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Abstract Thepresent paper is the extension of author’s ear-
lier research devoted to more accurate numerical modelling
of beam-to-beam contact in the cases when beam axes form
acute angles in the contact zone. In such situation with beam
deformations taken into account, the contact cannot be con-
sidered as point-wise but it extends to a certain area. To cover
such a case in a more realistic way, two additional pairs of
contact points are introduced to accompany the original sin-
gle pair of contact points from the point-wise formulation.
The Coulomb friction model is introduced and advantage
is taken from the analogy to plasticity. The penalty method
is used to enforce the contact and friction constraints. The
appropriate kinematic variables for tangential contact and
their finite element approximation are derived. Basing on
the weak form for frictional contact and its linearisation, the
tangent stiffness matrix and the residual vector are derived.
The enhanced element is tested using author’s computer pro-
grams and comparisons with the point-wise contact elements
are made.

Keywords Beam-to-beam contact · Multiple-point
contact · Coulomb friction · Elasto-plastic analogy
for friction · Penalty method

1 Introduction

The beam-to-beam contact represents a special case in the
general field of 3D contact analysis. The efforts to analyze
it numerically were started by Wriggers and Zavarise in [1]
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and subsequently continued in [2–4] where contact without
and with Coulomb friction for beams of circular and rec-
tangular cross-sections was considered. Since then further
developments appeared and they included inclusion of ther-
mal and electric coupling [5], smoothing procedures for 3D
curves representing axes of beams in contact, e.g., [6] as well
as a rigorous approach to the question of solution existence
and uniqueness in the point-wise contact formulation, which
was presented byKonyukhov and Schweizerhof in [7]. These
authors focused their interest on the closest-point projection
procedure, which in the particular case of the beam-to-beam
contact leads to the orthogonality conditions, see [1]. The
same authors used their approach to analyse the problem
of rope wound around a cylinder and the question of knot-
tightening [8]. The latter issuewas also considered and solved
by Durville in [9].

A fine analysis of various types of contact scenarios,
including the beam-to-beam case, based on the geometry
consideration was given in [10].

One important assumption in the majority of those
approaches was the uniqueness of the mutual closest point
projection procedure for two curves, ensured at least locally.
The obvious consequence was the concept of the point-wise
contact between beams. Yet, it is perfectly clear that such an
approach fails in some special situations, e.g., when irregu-
lar assemblies of fibre-like objects are considered [11]. Thus,
themore precise approach should cater for possibilities when
the contacting beam-like objects form acute angles and are
parallel or conforming, see Fig. 1. The issues related to the
existence and uniqueness of the closest points location were
discussed in detail in [7,10].

Also the problem of contact between beams and other
objects like rigid surfaces has been recently investigated. This
topic was addressed in the further paper by Konyukhov and
Schweizerhof [12] and by Gay Neto et al. [13,14]. Further-
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Fig. 1 Non point-wise contact
between beams: a beams with
axes crossing at acute angles,
b conforming beams

(b)(a)

more, the latter authors took into consideration the problem
of self-contact of a rope sustaining an off-shore riser [15].

The multiple-point beam-to-beam contact finite element
was developed in [16] to model in a more precise way the sit-
uations, when contact between beams cannot be considered
as point-wise. The frictionless interaction between beams
was considered therein. This element is now enhanced to the
frictional case. The main geometrical assumptions remain
valid, in particular it is necessary that, locally, there still exists
the unique solution to the closest-point projection equations.
Hence, the presented approach is not applicable for the case
of conforming/parallel beams which requires a completely
different approach. In such a case a full 3D analysis with
node-to-segment approach or a mortar method could be used
instead of a special beam-to-beam treatment.

In the suggested model the line along which the contact
may take place between two almost parallel or almost con-
forming beams, is discretised by three contact point pairs,
see Fig. 1a. This model with two additional pairs is the
most straightforward possible extension of the point-wise
approach.

The adopted interpretation of the contact zone between
two cylinders as a curved line is valid, if the assumption of
small strains and undeformable cross-sections is kept, as was
assumed in the previous papers [3,4,16].

Moreover, the contacting beams are modelled as one-
dimensional curves, with circumferential frictional effects
neglected, only the tangential friction force components are
taken into account. Hence, the proposed approach can be
practically used in the cases when the beam cross-section
dimension is much smaller than the beam length. The more
general case was considered successfully in [7,10] using a
geometrically exact covariant approach.

For a consistence of the present paper, in the Sect. 2 a
brief introduction of geometrical considerations regarding
the two additional contact pairs is presented repeating the
ideas from [16]. To this end also some results of the finite ele-
ment discretisation for the frictionless case are summarised in
Appendix 3. In the remaining sections the attention is focused
mainly on the frictional components of the contact formula-
tion, since the detailed description the normal contact part
can be found in the above mentioned paper. Furthermore, the
present paper is mainly related to the influences due to the
additional contact pairs, which are added to the formulation
of point-wise contact given earlier in [4,17].

Section 3 includes the introduction of friction contribu-
tions to the weak form in the case of multiple-point contact.
The frictional interactions are defined using the penalty
method, and the analogy to non-associated plasticity is used
with the distinction of stick and slip friction status. The
consistent linearisation required for an effective use of the
Newton–Raphson method to solve the non-linear problem at
hand is also presented.

The kinematic variables present in the formulation of
frictional contact are introduced and expressed in terms of
displacements in Sect. 4. Again, the focus is put mainly on
the terms due to the additional contact pairs and a comparison
with point-wise contact variables is made.

Section 5 presents the finite element discretisation of fric-
tional terms. The components of the weak form and its
linearisation are suitably related to the nodal parameters of
the beam elements. In this way the components due to fric-
tion of the residual vector and the consistent tangent stiffness
matrix for the contact element are determined. Combined
with the normal contact components from [16] they yield the
complete frictional contact finite element formulation, which
was embedded in the author’s computer program.

Results of some numerical examples presented in Sect. 6
confirm the effectiveness and advantages of the multiple-
point beam-to-beam contact element with respect to the
previously derived one-point contact element in the cases
of beams forming acute angles.

Section 7 contains final remarks, conclusions and outlook.

2 Additional contact pairs

Let us consider a contact between two beams labelled m and
s. Their axes are shown in Fig. 2. The beams are of circular
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Fig. 2 Central contact pair of points on beam axes and central normal
gap
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Fig. 3 Additional contact pairs of points on beam axes and additional
normal gaps

cross-sectionswith radii rm and rs . In the suggestedmultiple-
point beam-to-beam contact element three pairs of contact
points are considered—the central contact points Cmn −Csn

and two additional ones. The central points are found using
the orthogonality conditions, as described in [1,3] where the
minimisation of the axes distance dN yields the local co-
ordinates of the closest points on each beam −ξmn and ξsn
(−1 ≤ ξin ≤ 1, i = s or m). Hence, the normal contact gap
function is

gN = dN − (rm + rs) (1)

with

dN = ‖xmn − xsn‖ (2)

To find the additional contact pairs, first, the contact candi-
date points Csnb, Csn f are found on the beam s using the
backward (subscript b) and forward (subscript f ) shift of
local co-ordinates with respect to the value ξsn for the cen-
tral contact point

ξsnb = ξsn − ξ�s

ξsn f = ξsn + ξ�s (3)

as shown in Fig. 3.
The definition of the shift ξ�s of the local co-ordinate is

taken as a result of simple geometric considerations regard-
ing the layout of beam contact zones. Let us consider the
plan view of the contact zone presented in Fig. 4. The cross-
sectionA–Aalong the beam s is shown in Fig. 5. The distance
between the centre contact point Csn on the axis of the beam
s and the edge of the overlap region shown in the plan view
(Fig. 4) is

as = rm
sin ϕ

(4)

whereϕ is the angle between the beams axes in the plan view.
The distance between a shifted contact point, Csnb orCsn f ,

and the central one Csn is assumed as a fraction 1/k of as . In
the numerical tests (see [18]) it was found that k = 3 yields
the best results, so

Beam m

Beam s

rm

A 

A 

as

Fig. 4 Plan viewof contacting beams at the contact zone (cross-section
A–A—see Fig. 5)
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Fig. 5 Cross-section A–A of contacting beams at the contact zone—
see Fig. 4

ξ�s = rm
3ls sin ϕ

(5)

where ls is the length of the beam element within which the
contact point lies.

Having located the additional points on the beam s, the
orthogonality condition can be applied to find their counter-
parts Cmnb and Cmn f on the beam m

(xmnb − xsnb) · xmnb,m = 0 (6)
(
xmn f − xsn f

) · xmn f,m = 0 (7)

where dot · denotes the scalar product. Generally, each of the
conditions (6) and (7) represents a non-linear equation,which
can be solved iteratively using theNewton–Raphsonmethod.
Following the lines of the solution for the central points with
a set of orthogonality conditions (see [1]) with the use of
the following expressions for the position vectors and their
derivatives with respect to local co-ordinates, determined at
the additional points

�xmnb = �umnb + xmnb,m�ξmnb

�xsnb = �usnb + xsnb,s�ξsnb

�xmnb,m = �umnb,m + xmnb,mm�ξmnb (8)
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�xmn f = �umn f + xmn f,m�ξmn f

�xsn f = �usn f + xsn f,s�ξsn f

�xmn f,m = �umn f,m + xmn f,mm�ξmn f (9)

the iterative updates for the local co-ordinates of the points
Cmnb and Cmn f are obtained in the form

�ξmb = − (xmnb − xsnb) · xmnb,m

xmnb,m · xmnb,m + (xmnb − xsnb) · xmnb,mm
(10)

�ξm f = − (
xmn f − xsn f

) · xmn f,m

xmn f,m · xmn f,m + (
xmn f − xsn f

) · xmn f,mm
(11)

Having located the additional contact points at both beams
m and s, two additional normal gap functions can be defined
in a way analogous to the normal gap at the central point (1).
This yields

gNb = dNb − (rm + rs)

gN f = dN f − (rm + rs) (12)

where the distances between the contact points are

dNb = ‖xmnb − xsnb‖
dN f = ∥

∥xmn f − xsn f
∥
∥ (13)

With three gap functions given by (1) and (12) the normal
contact formulation for three separate contact point pairs can
be formulated.

The point to note is the character change of the beam-to-
beamcontactwhich is introducedby the presented procedure.
Instead of the parity of both contacting beams like in the
standard point-wise approach, the present model, due to the
shifted additional points on the beam s, brings the distinction
between slave and master bodies. It is advisable to treat the
beam with a smaller cross-section as the beam s. With this
provision, the resulting contact points are more effectively
distributed along the real contact zone which is longer along
the beamwith a smaller cross-section and narrower along the
beam with a larger cross-section (see Fig. 4).

3 Friction contribution to the weak form

The weak form for the frictional contact problem between
two bodies can be written down in the following way:

δ� = δ�m + δ�s + δ�N + δ�T (14)

where the subscripts at the components of the virtual work
δ� denote the influences of the deformation of the body m,
the deformation of the body s, normal contact N and friction
T . Here the latter term only will be discussed. It is assumed

Beam s

Beam m FTsb 

FTmb

FTb (action)

FTb (reaction) 

Fig. 6 Components and resultant friction forces at the backward addi-
tional contact pair

that the contact model is independent of the beam model
itself, as was assumed in previous research (e.g., in [17]),
while the normal contact component was analyzed in detail
in [16]. For the case with three contact pairs as introduced in
Sect. 2, the friction contribution to (14) can be given as

δ�T = δ�T c + δ�Tb + δ�T f (15)

where the subscripts c, b and f stand for the central pair,
the backward pair and forward pair, respectively, as shown
in Figs. 2 and 3. The contribution from the central point with
the appropriate kinematic variables and the results of the
finite element discretisation in the form of tangent stiffness
matrix and the residual vector were presented in the papers
on point-wise contact model [2,4,17]. The present paper is in
principle devoted to the derivation of components concerning
friction at the additional points, described as forward and
backward contributions. Thus, the appropriate friction forces
and virtual displacements are introducedwhich allow towrite
down:

δ�Tb = FTsb · δgT sbn + FTmb · δgTmbn (16)

δ�T f = FTs f · δgTs f n + FTm f · δgTm f n (17)

The friction forces FTmb, FTsb and FTm f , FTs f in each of
the relations (16) and (17) do not represent action-reaction
forces from Newton’s third principle of dynamics. Rather
than this, they have to be understood as pairs of components,
which result from a relative movement of a contact point
along each of the contacting beams, m or s. Let it also be
indicated, that special care must be taken when computing
the resultant friction forces FTb and FT f , when the angle
between their components acting along the beamsm and s is
arbitrary. Their definition must include tangent vectors and
proportionality coefficients, as introduced in the continua-
tion.

These resultant forces, can then be viewed as acting simul-
taneously on both beams, each of them can be treated as an
action or a reaction force. This is depicted in Fig. 6 for the
particular case of the backward contact pair.

Similarly, the corresponding variations of tangential dis-
placements present in (16) and (17), i.e., the tangential gaps,
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must be related to the contacting beams, m and s. For each
contact pair two independent movements are considered.

It must be also pointed out that the assumed way to model
the beams as one-dimensional curves limits the possibilities
of friction modelling to the tangential direction only. The
circumferential friction force is not included in the analysis.
From the practical point of view this means that the present
model is limited to the cases when the cross-sectional diame-
ter of contacting beams ismuch smaller than the beam length,
like in the case of fibres assemblies, thin contacting cables
or ropes, etc.

The analysis presented in this paper follows the foot-
steps of the point-wise contact formulation and the analogy
between the frictional contact and the plasticity [19] is uti-
lized. This concept includes the additive split of tangential
gaps at backward and forward pairs into sticking (superscript
e, for the elastic analog) and sliding (superscript p, for the
plastic analog) components:

gTmb = geTmb + gp
Tmb

gT sb = geT sb + gp
T sb (18)

gTm f = geTm f + gp
Tm f

gT s f = geT s f + gp
T s f (19)

The Coulomb law with the constant friction parameter μ

is assumed to model the interface physical relation and the
sliding functions fb and f f must fulfil the conditions

fb = ‖FTb‖ − μ · FNb ≤ 0

f f = ∥∥FT f
∥∥ − μ · FN f ≤ 0 (20)

where FNb anf FN f are the normal contact forces at the addi-
tional points (see [16]). An important thing to note is that the
formulae (20) involve the resultant friction forces. There is
a theoretical possibility to check the sliding criterion sepa-
rately for each sliding component as was discussed e.g., in
[17]. However, such an approach seems to be non-physical.
Rather than this, each contact spot is to be treated consis-
tently and thus it should have one contact status attributed,
despite the fact that the resultant is determined using two
components.

Now the sliding rule can be introduced

ġ p
Tmb = γ̇

∂ fb
∂FTmb

ġ p
T sb = γ̇

∂ fb
∂FTsb

ġ p
Tm f = γ̇

∂ f f
∂FTm f

ġ p
T s f = γ̇

∂ f f
∂FTs f

(21)

which is a counterpart of the non-associated flow rule.
The sliding rule can be integrated with respect to pseudo-
time using the incremental analysis. Hence, introducing the
current new (subscript n) and previous (subscript p) config-
urations the following relations can be written down

gTmbn = gTmbp + dgTmb

gT sbn = gT sbp + dgT sb (22)

gTm f n = gTm f p + dgTm f

gT s f n = gT s f p + dgT s f (23)

The second terms on the right hand sides of these expressions
represent the values of increments of tangential gaps. The
method to find these basic kinematic variables for friction is
given in Sect. 4.

In the process of the incremental solution at the current
new step, the trial values of sticking tangential gaps compo-
nents

getTmbn = gTmbn − gp
Tmbp

getT sbn = gT sbn − gp
T sbp (24)

getTm f n = gTm f n − gp
Tm f p

getT s f n = gT s f n − gp
T s f p (25)

are assumed using the current total gaps (22, 23) and the
history variables, i.e., the previous values of the sliding gap
components. The penalty method is now used to determine
the trial values of the friction forces components

Ft
Tm f = εT getTm f n

Ft
T s f = εT getT s f n (26)

Ft
Tmb = εT getTmbn

Ft
T sb = εT getT sbn (27)

where εT is the frictional penalty parameter.
The unit tangential vectors have to be introduced in order

to evaluate the trial resultant friction forces. These vectors
follow from the definition of the kinematic variables given
in Sect. 4. Here, let it only be stated that they can be deter-
mined using the current and previous position vectors of the
contact points. Hence, the tangential vectors can be found
using

tmb = xmbn − xmbp∥∥xmbn − xmbp
∥∥ = (tmb1, tmb2, tmb3)

T

tsb = xsbn − xsbp∥
∥xsbn − xsbp

∥
∥ = (tsb1, tsb2, tsb3)

T (28)

tm f = xm f n − xm f p∥∥xm f n − xm f p
∥∥ = (

tm f 1, tm f 2, tm f 3
)T
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ts f = xs f n − xs f p∥∥xs f n − xs f p
∥∥ = (

ts f 1, ts f 2, ts f 3
)T (29)

The magnitude of the trial resultant friction forces can now
be given by

Ft
Tb = ∥

∥Ft
T b

∥
∥ = ∥

∥Ft
Tmbtmb + Ft

T sbtsb
∥
∥ (30)

Ft
T f =

∥∥∥Ft
T f

∥∥∥ =
∥∥∥Ft

Tm f tm f + Ft
T s f ts f

∥∥∥ (31)

and the trial values of the sliding functions can be evaluated
using

f tb = ∥∥Ft
T b

∥∥ − μ · FNb

f tf =
∥∥
∥Ft

T f

∥∥
∥ − μ · FN f (32)

With (32) in hand the status of the friction at the additional
contact points can be checked. If the condition

f tb ≤ 0 (33)

is met, then the backward pair is in the stick state, and if it
is not—then sliding takes place. Similar check is carried out
separately for the forward pair using

f tf ≤ 0 (34)

In the case of stick the trial value of the friction force resultant
is within the sliding limit and it corresponds to the correct
current friction force components

FTmb = Ft
Tmb = εT getTmbn

FT sb = Ft
T sb = εT getT sbn (35)

for the backward pair and

FTm f = Ft
Tm f = εT getTm f n

FT s f = Ft
T s f = εT getT s f n (36)

for the forward pair. In this situation there is no incremental
increase of the plastic part of the tangential gaps, either. For
the backward pair one has

gp
Tmbn = gp

Tmbp

g p
T sbn = gp

T sbp (37)

and for the forward pair—

gp
Tm f n = gp

Tm f p

g p
T s f n = gp

T s f p (38)

If the sliding status is encountered, then the trial friction force
exceeds the limit imposed by the sliding rule and the Euler

return procedure has to be employed. For the Coulomb fric-
tionmodel it leads to the closed-form solution and the friction
force components are given by their limiting values—

FTmb = μpmbFNb

FTsb = μpsbFNb (39)

for the backward pair and

FTm f = μpm f FN f

FT s f = μps f FN f (40)

for the forward pair. It should be pointed out, that there are
also proportionality parameters introduced in (39) and (40).
Their presence is necessary due to the fact, that the sliding
status check is carried out for the resultant friction force and
the formulation of the weak form (16) and (17) requires the
values of the friction force components along the beams m
and s. These parameters are given by

pmb = Ft
Tmb

Ft
Tb

psb = Ft
T sb

Ft
Tb

(41)

pm f = Ft
Tm f

Ft
T f

ps f = Ft
T s f

Ft
T f

(42)

The sliding state involves the update of the plastic tangential
gaps. For the backward pair one gets

gp
Tmbn = gp

Tmbp + 1

εT

(
Ft
Tmb − FTmb

)

gp
T sbn = gp

T sbp + 1

εT

(
Ft
T sb − FTsb

)
(43)

and for the forward pair—

gp
Tm f n = gp

Tm f p + 1

εTm

(
Ft
Tm f − FTm f

)

gp
T s f n = gp

T s f p + 1

εT s

(
Ft
T s f − FTs f

)
(44)

Let it again be emphasized, that the current state of the friction
is checked separately for each of three contact pairs—central,
backward and forward. Hence, the status at these points may
be different and correspondingly to (33) or (34) the appro-
priate relations for the additional points (35)–(44) have to be
used.

The results for sticking or sliding cases can now be intro-
duced into the weak form relations (16) and (17) to get the
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following results. The weak form for the sticking case for the
backward points reads

δ�e
T b = εT geTmbn δgTmbn + εT geT sbn δgT sbn (45)

and for the forward points

δ�e
T f = εT geTm f n δgTm f n + εT geT s f n δgTs f n (46)

The linearisations yield

�δ�e
T b = εT �gTmbn δgTmbn + εT geTmbn �δgTmbn

+ εT �gT sbn δgT sbn + εT geT sbn �δgT sbn (47)

�δ�e
T f = εT �gTm f n δgTm f n + εT geTm f n �δgTm f n

+ εT �gTs f n δgT s f n + εT geT s f n �δgT s f n (48)

In the case of the sliding status the weak form is

δ�
p
Tb = μεN pmb smb gNb δgTmbn

+μεN psb ssb gNb δgT sbn (49)

for the backward pair and

δ�
p
T f = μεN pm f sm f gN f δgTm f n

+μεN ps f ss f gN f δgTs f n (50)

for the forward pair. These two formulae require additional
parameters smb, ssb, sm f , ss f to control the slidingdirection.
They can be found from the simple relations

smb = sign(ξmbn − ξmbp)

ssb = sign(ξsbn − ξsbp) (51)

sm f = sign(ξm f n − ξm f p)

ss f = sign(ξs f n − ξs f p) (52)

using the local co-ordinates of the current and previous con-
tact points if these points are located in the same contact facet.
In the contrary situation, for instance the element numbers
can be used.

Besides, the values of the normal contact forces present
in (39) and (40) are evaluated using the penalty method

FNb = εN gNb (53)

FN f = εN gN f (54)

with the normal contact penalty parameter εN introduced (see
[10])

The linearisations of the weak forms (49) and (50) read

�δ�
p
Tb = μεN pmb smb �gNb δgTmbn

+μεN pmb smb gNb �δgTmbn

+μεN smb gNb �pmb δgTmbn

+μεN psb ssb �gNb δgT sbn

+μεN psb ssb gNb �δgT sbn

+μεN ssb gNb �psb δgT sbn (55)

�δ�
p
T f = μεN pm f sm f �gN f δgTm f n

+μεN pm f sm f gN f �δgTm f n

+μεN sm f gN f �pm f δgTm f n

+μεN ps f ss f �gN f δgT s f n

+μεN ps f ss f gN f �δgTs f n

+μεN ss f gN f �ps f δgT s f n (56)

The weak form expressions (45), (46), (49), (50) and their
linearisations (47), (48), (55), (56) include various kinematic
variables. Some are related to the the normal gaps (12) and
thus concern the normal contact. They were given in detail in
[16] and are not discussed in this paper. The variables related
to the tangential gaps and to the proportionality parameters
(41) and (42) are considered in the following section.

4 Kinematic variables for friction

The tangential gaps representing the key kinematic variables
for friction, given by (22) and (23) require the definition
of the tangential gap increments dgTmb, dgT sb, dgTm f and
dgT s f . The procedure to find these values will be given for
the example of dgTm f and dgT s f in the case of the forward
contact pair.

Let us consider the beams m and s in two subsequent
configurations—previous and current, as shown in Fig. 7.
The increment of the tangential gap is found as the dis-
tance between the current contact points Cm f n, Cs f n defined
by the current local co-ordinates ξm f n, ξs f n in the current
configuration and the mappings C′

m f p, C
′
s f p of the previous

contact points Cm f p, Cs f p from the previous configuration
onto the current configuration, defined by the previous local
co-ordinates ξm f p, ξs f p. With the appropriate position vec-
tors introduced, see Fig. 7, the gap increments can be given as

dgTm f = sm f
∥∥xm f n − xm f p

∥∥

dgT s f = ss f
∥∥xs f n − xs f p

∥∥ (57)

For the backward pair one gets similar expressions

dgTmb = smb
∥∥xmbn − xmbp

∥∥

dgT sb = ssb
∥
∥xsbn − xsbp

∥
∥ (58)

These relations include the sliding direction control parame-
ters given by (51) and (52).
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Fig. 7 Definition of the
tangential gap increment for the
beam m in the forward contact
pair
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Fig. 8 Changes of contact
points spacing with the change
of the angle between tangents
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The local co-ordinates ξsbn and ξs f n of the current points
at the beam s are found from (3) and those concerning the
beamm follow from the orthogonality conditions (6) and (7)
applied to the beam m only, as discussed in [16]. The vari-
ations and linearisations of these variables were also given
in that paper. The only exceptions were�δξmbn and�δξm f n

which were absent in the frictionless contact formulation.
These variables can be derived from the orthogonality con-
ditions. The corresponding tedious but elementary derivation
is given in Appendix 1.

The local co-ordinates of the previous point mappings
require a comment and a special treatment. The nature of
the proposed contact model is that the additional points on
the beam s are defined by the shift of local co-ordinate ξ�s .
This value depends, among others, on the angle ϕ included
between the tangents to the beam axes at the central contact
points Cmn and Csn . If the angle decreases, than the spacing
between the points is increased to cover the longer contact
zone, see Fig. 8. The angle ϕ undergoes changes during the
deformation process. Therefore, it can be concluded that the
relative movement of the contact point on the beam s will
result from two independent factors—the frictional sliding

and the change of location due to the varying angle ϕ. If the
beams are modelled as 1D curves and the circumferential
effects are neglected, then the latter factor would result in an
unrealistic behaviour and unphysical addition to the frictional
force at the contact points. Therefore, the local co-ordinates
of the previous contact point mapping cannot be treated as
mere history variables and taken directly from the previous
increment.

To overcome this problem it is suggested, that the rela-
tive movement of the additional points is directly related to
the relative movement of the central points. The idea behind
this assumption is that the three contact points modelling
the continuous contact line for almost parallel beams are
tied together. Hence, the following relations are proposed to
define the local co-ordinates required to localize the previous
contact point mappings C′

mbp, C
′
sbp and C′

m f p, C
′
s f p

ξsbp = ξsp − ξ�s

ξmbp = ξmbn − (
ξmn − ξmp

)
(59)

ξs f p = ξsp + ξ�s

ξm f p = ξm f n − (
ξmn − ξmp

)
(60)
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In other words it is assumed that the distance between the
additional contact point and the central contact point on the
beam s is determined by the same difference of the local
co-ordinate ξ�s in the case of the current points (Cs f n, Csn)

and the previous point mappings (C′
s f p, C

′
sn). And similarly,

for the beam m it is assumed that the distance between the
current additional point Cm f n and the mapping of the previ-
ous contact point C′

m f p is given by the same difference in the
local co-ordinates (ξmn − ξmp) as in the case of the central
points (Cmn, C′

mp).
It should be pointed out, that simultaneously the influence

of the angleϕ on the formulation of the local co-ordinate shift
in (5) remains unchanged. The results of this influence on the
contact element tangent stiffness matrix and the residual vec-
tor were derived in [16] and are summarised in Appendix 3.

Now the tangential gap variations present in the weak
forms and their linearisations derived in Sect. 3 can be eval-
uated. The results are similar to the kinematic variables for
friction at the central points, which were given in [17] for the
point-wise contact formulation. One gets

δgTmbn = smb tmb · (
xmbn,m δξmbn − xmbp,m δξmbp

+ δumbn − δumbp
)

δgTsbn = ssb tsb · (
xsbn,s δξsbn − xsbp,s δξsbp

+ δusbn − δusbp
)

(61)

for the backward points and

δgTm f n = sm f tm f · (
xm f n,m δξm f n − xm f p,m δξm f p

+ δum f n − δum f p
)

δgTs f n = ss f ts f · (
xs f n,s δξs f n − xs f p,s δξs f p

+ δus f n − δus f p
)

(62)

for the forward points. The difference between the formula-
tion for the central points and the additional points is the
presence of the second components in the parentheses in
(61) and (62) for the latter case. These components were
null for the central points because the variation of the local
co-ordinates for the previous pointmappingwas vanishing—
the co-ordinates were treated as history variables and were
independent on the current displacements variations. On the
contrary, for the additional points these local co-ordinates are
defined by (59) and (60) and their variations do not vanish.
These variables can be found using the relations

δξm f p = δ
(
ξm f n − ξmn + ξmp

) = δξm f n − δξmn

δξmbp = δ
(
ξmbn − ξmn + ξmp

) = δξmbn − δξmn (63)

for the points on the beam m

δξs f p = δ
(
ξs f n + ξ�s

) = δξ�s

δξsbp = δ (ξsbn − ξ�s) = −δξ�s (64)

for the points on the beam s. The second components at the
right-hand sides of (63) are the variables related to central
points, which were expressed in terms of displacements in
[17]. The first components at the right-hand sides of (63)
concern the additional points; they are given in [16]. Finally,
the right-hand sides of (64) can also be expressed in terms
of displacements of the central points, as was shown in [16],
too.

The linearisations of the weak forms variations include
the linearisations of the tangential gaps and of the variations
of the tangential gaps. The former variables are computed in
the way analogous to the variations given by (61) and (62).
The latter ones are specified in Appendix 2 in Eq. (138).
It can be verified, that likewise for the variations, also here
the terms related to the local co-ordinates for the previous
point mapping are present, in what these relations differ from
the ones for the central contact point. The linearisations of
these local co-ordinates are computed in the way similar to
the variations given by (63) and (64). The linearisations of
variations can be found using

�δξm f p = �δ
(
ξm f n − ξmn + ξmp

) = �δξm f n − �δξmn

�δξmbp = �δ
(
ξmbn − ξmn + ξmp

) = �δξmbn − �δξmn

(65)

for the points on the beam m and

�δξs f p = �δ
(
ξs f n + ξ�s

) = �δξ�s

�δξsbp = �δ (ξsbn − ξ�s) = −�δξ�s (66)

for the points on the beam s. Likewise with (63) and (64),
the particular components of these relations were expressed
in terms of displacements in [16,17].

The weak form linearisation for the slip state includes also
the linearisations of the proportionality parameters (41) and
(42) related to the friction force components. The similar
variables were derived in [17] for the central contact points.
Their detailed form is given inAppendix 2 in (139) and (140).

In this way all the terms in weak forms and their lineari-
sations are given by displacements and position vectors and
can be subjected to the finite element discretisation.

5 Finite element discretisation

A finite element for contact uses the same nodal parame-
ters as the finite elements for the beams themselves. In the
presented examples the beams are modelled using the co-
rotational beam finite element derived in [20].

An important issue influencing the form of the contact
finite element is the smoothing technique used to ensure
the proper continuity between the adjacent contact facets.
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Fig. 9 Beam-to-beam contact finite element based on smooth curves
segments

The importance of smoothing in a general contact context
was discussed for instance in [21]. The particularities of
the smoothing process for the beam-to-beam contact with
an analysis of several possible techniques were considered
in [17]. Out of the models presented therein, the one using
the inscribed curve and Hermite polynomials is used in this
paper. This leads to the definition of the contact finite element
involving two pairs of adjacent beam elements from two con-
tacting beams, see Fig. 9. There are three nodesm1, m2, m3
of the beam m and three nodes s1, s2, s3 of the beam s
involved in the formulation. The vector of nodal displace-
ments related to the contact element can be given by

q[18×1] = (um11, um12, um13, um21, um22, um23,

um31, um32, um33, us11, us12,

us13, us21, us22, us23, us31, us32, us33)
T

=
(

uT
M , uT

S

)T
(67)

where subscripts a = 1, 2, 3 and c = 1, 2, 3 in the dis-
placement notation usac and umac refer to the node numbers
and the co-ordinate numbers, respectively.

However, the issue can becomemore complex, if one con-
siders the fact, that the friction contact formulation for the
three-pair layout involves indeed not one but six different
points on each beam. These are: the current contact points
Cmbn, Cmn, Cm f n (Csbn, Csn, Cs f n correspondingly for the
beam s) and the mappings of the previous contact points
C′
mbp, C

′
mp, C

′
m f p (C

′
sbp, C

′
sp, C

′
s f p for the beam s). It must

be assumed that these points may not lie within a single con-
tact facet. The situation where the mapping of the additional
(forward or backward) previous contact point is separated
from the current point or where the additional contact point
itself is separated from the central point should be taken into
account. Therefore, the appropriate vectors of nodal displace-
ments are introduced

qb =
(

uT
Mb, uT

Sb

)T
(68)

q f =
(

uT
M f , uT

S f

)T
(69)

qbp =
(

uT
Mbp, uT

Sbp

)T
(70)

q f p =
(

uT
M f p, uT

S f p

)T
(71)

which may or may not coincide with the vector q, given by
(67), related to the current central contact points Cmn and
Csn .

Itmust be pointed out, that the history variables for friction
and sliding are attributed to the particular contact points—
central and additional. They are stored and revised at each
iteration. If a local co-ordinate value at the current state
exceeds the limit (from –1 to 1) then the corresponding
number of contact segment and contact elements is changed
accordingly.

The method of smoothing determines the form of the
relation between displacements of an arbitrary point on the
contact facet and the nodal displacements. Let us assume the
followingmatrix representations for displacements at central
points

δuik = GikδuI

�uik = Gik�uI (72)

and at additional points

δui jk = Gi jkδuI j

�ui jk = Gi jk�uI j (73)

where the subscripts i and I are related tom-beam or s-beam
(i = s or m, I = S or M), the subscript j is related to back-
ward or forward additional pair ( j = b or f ) and the subscript
k is related to current (new) or previous configuration (k = n
or p).

Similar relations are introduced for the derivatives of dis-
placements with respect to the local co-ordinates

δuik,i = HikδuI

�uik,i = Hik�uI (74)

at central points and

δui jk,i = Hi jkδuI j

�ui jk,i = Hi jk�uI j (75)

at additional points with i = s or m, I = S or M, j = b or
f and k = n or p.
The explicit form of all the matrices G and H present in

(72)–(75) was given in [17].
The variations and linearisations of the current local co-

ordinates can be discretised to yield the following relations
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δξsbn = (Fs − F�s)

[
δuM

δuS

]

δξs f n = (Fs + F�s)

[
δuM

δuS

]
(76)

�ξs f n = (Fs − F�s)

[
�uM

�uS

]

�ξs f n = (Fs + F�s)

[
�uM

�uS

]
(77)

�δξsbn = [
δuT

M δuT
S

]
(Rs − R�s)

[
�uM

�uS

]

�δξs f n = [
δuT

M δuT
S

]
(Rs + R�s)

[
�uM

�uS

]
(78)

for the points on the beam s and

δξmjn = Fmj1

[
δuM

δuS

]
+ Fmj

[
δuMj

δuSj

]
(79)

�ξmjn = Fmj1

[
�uM

�uS

]
+ Fmj

[
�uMj

�uSj

]
(80)

with j = b or f , for the points on the beam m.
ThematricesF andR present in (76)–(80)were detailed in

[16] and for the self-consistence of the present formulation
are repeated in Appendix 3. The missing discretisations in
this group are for �δξmbn and �δξm f n and they yield

�δξmjn = [
δuT

M δuT
S

]
Rmj1

[
�uM

�uS

]

+
[
δuT

M j δuT
Sj

]
Rmj

[
�uMj

�uSj

]

+
[
δuT

M j δuT
Sj

]
Rmj2

[
�uM

�uS

]

+ [
δuT

M δuT
S

]
RT
mj2

[
�uMj

�uSj

]
(81)

where j = b or f.
The matrices involved in (81) are derived in Appendix 1.
Similar relations can be found for the appropriate kine-

matic variables related to the previous contact points. Using
(63)–(66) and the matrices introduced above one can get

δξsbp = −F�s

[
δuM

δuS

]

δξs f p = F�s

[
δuM

δuS

]
(82)

�ξsbp = −F�s

[
�uM

�uS

]

�ξs f p = F�s

[
�uM

�uS

]
(83)

�δξsbp = [
δuT

M δuT
S

]
(−R�s)

[
�uM

�uS

]

�δξs f p = [
δuT

M δuT
S

]
R�s

[
�uM

�uS

]
(84)

δξmjp = (
Fmj1 − Fm

) [
δuM

δuS

]
+ Fmj

[
δuMj

δuSj

]
(85)

�ξmjp = (
Fmj1 − Fm

) [
�uM

�uS

]
+ Fmj

[
�uMj

δuSj

]
(86)

�δξmjp = [
δuT

M δuT
S

] (
Rmj1 − Rm

) [
�uM

�uS

]

+
[
δuT

M j δuT
Sj

]
Rmj

[
�uMj

�uSj

]

+
[
δuT

M j δuT
Sj

]
Rmj2

[
�uM

�uS

]

+ [
δuT

M δuT
S

]
RT
mj2

[
�uMj

�uSj

]
(87)

where j = b or f .
The discretisation of the proportionality parameters (139)

and (140) leads to the following matrix relations

�pmj =Pmj0

[
�uMj

�uSj

]
+Pmj1

[
�uM

�uS

]
+Pmj2

[
�uMjp

�uSjp

]

(88)

�ps j =Ps j0

[
�uMj

�uSj

]
+ Ps j1

[
�uM

�uS

]
+ Ps j2

[
�uMjp

�uSjp

]

(89)

where j = b or f .
The matrices present in (88) and (89) take the form

Pmja =
⎡

⎢
⎣

εT

Ft
T j

− pmjεT
(
Ft
T j

)2 Ft
T j · tmj

⎤

⎥
⎦ tTmjSmja

− pmjεT geTmjn
(
Ft
T j

)2 ∥
∥xmjn−xmjp

∥
∥

Ft
T j

(
1 − tmj ⊗ tmj

)
Smja

− pmjεT
(
Ft
T j

)2

(
Ft
T j · ts j

)
tTs jSs ja

− pmjεT geT s jn
(
Ft
T j

)2 ∥∥xs jn − xs jp
∥∥

Ft
T j

(
1 − ts j ⊗ ts j

)
Ss ja

(90)

Ps ja =
⎡

⎢
⎣

εT

Ft
T j

− ps jεT
(
Ft
T j

)2 Ft
T j · ts j

⎤

⎥
⎦ tTs jSs ja
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− ps jεT geTmjn
(
Ft
T j

)2 ∥∥xmjn−xmjp
∥∥

Ft
T j

(
1−tmj ⊗ tmj

)
Smja

− ps jεT
(
Ft
T j

)2

(
Ft
T j · tmj

)
tTmjSmja

− ps jεT geT s jn
(
Ft
T j

)2 ∥
∥xs jn − xs jp

∥
∥

Ft
T j

(
1 − ts j ⊗ ts j

)
Ss ja

(91)

with a = 0, 1, 2 and where the auxiliary matrices

Sm f 0 = xm f n,m Fm f − xm f p,m Fm f + [
Gm f n 0

]

Sm f 1 = xm f n,m Fm f 1 − xm f p,m
(
Fm f 1 − Fm

)

Sm f 2 = [−Gm f p 0
]

Ss f 0 = [
0 Gs f n

]

Ss f 1 = xs f n,s (Fs + F�s) − xs f p,s F�s

Ss f 2 = [−Gs f p 0
]

(92)

Smb0 = xmbn,m Fmb − xmbp,m Fmb + [Gmbn 0]

Smb1 = xmbn,m Fmb1 − xmbp,m (Fmb1 − Fm)

Smb2 = [−Gmbp 0
]

Ssb0 = [0 Gsnb]

Ssb1 = xsbn,s (Fs − F�s) + xs f p,s F�s

Ssb2 = [−Gsbp 0
]

(93)

were introduced.
For the simplification of notation some further matrices

are used:

Zmb0 = FT
mbtTmb

[
Hmbn 0

]

Zmb1 = FT
mb1tTmb

[
Hmbn 0

]

Zmb2 = −FT
mbtTmb

[
Hmbp 0

]

Zmb3 = −
(

FT
mb1 − FT

mb

)
tTmb

[
Hmbp 0

]

Zsb1 =
(

FT
s − FT

�s

)
tTsb

[
0 Hsbn

]

Zsb3 = FT
�st

T
sb

[
0 Hsbp

]
(94)

Zm f 0 = FT
m f tTm f

[
Hm f n 0

]

Zm f 1 = FT
m f 1tTm f

[
Hm f n 0

]

Zm f 2 = −FT
m f tTm f

[
Hm f p 0

]

Zm f 3 = −
(

FT
m f 1 − FT

m f

)
tTm f

[
Hm f p 0

]

Zs f 1 =
(

FT
s + FT

�s

)
tTs f

[
0 Hs f n

]

Zs f 3 = −FT
�st

T
s f

[
0 Hs f p

]
(95)

Wmb =
⎡

⎢
⎣

3∑

j=1
tmbjGd jmbn 0

0 0

⎤

⎥
⎦ ,

Wmb2 =
⎡

⎢
⎣

−
3∑

j=1
tmbjGd jmbp 0

0 0

⎤

⎥
⎦ ,

Wsb =
⎡

⎢
⎣

0 0

0
3∑

j=1
tsbjGd jsbn

⎤

⎥
⎦

Wsb2 =
⎡

⎢
⎣

0 0

0 −
3∑

j=1
tsbjGd jsbp

⎤

⎥
⎦ (96)

Wm f =
⎡

⎢
⎣

3∑

j=1
tm f jGd jm f n 0

0 0

⎤

⎥
⎦ ,

Wm f 2 =
⎡

⎢
⎣

−
3∑

j=1
tm f jGd jm f p 0

0 0

⎤

⎥
⎦ ,

Ws f =
⎡

⎢
⎣

0 0

0
3∑

j=1
ts f jGd js f n

⎤

⎥
⎦

Ws f 2 =
⎡

⎢
⎣

0 0

0 −
3∑

j=1
ts f jGd js f p

⎤

⎥
⎦ (97)

For the notation in (96) and (97) the matrices given in (128)–
(129) and the split of tangent vectors (28) and (29) into
components were used.

The finite element discretisation of the weak forms for the
stick state, (45) and (46), leads to the following expressions

δ�e
T j =

(
δuT

M j δuT
Sj

) (
Re
T jm0 + Re

T js0

)

+ (
δuT

M δuT
S

) (
Re
T jm1 + Re

T js1

)

+
(

δuT
M jp δuT

Sjp

) (
Re
T jm2 + Re

T js2

)
(98)

where j = b or f and the following residual vectors were
introduced

Re
T jma = εT geTmjn tmjSmja

Re
T jsa = εT geT s jn ts jSs ja (99)

with a = 0, 1, 2.
Similarly, the finite element discretisation of the weak

forms for the slip state (49) and (50) yield
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δ�
p
T j =

(
δuT

M j δuT
Sj

) (
Rp
T jm0 + Rp

T js0

)

+ (
δuT

M δuT
S

) (
Rp
T jm1 + Rp

T js1

)

+
(

δuT
M jp δuT

Sjp

) (
Rp
T jm2 + Rp

T js2

)
(100)

where j = b or f and the residual vectors are

Rp
T jma = μεN gN j pmj smjSmjatmj

Rp
T jsa = μεN gN j ps j ss j Ss jats j (101)

with a = 0, 1, 2.
The linearisations of the stick state weak forms (47) and

(48) after the discretisation can be given in the form

�δ�e
T j

=
(

δuT
M j δuT

Sj

) (
Ke

T jm00 + Ke
T js00

) (
�uT

M j �uT
Sj

)T

+
(

δuT
M j δuT

Sj

) (
Ke

T jm01 + Ke
T js01

) (
�uT

M �uT
S

)T

+
(

δuT
M j δuT

Sj

) (
Ke

T jm02 + Ke
T js02

) (
�uT

M jp �uT
Sjp

)T

+ (
δuT

M δuT
S

) (
Ke

T jm01 + Ke
T js01

)T (
�uT

M j �uT
Sj

)T

+ (
δuT

M δuT
S

) (
Ke

T jm11 + Ke
T js11

) (
�uT

M �uT
S

)T

+ (
δuT

M δuT
S

) (
Ke

T jm12 + Ke
T js12

) (
�uT

M jp �uT
Sjp

)T

+
(

δuT
M jp δuT

Sjp

) (
Ke

T jm02 + Ke
T js02

)T (
�uT

M j �uT
Sj

)T

+
(

δuT
M jp δuT

Sjp

) (
Ke

T jm12 + Ke
T js12

)T (
�uT

M �uT
S

)T

+
(

δuT
M jp δuT

Sjp

) (
Ke

T jm22 + Ke
T js22

) (
�uT

M jp �uT
Sjp

)T

(102)

where j = b or f and the tangent stiffness matrices involved
take the form (a = 0, 1, 2 and c = 0, 1, 2)

Ke
T jmac = εT g

e
Tmjn

[(
Smjatmj

) ⊗ (
Smjctmj

)

geTmjn

+ST
mja

(
1 − tmj ⊗ tmj

)
Smjc

dgTmj
+ Ae

T jmac

]

Ke
T jsac = εT g

e
T s jn

[(
Ss jats j

) ⊗ (
Ss jcts j

)

geT s jn

+ST
s ja

(
1 − ts j ⊗ ts j

)
Ss jc

dgT s j
+ Ae

T jsac

]

(103)

The further auxiliary matrices in (103) are:

Ae
T bm00 = Zmb0 + ZT

mb0

+ tTmb

(
xmbn,mm − xmbp,mm

)
FT
mbFmb

+ tTmb

(
xmbn,m − xmbp,m

)
Rmb + Wmb

Ae
T bm01 = Zmb1 + tTmbxmbn,mmFT

mbFmb1

− tTmbxmbp,mmFT
mb (Fmb1 − Fm)

+tTmb

(
xmbn,m − xmbp,m

)
Rmb2

Ae
T bm02 = Zmb2

Ae
T bm11 = tTmbxmbn,mmFT

mb1Fmb1

− tTmbxmbp,mm (Fmb1 − Fm)T (Fmb1 − Fm)

+ tTmbxmbn,mRmb1 − tTmbxmbp,m (Rmb1 − Rm)

Ae
T bm12 = Zmb3

Ae
T bm22 = Wmb2 (104)

Ae
T bs00 = Wsb

Ae
T bs01 = Zsb1

Ae
T bs02 = 0

Ae
T bs11 = tTsbxsbn,ss (Fs − F�s)

T (Fs − F�s)

− tTsbxsbp,ssFT
�sF�s + tTsbxsbn,s (Rs − R�s)

−tTsbxsbp,s (−R�s)

Ae
T bs12 = Zsb3

Ae
T bs22 = Wsb2 (105)

Ae
T f m00 = Zm f +ZT

m f +tTm f

(
xm f n,mm−xm f p,mm

)
FT
m f Fm f

+ tTm f

(
xm f n,m − xm f p,m

)
Rm f + Wm f

Ae
T f m01 = Zm f 1 + tTm f xm f n,mmFT

m f Fm f 1

− tTm f xm f p,mmFT
m f

(
Fm f 1 − Fm

)

+ tTm f

(
xm f n,m − xm f p,m

)
Rm f 2

Ae
T f m02 = Zm f 2

Ae
T f m11 = tTm f xm f n,mmFT

m f 1Fm f 1

− tTm f xm f p,mm
(
Fm f 1 − Fm

)T (
Fm f 1 − Fm

)

+ tTm f xm f n,mRm f 1 − tTm f xm f p,m
(
Rm f 1 − Rm

)

Ae
T f m12 = Zm f 3

Ae
T f m22 = Wm f 2 (106)

Ae
T f s00 = Ws f

Ae
T f s01 = Zs f 1

Ae
T f s02 = 0

Ae
T f s11 = tTs f xs f n,ss (Fs + F�s)

T (Fs + F�s)

−tTs f xs f p,ssFT
�sF�s

+ tTs f xs f n,s (Rs + R�s) − tTs f xs f p,sR�s

Ae
T f s12 = Zs f 3

Ae
T f s22 = Ws f 2 (107)
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Additionally, the following relations hold

Ae
T i j10 = Ae

T i j01
T

Ae
T i j20 = Ae

T i j02
T

Ae
T i j21 = Ae

T i j12
T (108)

for the both beamsm and s (subscript i) and the both contact
pairs b and f (subscript j).

In the case of the slip state the discretisation of the lineari-
sations of the weak forms (55) and (56) yields

�δ�
p
T j

=
(

δuT
M j δuT

Sj

) (
Kp

T jm00 + Kp
T js00

) (
�uT

M j �uT
Sj

)T

+
(

δuT
M j δuT

Sj

) (
Kp

T jm01 + Kp
T js01

) (
�uT

M �uT
S

)T

+
(

δuT
M j δuT

Sj

) (
Kp

T jm02 + Kp
T js02

) (
�uT

M jp �uT
Sjp

)T

+ (
δuT

M δuT
S

) (
Kp

T jm01 + Kp
T js01

)T (
�uT

M j �uT
Sj

)T

+ (
δuT

M δuT
S

) (
Kp

T jm11 + Kp
T js11

) (
�uT

M �uT
S

)T

+ (
δuT

M δuT
S

) (
Kp

T jm12 + Kp
T js12

) (
�uT

M jp �uT
Sjp

)T

+
(

δuT
M jp δuT

Sjp

) (
Kp

T jm02 + Kp
T js02

)T (
�uT

M j �uT
Sj

)T

+
(

δuT
M jp δuT

Sjp

) (
Kp

T jm12 + Kp
T js12

)T (
�uT

M �uT
S

)T

+
(

δuT
M jp δuT

Sjp

) (
Kp

T jm22 + Kp
T js22

) (
�uT

M jp �uT
Sjp

)T

(109)

where j = b or f .
The particular tangent stiffness matrices take the form

Kp
T jmac = μεN gN j pmj smj

[(
Smjatmj

) ⊗ R j

gN j

+ST
mja

(
1 − tmj ⊗ tmj

)
Smjc

dgTmj
+ Ap

T jmac

]

Kp
T jsac = μεN gN j ps j ss j

[(
Ss jats j

) ⊗ R j

gN j

+ST
s ja

(
1 − ts j ⊗ ts j

)
Ss jc

dgT s j
+ Ap

T jsac

]

(110)

where a = 0, 1, 2 and c = 0, 1, 2. The auxiliary matrices
Rb and R f result from the linearisation of the normal gaps
(12), see [17], and take the form

R j =
[

GT
mjnnN j

−GT
s jnnN j

]

(111)

with the unit normal vectors nNb and nN f

nN j = xmjn − xs jn∥∥xmjn − xs jn
∥∥ (112)

Note also that the components including these matrices and
vectors are the ones introducing the asymmetry to the slip
tangent stiffness matrix due to the non-associativity of the
sliding rule (21).

The further auxiliary matrices in (110) can be given as

Ap
T jiac = Ae

T jiac + 1

p ji

(
ST
jiat j i

)
⊗ P j ic (113)

where i = s or m, j = b or f, a = 0, 1, 2 and c = 0, 1, 2.
The contact element residual vectors and tangent stiffness

matrices (99, 103) or (101, 110) are ready to be embedded
in any computer program of beam-to-beam contact analysis.
An inherent contact search routine, like the one described in
[17], determines for each increment and each iteration, used
within the Newton–Raphson iterative solution scheme, if a
contact contribution has to be switched on—separately for
the central, forward and backward contact candidate pair. In
a case of an active contact pair the appropriate components
resulting from the normal contact (detailed in [16]) as well
as the friction components derived in this paper have to be
added to the global residual vector or stiffness matrix. At
each contact pair the friction statusmust be checked using the
criterion (33)–(34) and the appropriate, stick or slip versions
have to be applied.

6 Numerical examples

This section of the paper includes two examples of frictional
contact analysis for beams. The examples are meant to verify
the performance of the newly developed three-point contact
element in the frictional regime and compare it to the stan-
dard point-wise approach. The axes of beams in the contact
facets are approximated byHermite polynomials as inscribed
curve segments, as discussed in [6,17]. The contact search
algorithm presented in [17] is applied. In both analysed cases
beams axes form acute angles in the plan view, i.e., the layout
for which the multiple-point contact formulation is devised.
In the both examples data and results are given without any
specified units but they may be interpreted using any consis-
tent unit set.

The computer times for both considered approaches differ.
However, it is worth to emphasize, that the introduction of
two additional points, meaning the 200 % increase in the
number of contact candidates or active constraints, increases
the time of computations only by about 20–30 %, depending
on the beam layout. This ratio is quite favourable because
the computations for the additional points involve several
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Fig. 10 Data for example
1—beam axes layout and
imposed displacements
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Fig. 11 Example 1—evolution
of plastic tangential gap: a
comparison of behaviour in
central and additional contact
pairs, b comparison of
point-wise and multiple-point
formulation of frictional contact
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matrices and vectors, which are identical as the ones used in
the computations for the central contact points. Besides this,
the vast majority of new matrices can be computed using
the same subroutines as in the point-wise formulation, what
gives some space for an optimisation of the computer code.

The values of the penalty parameters were adopted to keep
the penetration below 4 % of the beam diameter.

6.1 Example 1

Let us consider a set of two cantilever beams 1 and 2 with
the lengths l1 = l2 = 6.021 and the angle between their axes
ϕ = 9.46◦ in the plan view, as presented in Fig. 10. Both
beams have circular cross-sections with the radius r = 0.1
and are made of a linearly elastic material characterised with
the Young’s modulus E = 250× 105 and the Poisson’s ratio
ν = 0.3.The initial gap separating the beams is gN0 = 0.001.

The Coloumb friction parameter is taken as μ = 0.1. The
beams are forced into contact by the nodal displacements
�1 = �2 = 0.2 applied in 60 increments at the free ends of
both beams. Each beam is discretised by 5 co-rotational finite
elements proposed by Crisfield [20]. The penalty parameters
used in the calculations are εN = 3 × 103 εT = 1 × 103.

The friction state in this example is slip. The values of the
measure of the relative sliding—the plastic tangential gap
gp
T during the deformation process in 60 increments are pre-

sented in Figs. 11a, b for various contact points and various
formulations. Due to symmetry between the beams the slid-
ing distance is the same along each of the beams, so only one
set of results for one beam is presented.

Figure 11b gives a comparison between the point-wise
formulation and the present multiple-point formulation. It is
clear that the new approach is characterised by larger easy
for sliding. It is due to the fact that the normal contact forces
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are distributed along the contact zone (line) instead of being
concentrated at a single spot. In this situation the resistance
to sliding is smaller.

Figure 11a showing the accumulated sliding distance for
the central and the backward contact points indicates, that
the three contact points (the results for the forward and the
backward points are virtually identical) move together. The
difference between the distance is due to the fact that for
technical reasons the computations for the additional points
must start one increment later than for the central point. This

0 20 40 60
increment
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0

FT

multiple-point
central

point-wise

multiple-point
backward

Fig. 12 Example 1—evolution of frictional force
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Z

2 = 0.2 

1 = 0.2 

Fig. 13 Example 1—final deformation of beam axes

difference is kept constant during the process, what means
that the points indeed move together along the beam.

Figure 12 presents the results of the friction force compo-
nent along one beam; again due to symmetry the results are
identical for beams 1 and 2. In the slip state the friction force
for the Coulomb model is proportional to the normal con-
tact force. The distribution of the contact interaction along
the contact zone in the multiple-point formulation results in
smaller values of penetration and the contact forces, what is
evident in the presented graph.

Thefinal deformed shape of beamaxes is shown in Fig. 13.

6.2 Example 2

A symmetric assembly consisting of four identical beams is
considered. The beam lengths are l = 15.31 and their axes
are crossed in pairs in the plan view at the angles ϕ = 21.80◦,
as presented in Fig. 14. The mid-points of all the beams have
the imposed support conditions resulting from the symmetry.
The beams are made of a linearly elastic material charac-
terised with the Young’s modulus E = 250 × 105 and the
Poisson’s ratio ν = 0.3 and have circular cross-sections with
the radius r = 0.1. The initial gaps separating the beams are
gN0 = 0.033. The Coloumb friction parameter is taken as
μ = 0.1. The beams are forced into contact by simultaneous
application of 8 nodal displacements � = 0.25 in 30 incre-
ments at all the beams tips. Each beam is discretised by 10
co-rotational finite elements developed byCrisfield [20]. The
problem was solved using the penalty parameters εN = 103

and εT = 102.
Due to symmetry there are only two different contact

points, depicted by A and B in Fig. 14. Also, at every con-
tact spot the contact behaviour including the sliding distance,
elastic tangential gaps and friction force components is the
same for each of two contacting beams.

The example presented here is characterised by the stick
state. Figure 15a, b presents the evolution of the elastic part

Fig. 14 Data for example
2—beam axes layout and
imposed displacements X
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Z

Y X

Z

X Y
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3D view 
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Fig. 15 Example 2—evolution
of elastic tangential gaps at
contact points in the stick
frictional case: a point A,
b point B
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Fig. 16 Example 2—evolution
of plastic tangential gaps at
contact points in the slip
frictionless case: a point A,
b point B
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of the tangential gap gp
T computed at the contact zones A and

B for various contact pairs and compared with the point-wise
formulation. To give the comparison with the frictionless
case, Fig. 16a, b presents the similar comparison, but related
to the plastic part of the tangential gap gp

T which in this
case represents the total sliding distance in the resistance-
less case.

In the fricional case it is clearly visible that the distribu-
tion of contact interactions in the multiple-point formulation
leads to the smaller values of elastic tangential gap and the
resulting friction force than in the case of typical point-
wise model where the interaction is concentrated in a single
point.

It can also be noted that, similarly as in Example 1,
the three points in the presented contact model are moving
together. The evolution of the tangential gaps in the addi-
tional points, forward and backward is virtually identical,
that is why only one of them is depicted in Figs. 15 and 16.
Each of these two evolutions follows the one for the central
point, with a shift related to the starting value of the gap at
the central point computed at the very first increment, when
due to computational reasons the additional points cannot be
included in the analysis.

The final deformed shape of beamaxes is shown in Fig. 17.

X Y

Z

Fig. 17 Example 2—final deformation of beam axes

7 Concluding remarks

The present paper includes an extension of themultiple-point
beam-to-beam contact formulation [16] to the frictional case.
The introduction of two additional contact pairs allows to
model the situation when the contacting beams form acute
angles and the resulting contact zone is not a single point.

One could certainly think of introducing more points but
the presented approach is devoted only to the simplest possi-
ble three-point approach. A further analysis of models with
more additional points constitutes an interesting topic for a
future research.
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The paper includes the full formulation of the contact con-
tributions to the weak form and its linearisation describing
the general contact problem. The appropriate kinematic vari-
ables are introduced taking into account the possibility of
independent frictional movement of the contact point along
each of contacting beams. These variables are determined
for the additional points using the central point coming from
the point-wise formulation as a reference. The required vari-
ations of the variables with respect to the displacements
are computed and then discretised using the finite element
methodology with appropriate contact finite element intro-
duced. The resulting consistent tangent stiffness matrix and
the residual vectors are ready to be embedded in the finite
element model of contacting beams. The author’s computer
programs written in Fortran language were used to solve
numerical examples which confirm the effectiveness of the
proposed solution in the frictional cases.

It should be emphasized once again, that the proposed
beam-to-beam contact element with additional points is
based on the existence and uniqueness of the closest point
location procedure. If this procedure is unable to determine
uniquely the closest points which are the central points in the
suggested model, than the additional points cannot be found,
either. Hence, the proposed approach may be viewed as an
alternative for the standard point-wise contact in the cases
of beams forming acute angles, but not in the cases of par-
allel or conforming beams or when one beam wraps around
another. It might also be used as an intermediate link between
the point-wise contact approach for large angles between
tangents and the node-to-segment or mortar approach for
conforming beams.

It is planned to use the derived formulation in the gen-
eral beam-to-beamcontactmodelwhichwould automatically
switch between the point-wise contact for perpendicular or
almost perpendicular beams and the full node-to-segment
model for conforming beams, while the presented multiple-
point contact would be a transition link between the two
classical contact models.
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Appendix 1: Derivation and discretisation of
variables �δξmbn and �δξmf n

This derivation is given for �δξm f n , the case of �δξmbn

follows the identical pattern. The starting point is the orthog-

onality condition (7), which for the additional point concerns
only beamm. In the first step the variation is calculated, what
yields the following equation

δxm f n,m · xms f + xm f n,m · (
δxm f n − δxs f n

) = 0 (114)

where

xms f = xm f n − xs f n

Besides, the variation of the position vectors and its derivative
can be found using the following relations

δxm f n = xm f n,m · δξm f n + δum f n

δxs f n = xs f n,s · δξs f n + δus f n (115)

δxm f n,m = xm f n,mm · δξm f n + δum f n,m (116)

The next step is the calculation of the linearisation of Eq.
(114). This yields

�δxm f n,m · xms f + δxm f n,m · (
�xm f n − �xs f n

)

+�xm f n,m · (
δxm f n − δxs f n

)

+ xm f n,m · (
�δxm f n − �δxs f n

) = 0 (117)

Themajority of the kinematic variables related to the position
vectors of additional contact points required in (117) were
given in [16]. However, for the full self-consistency of this
derivation they are put together below

�δxm f n = xm f n,mmδξm f n�ξm f n + �um f n,mδξm f n

+ δum f n,m�ξm f n + xm f n,m�δξm f n + �δum f n

�δxs f n = xs f n,ssδξs f n�ξs f n + �us f n,sδξs f n

+ δus f n,s�ξs f n + xs f n,s�δξs f n + �δus f n

(118)

And the yet undefined expression for the derivative with
respect to the local co-ordinates of the variation linearisa-
tion of the position vector, also present in (117), reads

�δxm f n,m = xm f n,mmmδξm f n�ξm f n

+�um f n,mmδξm f n + δum f n,mm�ξm f n

+ xm f n,mm�δξm f n + �δum f n,m (119)

After substitution of (115), (116), (118) and (119) and some
reorganization, Eq. (117) can be given in the form

a�δξm f n = Rm f (120)

where

a = (
xm f n − xs f n

)
xm f n,mm + xm f n,mxm f n,m

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Comput Mech (2015) 56:243–264 261

With the simplifying notation

p1 = xm f n,mmmxms f + 3xm f n,mmxm f n,m

p2 = xs f n,sxm f n,mm

p3 = xs f n,ssxm f n,m (121)

the right hand side of (120) can be expressed as

Rm f = −p1 δξm f n �ξm f n + p2
(
δξm f n �ξs f n

+ δξs f n �ξm f n
) + p3 δξs f n �ξs f n

+ xm f n,mxs f n,s�δξs f n − xms f �δum f n,m

− δum f n,m
(
�um f n − �us f n

)

− (
δum f n − δus f n

)
�um f n,m

− xm f n,m
(
�δum f n − �δus f n

)

− δξm f n
[
xms f �um f n,mm + xm f n,mm

(
�um f n

−�us f n
) + 2xm f n,m�um f n,m

]

− [
xms f δum f n,mm + xm f n,mm

(
δum f n − δus f n

)

+ 2xm f n,mδum f n,m
]

�ξm f n

− (
xm f n,mδus f n,s + xs f n,sδum f n,m

)
�ξs f n

− δξs f n
(
xm f n,m�us f n,s + xs f n,s�um f n,m

)
(122)

After the finite element discretisation Rm f can be put in the
matrix form

Rm f = [
δuT

M δuT
S

]
Ram f 1

[
�uM

�uS

]

+
[
δuT

M f δuT
S f

]
Ram f

[
�uM f

�uS f

]

+
[
δuT

M f δuT
S f

]
Ram f 2

[
�uM

�uS

]

+ [
δuT

M δuT
S

]
RT
am f 2

[
�uM f

�uS f

]
(123)

Substitution of (123) to (120) leads to the relation (81) where

Rm f = 1

a
Ram f (124)

Rm f 1 = 1

a
Ram f 1 (125)

Rm f 2 = 1

a
Ram f 2 (126)

In order to define the matrices Ram f , Ram f 1 and Ram f 2

expressions for the second derivative of displacement with
respect to the local co-ordinates

δum f n,mm = Mm f n δuM (127)

and for the linearisation of variations of displacements and
their derivatives with respect to the local co-ordinates

�δus f n =
⎡

⎢
⎣

δuT
S f Gd1s f n �uS f

δuT
S f Gd2s f n �uS f

δuT
S f Gd3s f n �uS f

⎤

⎥
⎦ (128)

�δum f n =
⎡

⎢
⎣

δuT
M f Gd1m f n �uM f

δuT
M f Gd2m f n �uM f

δuT
M f Gd3m f n �uM f

⎤

⎥
⎦ (129)

�δum f n,m =
⎡

⎢
⎣

δuT
M f Hd1m f n �uM f

δuT
M f Hd2m f n �uM f

δuT
M f Hd3m f n �uM f

⎤

⎥
⎦ (130)

are also required.
The matrices Mm f n and Ms f n in (127) are calculated

explicitly as the derivatives of the subsequent components
of the matrices Hm f n and Hs f n with respect to the local co-
ordinates ξm and ξs .

The matrices Gd js f n, Gd js f n and Hd jm f n in Eqs. (128)–
(130) canbeobtainedbypartial differentiationof thematrices
Gs f n, Gs f n and Hm f n with respect to the nodal displace-
ments. This is done by the perturbation method in the same
way as it was discussed for the central contact points in [17].
For instance, in the case ofHd jm f n , if we split the appropriate
matrix Hm f n into row components

Hm f n =
⎡

⎣
H1m f n

H2m f n

H3m f n

⎤

⎦ (131)

then we get

Hd jm f n = ∂H jm f n

∂uM f
(132)

Additionally two auxiliary matrices

Ym f =
[

MT
m f n xms f + 2HT

m f n xm f n,m + GT
m f n xm f n,mm

−GT
s f n xm f n,mm

]

Ys f =
[

−HT
m f n xs f n,s

−HT
s f n xm f n, f

]

(133)

and the representation of vectors by means of their compo-
nents

xms f = [
xms f 1, xms f 2, xms f 3

]T

xm f n,m = [
xm f n,m1, xm f n,m2, xm f n,m3

]T (134)

are introduced. Finally thematrices in (123) can be expressed
as
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Ram f = −p1 · FT
m f Fm f − FT

m f YT
m f − Ym f Fm f

−
[(

HT
m f n Gm f n + GT

m f n Hm f n

)
−HT

m f n Gs f n

−GT
m f n Hs f n 0

]

−

⎡

⎢⎢
⎢
⎣

(
3∑

j=1
xm f n,mj Gd jm f n +

3∑

j=1
xms f j Hd jm f n

)

0

0 −
3∑

j=1
xm f n,mj Gd js f n

⎤

⎥⎥
⎥
⎦

(135)

Ram f 1 = −p1 · FT
m f 1 Fm f 1 + p2 ·

[
FT
m f 1 (Fs + F�s)

+ (Fs + F�s)
T Fm f 1

]

+p3 · (Fs + F�s)
T (Fs + F�s)

+xm f n,mxs f n,s (Rs + R�s) (136)

Ram f 2 = −p1 · FT
m f Fm f 1 + p2 · FT

m f (Fs + F�s)

−Ys f (Fs + F�s) − Ym f Fm f 1 (137)

to yield the discretised form of the kinematic variables
�δξm f n . The variable �δξmbn can be derived in the same
way with all the subscripts f replaced by b.

Appendix 2: Details of linearisation of friction kine-
matic variables

This appendix includes some relations used in the linearisa-
tion of kinematic variables for friction.

Linearisations of tangential gap variations (61) and (62).

�δgT i jn = si j∥
∥xi jn − xi j p

∥
∥

(
xi jn,i δξi jn

−xi j p,i δξi j p + δui jn − δui j p
)

× (
1 − ti j ⊗ ti j

) (
xi jn, j �ξi jn − xi j p,m �ξi j p

+�ui jn − �ui j p
) + si j ti j

· (�δui jn + xi jn,i i δξi jn �ξi jn + �ui jn,i δξi jn

+ δui jn,i �ξi jn + xi jn,i �δξi jn − �δui j p

− xi j p,i i δξi j p �ξi j p − �ui j p,i δξi j p

− δui j p,i �ξi j p − xi j p,i �δξi j p
)

(138)

where the subscript i is related to s-beam or m-beam (i = s
or m) and the subscript j is related to backward or forward
additional pair ( j = b or f ).

Linearisations of proportionality parameters given by (41)
and (42) introduced in friction contributions to theweak form
(53) and (54)

�pmj =
⎡

⎢
⎣

εT

Ft
T j

− pmj εT
(
Ft
T j

)2 Ft
T j · tmj

⎤

⎥
⎦ �gTmjn

− pmj εT
(
Ft
T j

)2 Ft
T j · ts j �gT s jn

− pmj εT geTmjn
(
Ft
T j

)2 ∥∥xmjn − xmjp
∥∥

Ft
T j

(
1 − tmj ⊗ tmj

)

× (
xmjn,m�ξmjn − xmjp,m�ξmjp + �umjn − �umjp

)

− pmj εT geT s jn
(
Ft
T j

)2 ∥∥xs jn − xs jp
∥∥

Ft
T j

(
1 − ts j ⊗ ts j

)

× (
xs jn,s�ξs jn − xs jp,s�ξs jp + �us jn − �us jp

)
(139)

�ps j =
⎡

⎢
⎣

εT

Ft
T j

− ps j εT
(
Ft
T j

)2 Ft
T j · ts j

⎤

⎥
⎦�gT s jn

− ps j εT
(
Ft
T j

)2 Ft
T j · tmj �gTmjn

− ps j εT geTmjn
(
Ft
T j

)2 ∥∥xmjn − xmjp
∥∥

Ft
T j

(
1 − tmj ⊗ tmj

)

× (
xmjn,m�ξmjn − xmjp,m�ξmjp + �umjn − �umjp

)

− ps j εT geT s jn
(
Ft
T j

)2 ∥∥xs jn − xs jp
∥∥

Ft
T j

(
1 − ts j ⊗ ts j

)

× (
xs jn,s�ξs jn − xs jp,s�ξs jp + �us jn − �us jp

)
(140)

where j = b or f .

123



Comput Mech (2015) 56:243–264 263

Appendix 3: Matrices used in finite element discreti-
sation

For the self-consistency of this paper this appendix presents
the matrices related to the additional contact points derived
in [16] for the frictionless contact formulation and tran-
ferred directly to the frictional formulation discussed here.
In general they are expressed in terms of specific parameters,
vectors andmatrices related to the central contact pair, which
do not have the subscript b or f , like xsn, xmn, Fm, Fs .
Those are not presented here, the interested reader may refer
to [17] or [4].

Matrix F�s in (76) and (77)

F�s = rm
3ls

cosϕ
(
1 − cos2 ϕ

)3/2 D0 (141)

where

D0 = DT
s

[
xmn,m

dms
− pms

dms
∥∥xsn,s

∥∥2
xsn,s

]

+DT
m

[
xsn,s

dms
− pms

dms
∥∥xmn,m

∥∥2
xmn,m

]

(142)

Dm = [
Hmn 0

] + xmn,mFm

Ds = [
0 Hsn

] + xsn,sFs (143)

pms = xmn,m · xsn,s

dms = ∥
∥xmn,m

∥
∥

∥
∥xsn,s

∥
∥

fms =
∥∥xmn,m

∥∥
∥
∥xsn,s

∥
∥ (144)

Matrix R�s in (78)

R�s = rm
3ls

{[(
1 − c2

)−3/2 + 3c2
(
1 − c2

)−5/2
DT
0 D0

]

+ c
(
1 − c2

)−3/2
(D1 − D2 − D3)

}
(145)

where

D1 = 1

dms

(
3∑

i=1

xmn,miDdmi + DT
mDs + DT

s Dm

)

− 1

d2ms

(
DT
s xmn,m + DT

mxsn,s

) (
1

fms
xTmn,mDm

+ fmsxsn,sDs
)

(146)

D2 = 1

dms
∥∥xmn,m

∥∥2

[

DT
mxmn,m

(
xTmn,mDs + xTsn,sDm

)
+

+ pms

(

DT
mDm +

3∑

i=1

xmn,miDdmi

)]

− pms

d2ms

∥∥xmn,m
∥∥4

DT
mxmn,m

×
(
fms

∥∥xmn,m
∥∥2 xTsn,sDs + 3dmsxTmn,mDm

)
(147)

D3 = 1

dms
∥∥xsn,s

∥∥2

[

DT
s xsn,s

(
xTmn,mDs + xTsn,sDm

)

+ pms

(

DT
s Ds +

3∑

i=1

xsn,siDdsi

)]

− pms

d2ms

∥∥xsn,s
∥∥4

DT
s xsn,s

×
(∥∥xsn,s

∥∥2

fms
xTmn,mDm + 3dmsxTsn,sDs

)

(148)

Ddm1 =
[

Hd1mn 0
0 0

]
+

[
MT

mn1
0

]
Fm + FT

m

[
Mmn1 0

]

+ xmn,mmm1FT
mFm + xmn,mm1Rm

Ddm2 =
[

Hd2mn 0
0 0

]
+

[
MT

mn2
0

]
Fm + FT

m

[
Mmn2 0

]

+ xmn,mmm2FT
mFm + xmn,mm2Rm

Ddm3 =
[

Hd3mn 0
0 0

]
+

[
MT

mn3
0

]
Fm + FT

m

[
Mmn3 0

]

+ xmn,mmm3FT
mFm + xmn,mm3Rm (149)

Dds1 =
[

0 0
0 Hd1sn

]
+

[
0
MT

sn1

]
Fs + FT

s

[
0 Msn1

]

+ xsn,sss1FT
s Fs + xsn,ss1Rs

Dds2 =
[

0 0
0 Hd2sn

]
+

[
0
MT

sn2

]
Fs + FT

s

[
0 Msn2

]

+ xsn,sss2FT
s Fs + xsn,ss2Rs

Dds3 =
[

0 0
0 Hd3sn

]
+

[
0
MT

sn3

]
Fs + FT

s

[
0 Msn3

]

+ xsn,sss3FT
s Fs + xsn,ss3Rs (150)

and the subdivision of vectors and matrices into components
as in (130), (131) and (134) was introduced.
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