic approx-
imation to the deformed coordinates, and a tensor product
linear approximation to theLagrangemultiplier p.Wediscre-
tise the domain into N elements in each coordinate direction,
giving a mesh of N 2 elements for simulations in two dimen-
sions, and N 3 elements for simulations in three dimensions.

An initial guess to the solution is required when using
Newton’s method to solve a system of algebraic equations.
Unless otherwise stated the initial guess for the coordinates
of the deformed body is the coordinates of the undeformed
body, and the initial guess to the Lagrange multipler p takes
the value zero at all points. For each model problemwe carry
out one set of simulationswhere solutionwas computedusing
a preconditioner where Eq. (16) was solved by defining A−1

h
to be 2 multigrid V-cyles, and a second set of simulations
where A−1

h was defined to be 4 multigrid V-cycles. In all
cases the Newton solver was terminated when the 2-norm of
the residual vector was less than 10−6.
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In all simulations the first step of applying the precondi-
tioner, i.e. the preconditioned conjugate gradient solution of
Eq. (15), required only one iteration. We therefore focus on
the number of GMRES iterations required on each iteration
ofNewton’smethod, investigating both the effect of the num-
ber of degrees of freedom in the computational mesh, and the
number of V-cycles used with the multigrid approximation
of Eq. (16).

5.1 Simulations in two spatial dimensions

We first investigate the performance of the preconditioner
using example problems in two spatial dimensions.

5.1.1 A model problem with known solution

Our first set of simulations uses amodel problemdescribed in
[13], specified on the unit square 0 < X,Y < 1. For constant
a > 0 we define

λ = 1 + aX,

α = c2
(
λ2 + λ−2 + a2Y 2λ−4 − 2

)
,

and then define the body force by

g = −2c1c2eα

ρ

(
a + λ ∂α

∂X
2λ−3a2Y − λ−2aY ∂α

∂X + λ−1 ∂α
∂Y

)
.

Zero displacement Dirichlet boundary conditions are applied
on X = 0, and Neumann boundary conditions are applied on
the other boundaries, with s, defined in Eq. (4), specified by

s = 2c1c2

(
0

λ − λ−1eα

)
, Y = 0,

s = 2c1c2

( −aλ−2

λ−1eα − λ

)
, Y = 1,

s = 2c1c2

(
(1 + a)eα − (1 + a)−1

−aY (1 + a)−2eα

)
, X = 1.

This model problem has solution

x = X + 1

2
aX2,

y = Y (1 + aX)−1,

p = 2c1c2.

We carry out two sets of simulations based on this model
problem: one set where a = 1; and one set where a = 0.01.
For the set where a = 1, the maximum eigenvalue of the
strain tensor is 1.53. When a = 0.01 the maximum eigen-
value of the strain tensor is 0.0112, and so this case models a

small deformation that is governed by incompressible linear
elasticity.

We begin by discussing the simulations with a = 1. Six
Newton iterations were required for the mesh where N = 8,
seven Newton iterations were required for the meshes where
N = 16, 32, 64, and eight Newton iterations were required
for all meshes where N = 128 or greater. The number
of degrees of freedom (DOF) in the system of algebraic
equations, and the maximum, minimum and average num-
ber of GMRES iterations required for each Newton iteration
are given in Table 1, for both the case when 2 V-cycles of
multigrid are used, and when 4 V-cycles are used. For the
simulations with a low number of DOFs, increasing the num-
ber of multigrid V-cycles used in the preconditioner has very
little effect on the number of GMRES iterations required.
However, for the meshes with a larger number of DOFs, a
preconditioner that uses 4 V-cycles of multigrid significantly
reduces the number of GMRES iterations required. Most
importantly, when using 4 V-cycles, we see that the num-
ber of GMRES iterations required increased by only roughly
a factor of 3.5 between amesh with 659 DOFs to amesh with
2,364,419 unknowns.

The number of GMRES iterations for the simulations
where a = 0.01 are given in Table 2. Three iterations of
Newton’s method were required in all cases. We see the
same trends in this table as in Table 1, that have been dis-
cussed earlier in this section. One further observation is that,
in comparison with the results presented in Table 1, compu-
tations using a = 1, required a significantly larger number
of GMRES iterations than computations using a = 0.01.

5.1.2 Deformation under gravity in one step

The second model problem is the computation of the defor-
mation of the unit square 0 < X,Y < 1 under a body force
g = (0, 10)�. Zero displacement boundary conditions are
applied on the boundary Y = 0, and zero stress boundary
conditions are applied on all other boundaries. The resulting

Table 1 The number of GMRES iterations required for the computa-
tions of the model problem described in Sect. 5.1.1 with a = 1

N DOF 2 V-cycles 4 V-cycles

Max Min Ave Max Min Ave

8 659 26 12 20 26 12 20

16 2467 53 16 32 61 13 33

32 9539 63 23 43 61 18 39

64 37,507 85 37 60 79 23 49

128 148,739 135 57 88 118 28 62

256 592,387 158 91 122 110 31 70

512 2,364,419 254 93 170 103 35 71
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Table 2 The number of GMRES iterations required for the compu-
tations of the model problem described in Sect. 5.1.1 with a = 0.01

N DOF 2 V-cycles 4 V-cycles

Max Min Ave Max Min Ave

8 659 15 12 14 15 12 14

16 2467 21 16 19 19 14 17

32 9539 28 23 26 23 18 21

64 37,507 45 36 41 28 23 26

128 148,739 71 55 64 35 27 32

256 592,387 115 83 101 42 31 38

512 2,364,419 183 122 156 47 33 41

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

X

Y

Fig. 1 The deformed body resulting from the simulation described in
Sect. 5.1.2 (solid line). The broken line illustrates the undeformed body

deformed body is shown in Fig. 1. The maximum eigenvalue
of the strain tensor arising from this deformation is 2.39.
In all of these calculations Newton’s method required seven
iterations to reduce the 2-norm of the residual vector to a
value less than 10−6.

The number of degrees of freedom in the system of non-
linear equations, and the maximum, minimum, and average
number of iterations of GMRES required on each Newton
iteration, are shown in Table 3 for preconditioners using
both 2 V-cycles and 4 V-Cycles of multigrid. We make sim-
ular observations on the performance of the preconditioner
to those documented in Sect. 5.1.1 We see that, for meshes
that result in a low number of DOFs, increasing the number
of V-cycles from 2 to 4 has very little effect on the number
of GMRES iterations required when solving the linear sys-
tems. However, for meshes that result in a larger number of
DOFs we see that increasing the number of V-cycles from 2
to 4 significantly decreases the number of GMRES iterations
required. Furthermore, when using 4 V-cycles, we see that
the number of GMRES iterations required increased by only

Table 3 The number of GMRES iterations required for the computa-
tions described in Sect. 5.1.2

N DOF 2 V-cycles 4 V-cycles

Max Min Ave Max Min Ave

8 659 23 13 19 23 13 19

16 2467 32 17 25 31 15 25

32 9539 40 24 32 38 19 29

64 37,507 55 38 48 49 25 38

128 148,739 76 60 67 59 30 45

256 592,387 114 96 104 70 34 53

512 2,364,419 188 140 169 78 38 58

roughly a factor of three between a mesh with 659 DOFs to
a mesh with 2,364,419 unknowns.

5.1.3 Deformation under gravity using continuation

We now compute the deformation of the unit square 0 <

X,Y < 1 under a body force g = (0, 50)� using contin-
uation. That is, we sequentially compute the deformation
of the body under a body force g = (0, n)�, where n =
1, 2, . . . , 50. For the first increment of body force we use
the initial guess given in Sect. 5. On increment n, where
n = 2, 3, . . . , 50, the initial guess for both xh and ph is
that calculated on increment n − 1. The average number of
GMRES iterations required on each Newton iteration, as a
function of continuation iteration number, is shown in Fig. 2a
when 2 V-cycles are used, and in Fig. 2b when 4 V-cycles
are used. As with the earlier simulations, using more V-
cycles significantly reduces the number ofGMRES iterations
required for the simulations with a large number of degrees
of freedom, but has less of an effect for smaller number of
degrees of freedom. More importantly, when the number of
degrees of freedom is increased from 659 to 2,364,419, the
number of GMRES iterations required increases by a factor
of less than 10 when 2 V-cycles are used, and a factor of
less than 6 when 4 V-cycles are used. We also note that the
average number of GMRES iterations increases as the body
force is increased using continuation.

5.1.4 The onset of buckling

We now investigate computation of the deformation of the
unit square 0 < X,Y < 1 under a body force g =
(0, g)�, where g < 0. We use continuation, as described in
Sect. 5.1.3, computing the deformation under a body force
g = (0,−n)�, where n = 1, 2, . . .. Compressive deforma-
tions such as these are prone to the phenomenon known as
buckling, where the solution becomes non-unique [1]. For
each simulation we compute the deformation up until the
value of n where solving a linear system fails. The average
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Fig. 2 The average number of
GMRES iterations required on
each continuation iteration for
the simulations described in
Sect. 5.1.3. a Shows the results
when 2 V-cyles were used, b
shows the results when 4
V-cyles were used
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Fig. 3 The average number of
GMRES iterations required on
each continuation iteration for
the simulations described in
Sect. 5.1.4. a Shows the results
when 2 V-cyles were used, b
shows the results when 4
V-cyles were used
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number of GMRES iterations required on eachNewton itera-
tion, as a function of continuation iteration number, is shown
in Fig. 6a when 2 V-cycles are used, and in Fig. 6b when 4
V-cycles are used.

When Newton’s method returned a solution to the alge-
braic equations, similar trends were observed to the perfor-
mance of the preconditioner as those described in Sect. 5.1.3.
We note, however, that for these compressive simulations the
continuation solution method used was capable of returning
a solution only until some finite body force g, and that this
body force was critically dependent on the number of ele-
ments in the mesh. An extensive analysis of the existence
and uniqueness to the solution of these discretised, nonlin-
ear, algebraic equations is beyond the scope of this study, and

so we attribute this phenomena to the concept of buckling.
We do, however, focus on one individual case below in an
attempt to identify some of the features of this behaviour. We
use the specific case of a mesh of 32×32 elements. We again
calculate the deformation under gravity using continuation.
This time, however, we use a continuation step of 0.01, rather
than the continuation step of 1 used in the simulations shown
in Fig. 3.

Using a continuation step of 1, as shown in Fig. 3, and
a mesh of 32 × 32 elements, we found a finite element
solution for g = (0,−13)�, but not for the next continu-
ation step where g = (0,−14)�. When using a continuation
step of 0.01, we found a finite element solution for g =
(0,−13.33)�, but not for the next continuation step where

Fig. 4 Calculation of the
deformed body using
continuation, when a
continuation step of 0.01 was
used. A mesh of 32 × 32
elements was used. a The
average number of GMRES
iterations required on each
continuation step, b the
condition number of the first
Jacobian matrix on each
continuation step
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Fig. 5 The deformed body resulting from the simulation described in
Sect. 5.2.1 (solid line). The broken line illustrates the undeformed body

Table 4 The number of GMRES iterations required for the computa-
tions of deformation under gravity for the problem described in Sect. 5.2

N DOF 2 V-cycles 4 V-cycles

Max Min Ave Max Min Ave

4 2312 16 11 14 16 12 14

8 15,468 27 14 22 27 14 22

16 112,724 33 20 27 32 18 27

32 859,812 43 34 38 41 27 34

g = (0,−13.34)�. Using a smaller continuation step there-
fore did not significantly affect the body force g where a
solution could no longer be found. In Fig. 4a we plot the
average number of GMRES iterations needed on each con-
tinuation step when a continuation step of 0.01 was used.
We see that this does not differ significantly to that shown in
Fig. 3. In Fig. 4b we plot the condition number of the first
Jacobian matrix on each continuation step. We see that the
condition number has one local maximum value before the
finite element method used fails. We see that the condition
number then increases rapidly shortly before the finite ele-
ment method fails, adding further evidence that the observed

phenomenon is buckling, where the solution is not unique
and the Jacobian matrix calculated using Newton’s method
will be singular.

5.2 Simulations in three spatial dimensions

We now perform simulations in three spatial dimensions.
We start by computing the deformation in one step, before
investigating the use of continuation.

5.2.1 Deformation under gravity in one step

We calculate the deformation of the unit cube 0 < X, Y, Z <

1under a body forceg = (0, 0, 10)�.Weapply zerodisplace-
ment boundary conditions on the face Z = 0, and zero stress
boundary conditions on all other boundaries. The resulting
deformation is plotted in Fig. 5. The maximum eigenvalue of
the strain tensor arising from this deformation is 1.93. In all
simulations we use a uniformmesh, with N elements in each
coordinate direction. As with the simulations in two dimen-
sions, for each value of N we compute the finite element
solution first using a preconditioner that uses 2 V-cycles of
multigrid, and then a preconditioner that uses 4 V-cycles of
multigrid.

For the cases when N = 4, 8, 16, six iterations of New-
ton’smethodwere required to reduce the norm of the residual
vector to below 10−6; when N = 32 seven iterations were
required. The number of degrees of freedom, and the max-
imum, minimum and average number of GMRES iterations
required on each Newton iteration are given in Table 4. We
see qualitatively similar trends to those discussed for the
computations in two dimensions in Sect. 5.1. For the com-
putations in three dimensions we again see only a slight
dependence of the number of GMRES iterations on the
number of degrees of freedom of the system—the number
of GMRES iterations required increased only by factor of
around 2.5 as the number of DOFs increases from 2312 to
859,812. Compared to the simulations in two dimensions
there appears to be less benefit in using 4 V-cycles in the
preconditioner rather than 2 V-cycles.

Fig. 6 The average number of
GMRES iterations required on
each continuation iteration for
the simulations described in
Sect. 5.2.2. a Shows the results
when 2 V-cyles were used, b
shows the results when 4
V-cyles were used
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5.2.2 Deformation under gravity using continuation

We now compute the deformation of the unit cube 0 <

X,Y, Z < 1 under a body force g = (0, 0, 50)� using con-
tinuation as described in Sect. 5.1.3, using 50 equal body
force increments. The average number of GMRES iterations
required on eachNewton iteration as a function of body force
increment is shown in Fig. 6a when 2 V-cycles are used, and
in Fig. 6b when 4 V-cycles are used. Similar observations on
the number of GMRES iterations required are made to those
reported for earlier simulations.When the number of degrees
of freedom is increased from 2312 to 859,812 the number of
GMRES iterations required increases by a factor of slightly
more than 2.

6 Discussion

In this studywefirstwrote down the systemof nonlinear alge-
braic equations that arises from a finite element discretisation
of the partial differential equations governing incompress-
ible, nonlinear, elastic deformations. We have developed a
preconditioner for use in conjunction with Newton’s method
for solving this system of nonlinear algebraic equations. This
preconditioner utilises the structure of the Jacobian matrix,
and may be decomposed into two steps. First, a relatively
small, symmetric, positive definite linear system must be
solved using the preconditioned conjugate gradient method.
For all the exemplar simulations carried out in this study this
iterative technique converged after one iteration. The sec-
ond step is the application of a small number of V-cycles
of a multigrid approximation to a much larger linear sys-
tem. Using exemplar deformations this preconditioner was
demonstrated to be suitable for use with problems with a
large number of degrees of freedom.
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