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Abstract
Introduction/objective  Gastric conduit (GC) is used for reconstruction after esophagectomy. Anastomotic leakage (AL) 
incidence remains high, given the extensive disruption of the gastric circulation. Currently, there is no reliable method to 
intraoperatively quantify gastric perfusion. Hyperspectral imaging (HSI) has shown its potential to quantify serosal StO2. 
Confocal laser endomicroscopy (CLE) allows for automatic mucosal microcirculation quantification as functional capillary 
density area (FCD-A). The aim of this study was to quantify serosal and mucosal GC’s microperfusion using HSI and CLE. 
Local capillary lactate (LCL) served as biomarker.
Methods  GC was formed in 5 pigs and serosal StO2% was quantified at 3 regions of interest (ROI) using HSI: fundus (ROI-
F), greater curvature (ROI-C), and pylorus (ROI-P). After intravenous injection of sodium-fluorescein (0.5 g), CLE-based 
mucosal microperfusion was assessed at the corresponding ROIs, and LCLs were quantified via a lactate analyzer.
Results  StO2 and FCD-A at ROI-F (41 ± 10.6%, 3.3 ± 3.8, respectively) were significantly lower than ROI-C (68.2 ± 6.7%, 
p value: 0.005; 18.4 ± 7, p value: 0.01, respectively) and ROI-P (72 ± 10.4%, p value: 0.005; 15.7 ± 3.2 p value: 0.001). LCL 
value at ROI-F (9.6 ± 4.7 mmol/L) was significantly higher than at ROI-C (2.6 ± 1.2 mmol/L, p value: 0.04) and ROI-P 
(2.6 ± 1.3 mmol/L, p value: 0.04). No statistically significant difference was found in all metrics between ROI-C and ROI-P. 
StO2 correlated with FCD-A (Pearson’s r = 0.67). The LCL correlated negatively with both FCD-A (Spearman’s r =  − 0.74) 
and StO2 (Spearman’s r =  −  0.54).
Conclusions  GC formation causes a drop in serosal and mucosal fundic perfusion. HSI and CLE correlate well and might 
become useful intraoperative tools.

Keywords  Esophagectomy · Esophageal resection · Gastric conduit · Blood flow assessment · Perfusion assessment · 
Hyperspectral imaging · Confocal laser endomicroscopy · Enhanced reality

Esophagectomy is a major and morbid surgical procedure, 
which plays a central role in the multidisciplinary treatment 
of patients affected by esophageal neoplasia [1]. Postopera-
tive complications negatively affect long-term oncological 
survival [2]. Anastomotic leakage (AL) is a particularly 
severe complication, which has a higher incidence following 
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esophagectomy when compared to other digestive surgical 
procedures [3]. Although the etiology of anastomotic leaks 
(AL) is multifactorial, a well-identified risk factor is an 
insufficient perfusion at the anastomotic site. In fact, the 
resected esophagus is frequently replaced by a gastric con-
duit (GC), which is obtained from the tubulation of the stom-
ach, which involves a sudden disruption of most of its blood 
supply, resulting in an unsatisfactory anastomotic perfusion.

The appreciation of clinical parameters, such as a serosal 
color or the presence of pulse, is inadequate to rule out a 
marginally perfused anastomosis [4]. Several technologies 
have been explored to intraoperatively assess gastrointestinal 
tract perfusion. However, the majority of them either lacks 
reproducibility, disrupts the surgical workflow, or provides 
operator-dependent results [5]. Fluorescence angiography 
(FA), a user-friendly technology which requires a near-infra-
red camera and the intravenous injection of an exogenous 
fluorophore, has shown promising results [6–8]. However, 
the absence of a validated quantification method of the fluo-
rescence signal is one of the main drawbacks to be solved 
before understanding the real impact of this technique on 
anastomotic complications. Additionally, the need for inject-
ing a contrast agent represents a regulatory burden, which 
in practice hinders the diffusion of this technique beyond 
research protocols and its introduction as a standard of care.

Hyperspectral imaging (HSI) is a contrast-free technol-
ogy, which can provide a real-time snapshot of the chemical 
characteristics of a tissue. In particular, this imaging tech-
nique allows for tissue oxygen saturation (StO2) quantifi-
cation and its utility during gastrointestinal procedures has 
been previously assessed [9–11]. The main shortcoming of 
HSI is the lack of video rate, which de facto greatly limits its 
usability as a surgical navigation tool. Our group previously 
described and validated the HYPER (HYperspectal-based 
Enhanced Reality) tool. HYPER results from the super-
imposition of the HSI-generated perfusion quantification 
pseudo-color map onto a real-time video of the surgical 
scene, thereby allowing for a precise spatial localization of 
the spectral information during surgical procedures. HYPER 
strongly correlated with robust ischemia parameters in an 
experimental small bowel and liver partial ischemia models 
[12, 13]. However, since HSI is an optical imaging modality, 
it exclusively allows for a superficial tissue analysis. As a 
result, serosal perfusion only can be quantified. It has been 
previously shown that the ischemia behavior within the gas-
trointestinal tract varies when comparing the serosal with the 
mucosal side [14]. Confocal laser endomicroscopy (CLE) 
is a high-resolution microscopic optical imaging modality, 
which allows for a detailed morphological assessment of the 
gastrointestinal mucosa. CLE potentially provides a precise 
snapshot of the tissue microcirculation, simultaneously giv-
ing a morphological in vivo histopathological appraisal and 

computing the functional capillary density area (FCD-A) 
index or the speed of red blood cells [15–17].

The aim of the current study was twofold: first, to dem-
onstrate the accuracy of HYPER in a porcine gastric con-
duit model; second, to compare HSI serosal StO2 with 
CLE-based mucosal functional capillary density, using the 
ischemia surrogate, local capillary lactate (LCL), as “ground 
truth.”

Methods

Setup and experimental flow

Five adult male pigs (Large White, mean weight: 
44.24 ± 7.6 kg) were involved in this study, which is part 
of the ELIOS protocol (Endoscopic Luminescent Imaging 
for Oncology Surgery), approved by both the local Ethi-
cal Committee on Animal Experimentation (ICOMETH 
No. 38.2016.01.085), and by the French Ministry of Supe-
rior Education and Research (MESR) (APAFIS#8721-
2017013010316298-v2). Animals were managed according 
to French laws for animal use and care, to the directives 
of the European Community Council (2010/63/EU) and to 
ARRIVE guidelines [18].

Neither IRB approval nor written consent was needed 
since this is an experimental study.

The pigs were fasted preoperatively for 24 h and had free 
access to water. Premedication was administered 10 min 
before surgery, with intramuscular ketamine (20 mg/kg) and 
azaperone (2 mg/kg). Intravenous propofol (3 mg/kg) and 
rocuronium (0.8 mg/kg) were used for induction. Anesthesia 
was maintained with 2% isoflurane.

Through a median laparotomy, all gastric vessels were 
divided using a monopolar vessel-sealing device (LigaS-
ure Advance™, Medtronic, USA), and the right gastroepi-
ploic artery was exclusively maintained. Successively, an 
approximately 4 cm wide GC was created, starting from the 
lesser curvature and using a surgical stapler (ENDO GIA™ 
equipped with 45 mm Black Reloads, Medtronic, USA) 
(Fig. 1).

The next step involved a hyperspectral imager (TIVITA®, 
Diaspective Vision GmbH, Germany), placed at 35–40 cm 
from the porcine stomach, and an HSI acquisition was per-
formed immediately after GC formation. Using the camera-
integrated software, three regions of interest (ROI) were 
manually selected as follows: ROI-P (pyloric region), ROI-C 
(greater curvature/body), and ROI-F (fundic region/future 
anastomosis). StO2 was quantified in correspondence of all 
ROIs (Fig. 1). As previously described [12, 13, 19], the sys-
tem had been customized by adding a webcam next to the 
HSI objective, in order to capture a real-time video of the 
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surgical field and superimpose static HSI pseudo-color StO2 
quantification images onto the live video, obtaining HYPER.

Once a small opening was made in correspondence of 
the stapler line, 2 mL of 10% fluorescein (Fluocyne®, Serb, 
France) was administered intravenously. Subsequently, a 
confocal laser endomicroscopy probe (GastroFlex™ UHD, 

Mauna Kea Technologies, France), with a 55 to 65 μm con-
focal depth and a 1 μm resolution, was inserted through the 
stapler line’s opening and was manually driven to scan the 
mucosa in correspondence of the ROIs, which were dis-
played on the monitor using HYPER (Fig. 2). Thirty seconds 
long video clips were acquired. In the post-processing phase, 

Fig. 1   The left images show the RGB picture (top left) of the stom-
ach prior to tubularization and its corresponding StO2 quantification 
pseudo-color image (bottom left). The images on the right depict the 

stomach after gastric tube creation (top right in RGB and bottom right 
StO2 quantification) with clear StO2 decrease exclusively at ROI-F 
after gastric conduit formation

Fig. 2   Schematic representa-
tion of HYPER, resulting from 
the superimposition of the StO2 
quantification pseudo-color 
image on the RGB video. The 
ROIs are clearly visible in 
HYPER and this allowed for a 
precise mucosal scanning with 
CLE
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the videos were analyzed with the IC Viewer software (ver-
sion 3.8.6) (Mauna Kea Technologies, France). The software 
can automatically recognize elongated shapes with fluores-
cent contrast and classify them as vessels. Additionally, the 
software allows to compute the functional capillary density 
area (FCD-A) index. This index is calculated by multiplying 
the mean capillary diameter by the total vessel length, and 
by dividing the result by the entire area of the image.

As biological “ground truth,” local capillary lactates 
(LCLs) were measured [12, 16, 17, 19–22]. A full-thickness 
cut of the gastric wall was made in correspondence of the 
ROI shown by means of HYPER, and a blood drop was 
obtained. A portable strip-based lactate analyzer (EDGE, 
Apex Bio, Taiwan) was used to quantify LCL levels.

At the end of the procedure, the animals were euthanized 
with an intravenous injection of Pentobarbital Sodium 
(40 mg/kg) (Exagon®, AXIENCE, France), under a 5% iso-
flurane anesthesia.

Prediction of local capillary lactates based on HSI 
StO2 and on the CLE FCD‑A index

Similarly to previous studies on bowel perfusion assess-
ment using HSI [12, 19], LCL prediction models based 
on the metrics provided by both optical imaging technolo-
gies were studied. The relationship between the biological 
marker (LCL) and both optical imaging output parameters 
(HSI StO2 and the CLE FCD-A index) were modeled using 
an exponential regression analysis. This allowed to create a 
prediction algorithm of LCL values from the corresponding 
HSI StO2 and the CLE-FCD-A index. The following fitting 
functions were found:

(1)	 Based on HSI StO2:
	   predicted LCL = e(−0.0229× StO2+2.93)

(2)	 Based on the CLE-FCD-A index:

	   predicted LCL = e(−10.5× FCD−A +2.56)

The precision of both models, indicated as the difference 
between the sampled LCL values and the predicted LCL 
values of both prediction models, was computed by the cor-
responding exponential equation.

Statistical analysis

The statistical analysis was performed using the Prism 8 
software (Graph Pad, USA) and the Scikit-learn Python 
library [23]. The parametric or non-parametric one-way 
ANOVA with multiple comparison tests was used as appro-
priate to compare the FCD-A index, LCL, and StO2 levels 
among different ROIs. Pearson’s or Spearman’s correlations 
were used to measure linear correlations and non-linear cor-
relations, respectively. Exponential regression was used to 
investigate variables presenting a non-linear relationship. A 
Wilcoxon test was performed for paired comparison of lac-
tate prediction algorithms (based on HYPER and on CLA), 
since data distribution was non-Gaussian. A p value < 0.05 
was considered statistically significant.

Results

The HYPER tool allowed for the precise identification of 
the ROIs onto the stomach surface, thereby guiding the CLE 
scanning and LCL sampling successfully. The main results 
are schematically represented in Fig. 3.

HSI‑based StO2 quantification

StO2 measured in correspondence of ROI-F (41 ± 10.7%) 
was significantly lower than at ROI-C (68.2 ± 6.7%, p 

Fig. 3   Graphical representation of the LCL and optical imaging results at the different ROIs. After gastric conduit formation, ROI-F showed a 
significant LCL increase (A) and StO2 (B), as well as a decrease in the FCD-A index (C) when compared to the remaining ROIs
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value: 0.005) and ROI-P (72 ± 10.4%, p value: 0.005). 
There was no statistically significant difference between 
ROI-C and ROI-P.

CLE‑based FCD‑A index

The FCD-A index at ROI-F (3.3 ± 3.8) was significantly 
lower when compared to ROI-C (18.4 ± 7, p value: 0.01) 
and ROI-P (15.7 ± 3.2, p value: 0.001). No difference was 
found between ROI-C and ROI-P.

LCL quantification

The LCL value at ROI-F (9.6 ± 4.7 mmol/L) was signifi-
cantly higher than at ROI-C (2.6 ± 1.2 mmol/L, p value: 
0.04) and ROI-P (2.6 ± 1.3 mmol/L, p value: 0.04). ROI-C 
and ROI-P did not differ statistically.

Correlations

All correlations were statistically significant and are 
shown in Fig. 4. In particular, the correlations between:

•	 HSI-based StO2 and the CLE-based FCD-A index gave 
a Pearson’s R of 0.67 (p value: 0.006);

•	 HSI-based StO2 and LCL gave a Spearman’s R of − 0.54 
(p value: 0.04);

•	 The CLE-based FCD-A index and LCL gave a Spear-
man’s R of − 0.74 (p value: 0.001).

LCL prediction based on HSI StO2

The mean error of the lactate prediction model was 
2.96 ± 2 mmol/L. The median error was 2 mmol/L. A total 
of 95% of errors occurred for lactate values < 6.8 mmol/L.

LCL prediction based on CLE FCD‑A index

The lactate prediction model showed a mean error of 
1.7 ± 1.1 mmol/L, with a median error of 1.43 mmol/L. 95% 
of errors occurred for lactate values < 4 mmol/L.

Comparison between HSI StO2 and CLE FCD‑A index 
LCL prediction models

The Wilcoxon test between both prediction models resulted 
in the FCD-A index, LCL prediction model being signifi-
cantly more accurate than the StO2-based one (p value: 0.03) 
(Fig. 5A).

However, as observed in previous studies using HSI to 
assess bowel ischemia, the accuracy of LCL prediction 
models increased greatly by excluding the frankly ischemic 
ROIs (LCL > 6 mmol/L) [12, 19]. In fact, in the exponential 
regression relationship between LCL and both StO2 and the 
FCD-A index, the 4 ROIs with LCL > 6 mmol/L appear as 
outliers (Fig. 4B, C). Consequently, the new StO2-based LCL 
prediction (excluding ROIs with LCL > 6 mmol/L) improved 
with a mean error of 0.88 ± 0.69 mmol/L, a median error 
of 0.79 mmol/L, with 95% of errors occurring for lactate 
values < 2 mmol/L. In addition, the new FCD-A index-based 
LCL prediction (excluding ROIs with LCL > 6 mmol/L) 
improved with a mean error of 0.82 ± 0.67 mmol/L and a 
median error of 0.47 mmol/L, with 95% of errors occurring 
for lactate values < 1.83 mmol/L.

The Wilcoxon test between those new prediction models 
did not show any statistically significant difference (Fig. 5B).

Discussion

In the current study, it was possible to use HYPER in order 
to precisely assess gastric conduit perfusion immediately 
after its creation. The enhanced reality tool allowed for an 
accurate spatial localization of the StO2 information, and this 
subsequently allowed to scan the gastric mucosa with CLE 

Fig. 4   The significant positive correlation between CLE and HSI 
metrics is shown in (A). However, CLE (B) presents a stronger expo-
nential relationship than StO2 (C) with LCL. In (B, C), the black 

spots represent the outlying ROIs, which present LCL > 6  mmol/L. 
Those ROIs consistently worsen the accuracy of both LCL prediction 
models as shown in Fig. 5
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and sample the LCL in exact correspondence of each ROI. 
Additionally, we observed a lower tissue perfusion, with 
both optical imaging techniques, at the gastric fundus (ROI-
F), when compared to the gastric body (ROI-C) and to the 
pylorus (ROI-P). The relative ischemia present at the fundic 
region was also confirmed by the significant increase in LCL 
values within this ROI, in comparison with the remaining 
ROIs. These findings demonstrate that the future anasto-
motic region on the gastric conduit suffers from a relative 
ischemia and this is consistent with previous animal [24] 
and clinical [25, 26] studies in which perfusion was assessed 
during different phases of esophageal resection. Although 
we did not assess baseline gastric perfusion routinely in our 
study, we can assume that a perfusion drop from baseline 
levels occurred after gastric tube completion, as observed 
by others [24, 25]. Accordingly, in the example shown in 
Fig. 1, StO2 dropped consistently at ROI-F after slender tube 
creation of the stomach, whereas it changed only marginally 
in the other ROIs.

The marginal perfusion of esophagogastric anastomoses, 
resulting from a sudden disruption of the majority of the gas-
tric fundus blood supply, is an open critical issue in digestive 
surgery. Consequently, in the past, several authors have used 
different tools to assess gastric blood flow intraoperatively, 
in an attempt to identify poorly perfused areas and possibly 
prevent anastomotic complications. Budlau et al. used a spe-
cial endoscopic probe which could simultaneously act as a 
Doppler flow meter and spectrometer, hence allowing the 
concurrent quantification of mucosal blood flow and oxy-
gen saturation [27]. In a feasibility study, the authors tested 
the usability of this probe in healthy individuals undergo-
ing gastroscopy for several reasons. In a second study, the 
same authors successfully quantified mucosal oxygen satu-
ration intraoperatively during esophagectomy by means of 
a similar spectrometric probe [26]. Recently, Irino et al. 
used a pulse oximetry device attached to an ear probe to 
assess the serosal oxygen saturation of the stomach during 

different steps of esophagectomy [25]. However, all of those 
probe-based optical techniques provide a pin-point perfusion 
quantification with none or minimal spatial information, and 
this greatly limits their routine intraoperative use. In this 
view, technologies with a better spatial resolution, such as 
laser speckle [28], fluorescence angiography (FA) [6], or 
thermography [29] have been explored. However, in spite 
of interesting results, the laser speckle’s perfusion measure-
ment is highly variable in relation to distance and angula-
tion from the target, and the accuracy of this technology has 
not yet been validated in a controlled experimental setting, 
using reliable ischemia biomarkers. On the other hand, FA 
is an easy-to-use technology, which uses an exogenous fluo-
rophore and special near-infrared (NIR) cameras, which are 
becoming increasingly available in the OR, both as open and 
laparoscopic cameras. This technique is effective in assess-
ing GC blood flow [6, 8, 30]. However, the evaluation is 
mostly based on a qualitative assessment, limiting FA repro-
ducibility. Several FA quantification methods have been pro-
posed [31, 32], showing promising results. However, those 
techniques have not been validated using robust biological 
ischemia markers, and as a result, their actual correlation 
with tissue perfusion remains unclear. Recently, a previously 
experimentally validated FA quantification method has been 
used to measure GC perfusion [33]. This quantitative FA 
is based on a very similar algorithm to the one previously 
developed and validated by our group [16, 21, 22], which 
computes the speed required by the injected fluorophore to 
reach its maximal intensity peak pixel-by-pixel. The results 
of this method are promising. However, this metric is not 
yet universally accepted and larger trials are necessary to 
understand its real clinical usefulness. Nishikawa et al. [29] 
have shown interesting results using thermal imaging during 
esophagectomies. In particular, the authors proposed a score 
based on the temperature and on the length of the gastric 
conduit and its supplying vessels. In their large series, they 
observed that patients with a lower score were more likely to 

Fig. 5   The accuracy of LCL prediction models is shown in (A), when 
considering all ROIs, and here the FCD-A index-based model is sig-
nificantly more accurate than the StO2-based model. However, when 

excluding the outlying ROIs (LCL > 6  mmol/L; shown in B), the 
accuracy of both prediction models is increased and they present no 
statistically relevant differences
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develop anastomotic leakage. However, in our opinion, such 
a score, despite remarkable results, might be too complex to 
routinely reproduce outside of a research protocol.

Previously, our group used hyperspectral imaging to 
assess StO2 intraoperatively during esophagectomy [11]. In 
a pilot study, the feasibility of the technique was assessed, 
without using HYPER and subsequently only having a lim-
ited intraoperative colocalization of the perfusion informa-
tion. In the current experimental study, we used HYPER, 
in order to localize each ROI intraoperatively, with a high 
degree of accuracy, and subsequently to perform a mucosal 
scan with CLE and LCL sampling on similar exact spots. 
HYPER allowed us to compare both optical techniques with 
one another and with local capillary lactate levels. Interest-
ingly, our findings highlighted a good correlation between 
mucosal and serosal perfusion assessed using HSI and CLE, 
respectively. The metrics obtained by both imaging tech-
niques correlated negatively with local capillary lactate val-
ues, confirming the biological validity of both methods. CLE 
correlated strongly and better than HSI to LCL levels. This 
finding was also confirmed by LCL prediction models, in 
which the FCD-A index-based prediction was significantly 
better than the StO2-based model. On the one hand, this 
could be explained by a better accuracy of CLE than HSI 
in determining blood perfusion. On the other hand, it has 
been demonstrated that ischemia is more extended at the 
mucosal than at the serosal side [14], and it is also possible 
that, during our experiment, mucosal ischemia was more 
severe and subsequently correlated better to LCL values than 
to the serosal value. However, this is merely a hypothesis, 
which cannot be demonstrated by our experimental setup. 
Interestingly, as previously observed [12, 19], by exclud-
ing the clearly ischemic ROIs (the ones presenting LCL 
values > 6 mmol/L), the precision of both LCL prediction 
models greatly increased. The computed prediction mod-
els excluding the highly ischemic ROIs showed no statisti-
cal difference between them. The poor accuracy of HSI to 
detect very ischemic regions does not affect its clinical util-
ity, since those areas are generally well-recognized visually, 
and the regions difficult to assess are the ones marginally 
perfused, which were recognized by means of HSI with good 
precision.

CLE is not meant to assess bowel ischemia, since it has 
been conceived to perform a high-resolution in vivo histo-
pathological assessment. However, its efficacy in identifying 
porcine bowel ischemia, based on micro-imaging morpho-
logical changes [16] or on the FCD-A index [17], had been 
previously demonstrated. In our study, CLE also proved to 
be a very precise tool to assess gastrointestinal perfusion. 
However, despite these promising results, the microscopic 
field of view greatly limits the usability of this device as an 
intraoperative perfusion assessment tool, as for all probe-
based devices.

HSI is a relatively easy-to-use technique, which requires 
an additional camera (hyperspectral imager) providing the 
blood flow information as an immediate output. As previously 
described, this technology does not impair the surgical work-
flow during esophagectomy [11], since it is contactless, non-
invasive and the acquisition time is less than 10 s. Differently, 
the intraoperative use of CLE in order to assess the mucosal 
perfusion of the gastric graft could be more troublesome. 
Firstly, as mentioned above, this technology has a microscopic 
spatial resolution, providing pin-point information. Secondly, 
it does not provide immediate perfusion results, requiring a 
videos post-processing. Thirdly, its utilization in the OR would 
either imply the intraoperative use of flexible endoscopy, with 
the potential hazard of manipulation of a recent esophago-gas-
trostomy or would require performing a gastrotomy on the GC, 
as in our experimental setup. Both CLE endoluminal routes 
are time consuming and would theoretically affect the surgical 
workflow; therefore, we believe that despite its greater preci-
sion and its experimental interest, CLE might not be suitable 
for routine intraoperative use.

The main drawbacks of our study lie in the very limited 
sample size, in the animal model and in the acute nature of 
the experiments. However, our study has the merit to dem-
onstrate for the first time the positive strong correlation exist-
ing between hyperspectral imaging and a cutting-edge pre-
cise microscopic optical imaging technology such as CLE. 
This confirms the potential of HSI in identifying marginally 
perfused areas of gastric conduit tract and the usefulness of 
HYPER as a potential surgical navigation tool for this type of 
surgery. Despite being promising, our findings must be con-
firmed in the clinical setting with lager numbers in order to be 
able to draw any clinical and cost/benefit conclusion.
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