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Abstract. In this paper we address the problem of drawing planar graphs with circular
arcs while maintaining good angular resolution and small drawing area. We present a lower
bound on the area of drawings in which edges are drawn using exactly one circular arc. We
also give an algorithm for drawing n-vertex planar graphs such that the edges are sequences
of two continuous circular arcs. The algorithm runs in O(n) time and embeds the graph
on the O(n) x O(n) grid, while maintaining © (1/d(v)) angular resolution, where d(v) is
the degree of vertex v. Since in this case we use circular arcs of infinite radius, this is also
the first algorithm that simultaneously achieves good angular resolution, small area, and
at most one bend per edge using straight-line segments. Finally, we show how to create
drawings in which edges are smooth C!-continuous curves, represented by a sequence of
at most three circular arcs.

1. Introduction

The study of methods for rendering planar graphs is central in the graph drawing liter-
ature. In planar graph drawings, vertices are represented by distinct points in the plane
and edges are drawn as continuous curves that do not cross one another [1]. An important
characteristic of a graph drawing is its readability, and some of the essential qualities

* A preliminary version of this paper appeared in the Proceedings of the 7th Annual Symposium on Graph
Drawing, 1999. The first author was partially supported by ONR Grant N0OQ14-96-1-0829, the other three
authors were partially supported by NSF Grant CCR-9732300 and ARO Grant DAAH04-96-1-0013.
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that determine readability include the following:

1. Edge smoothness: edges should be drawn with “smooth” curves. Ideally, we prefer
straight-line segments. If some other considerations prevent the use of straight
lines, then edges should be drawn as simple smooth low-degree curves or polylines
with few bends.

2. Area: vertices and bend points should be placed at integer grid points in as small a
box as possible. Ideally, vertices and bend points should be placed on an O(n) x
O(n) grid, where n is the number of vertices in the graph.

3. Angular resolution: for each pair s and ¢ of curves representing two consecutive
edges incident on a vertex v, the angle between the tangent of s at v and the tangent
of ¢ at v should be large. Ideally, we would like the measure of each such angle to
be ©(1/d(v)), where d(v) denotes the degree of v.

Thus, we are interested in a study of methods for drawing planar graphs with smooth
edges, small area, and ideal angular resolution. The particular emphasis in this paper is to
consider methods for drawing edges with polylines such that each piece of the polyline
is drawn with a circular arc. This is a strict generalization of the usual piecewise-linear
polylines [8], [11], since a straight-line segment can be viewed as an arc of a circle of
infinite radius. In this paper we address the following questions: What area is achievable
for drawings with good angular resolution that use single circle arcs for edges? What
area is achievable for drawings that use at most two circular arcs per edge and have
good angular resolution? What is the fewest number of circular arcs needed to achieve
O(n) x O(n) area, good angular resolution, and C!-continuity for edges?

1.1. Prior Related Work

There is a rich body of knowledge that has been developed for drawing planar graphs.
Early work by Wagner [15], Fary [4], and Tutte [14] focused on drawings of planar graphs
using straight-line edges, without much attention paid to other aesthetic or complexity
issues. Indeed, the drawings produced using these early techniques can in many cases
require exponential area. Later de Fraysseix et al. {3] and then Schnyder [13] showed that
one can draw a planar graph with straight-line edges and vertices placed at grid points
in an O(n) x O(n) integer grid. Still, the drawings produced from these algorithms
have a weakness, which is not as prevalent in the algorithms based on Tutte’s approach:
namely, the area-efficient straight-line drawings can produce very small angles between
consecutive edges incident upon the same vertex (poor angular resolution). In fact, it has
been proven by Malitz and Papakostas [12] that there exist graphs that always require
exponential area for straight-line embeddings maintaining good angular resolution.
The problem of drawing planar graphs with good angular resolution was addressed
by Formann et al. [5], Garg and Tamassia 6], and Kant [9]-[11], who showed that one
could in fact simultaneously achieve O(n) x O(n) area and an angular resolution of
©(1/d(v)) for each vertex v, by drawing a planar graph using piecewise-linear poly-
lines with at most three bends each. Gutwenger and Mutzel [8] improved the constant
factors for such drawings, establishing that one could draw an n-vertex planar graph in a
(2n — 5) x (3n/2 — 7/2) grid with at least 2/dp.x angular resolution using piecewise-
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linear polylines with at most three bends each, where dyax is the maximum degree of the
graph. Goodrich and Wagner [7] showed that one could in fact achieve O (n) x O(n)
area with an angular resolution of ®(1/d(v)) for each vertex v, using piecewise-linear
polylines with only two bends each. They also showed that one could achieve the same
area and angular resolution bounds using smooth degree-3 (Bézier) curves.

1.2.  Our Results

In this paper we provide answers to the questions posed above. Specifically, we show
the following:

o There exists an n-vertex planar graph G that requires area exponential in n for any
drawing of G that uses single circle arcs for edges and has good angular resolution.

e We can draw an n-vertex planar graph G in an O(n) x O(n) grid with angular
resolution ®(1/d(v)) for each vertex v in G using at most two circular arcs per
edge. In fact, in this case we use circular arcs of infinite radius so that the polylines
are piecewise linear with at most one bend each, while still maintaining good
angular resolution and O(n) x O(n) area.

e We can draw an n-vertex planar graph G in an O(n) x O(n) grid with angular
resolution ®(1/d(v)) for each vertex v in G using C'-continuous curves that
consist of at most three circular arcs.

Our lower-bound proof is based on a nontrivial analysis of a circular-arc drawing of the
well-known nested-triangles graph. Our algorithm is based on a careful modification of
the incremental approach to planar graph drawing utilized by de Fraysseix et al. [3] similar
to the approach used by Goodrich and Wagner [7]. We describe the main ideas behind
these results in the sections that follow, beginning our discussion with the algorithm.

2. Algorithm

We now describe an efficient algorithm, OneBend, to embed any planar graph on an
O (n) x O (n) gnd while maintaining good angular resolution, ® (1/d (v)), for each vertex
v, and using at most one bend per edge. Following the methods of de Fraysseix et al. [3]
and Kant [11], we insert vertices sequentially by their canonical ordering, generating
subgraphs G1, G, . .., G, in the process. Recall that in the canonical order, vertices are
labeled vy, va, .. ., v, and graph G; is defined to be the subgraph induced on the vertices
vy, V2,..., v;. Graph G; is 2-connected and its external face is a cycle C;. Furthermore,
in graph G;. 1, the new vertex, v;+; has all of its neighbors on the external face of C;.

In the manner of Goodrich and Wagner [7], we use a box around each vertex of size
proportional to its degree but guarantee that each edge drawn contains at most one bend
rather than the previous best known method using two. To generate a subgraph Gy,
from Gy by inserting a vertex vy and its associated box, we need to perform a few
operations and maintain a few sets. Let w; = v;, wa, ..., W, = v, be the vertices of the
exterior face C; of G; in order. For a particular subgraph G; and vertex vy, we refer
to w; and w, as the leftmost and rightmost neighbors of v¢;| on Cy; see Fig. 1.
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Fig.1. Graph G4 after inserting vi . The shaded part is G and all unfilled vertices are part of the shifting
set My 41 (Vit1)-

2.1.  Vertex Joint Box

We associate with every vertex v € V a joint box centered around v, rotated 45°, and
having width and height 4d(v) + 4 units, see Fig. 2. For notational convenience, if v is
clear from the context, then we use d to denote the degree, d(v), of v. Thus, if v is located
at position (i, j), the four corners of the box are (i £2d + 2,i) and (i, j +2d + 2). We
break the box into two types of alternating regions, free regions and port regions. For each

0

d M 44
180

Fig. 2. 'The joint box for a vertex, v, in the drawing. Notice the shaded regions highlighting the three free
regions and the presence and location of ports inside the port regions.
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Fig. 3. The edge from « to v has two edge segments. The free edge segment connects u to M| . The port edge
segment connects v to M.

free region there is at most one edge passing through it to v. Each port region consists of
a collection of d ports and every edge inside the port region passes through a unique port.
We define and name the free regions using angular coordinates clockwise around v:

o Free region M lies between —45° and 45°.
e Free region R lies between 90° and 135°.
e Free region L lies between —135° and —90°.

In between each of these regions are the port regions. For reference, we label the ports
between L and M upward as Lq, ..., L; and similarly between R and M. The ports
between L and R are labeled My, M, ..., My, in counterclockwise order.

The algorithm draws each edge in E by “routing” it through a port in the joint box of
one of the two endpoints. Each edge consists of two connected edge segments. The first
edge segment, the port edge segment, connects a vertex with one of the ports of its joint
box. The second edge segment, the free edge segment, connects a vertex to one of its
neighbor’s ports. For example, for an edge e = (u, v), if we route e through port M; in
v’s joint box, we would draw two line segments, see Fig. 3. The free edge segment would
pass from u to M, and the port edge segment would pass from v to M;. This method of
construction enables us to guarantee that there is at most one bend per edge and that the
free edge segments always pass through free regions.

2.2. The Invariants

In order to construct our embedding incrementally, we maintain invariants similar to
those of de Fraysseix et al. [3] and Goodrich and Wagner [7] with two differences, a
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slight change in invariant three and a new invariant four:

1. The vertices and the ports of the joint boxes have integer coordinates.

2. Let w; = vy, w2, ..., w, = v, be the vertices of the exterior face C; of G, in
order and let x(w;) be the x-coordinate of vertex w;. Then x(w;) < x(wy) <
- < x(Wp).

3. For 0 < i < m the free edge segment of the edge (w;, w;) has slope £1.
4. For every vertex v there is at most one (free) edge segment crossing each of its
free regions, see Fig. 2. All other edge segments are port edge segments.

Notice that if invariant four holds for the embedding G, by the definition of the joint
box and location of the port regions, G has angular resolution no worse than @ (1/d(v)),
for each vertex v.

2.3. The Shifting Set

During each insertion, we must create space for the vertex joint box to “see” its leftmost
and rightmost neighbors without the box touching any of the neighbors along the face
in between. To do this, we need to shift the vertices along the external face by a certain
amount. However, in order for the invariants and planarity to be guaranteed other vertices
must also be shifted at the same time. As in de Fraysseix et al. [3] and Goodrich and
Wagner [7], we define the shifting set for a vertex w; on the external face of G; as
M (w;). For any graph G;, we define M;(w;) € V such that the following conditions
hold:

1. wj € My(w;) ifand only if j > i.

2. Mp(w1) D My(w2) D -+ D Mi(wp).

3. For any nonnegative number 8, 82, . . ., 6,, if we sequentially translate all vertices
in My (w;) with distance §; to the right (( = 1, 2, ..., m), then the embedding of
G remains planar.!

Recall that for a vertex v = v, w; and w, are the leftmost and rightmost neighbors of
v on Cy. Starting with the initial shifting set at k = 3, we construct M, {w;) recursively
as follows:

o Miy1(w;) = Mp(wi) U vgyy, fori <L
o My 1(viq1) = Mir(wigr) U vy
o My 1(w;) = My(wj), for j > r.

This construction allows us to guarantee that the above three conditions of the shifting
sets are maintained. Intuitively, after a vertex w; is removed from the external face by
another vertex vi41, it always shifts exactly with v ;. During any shift, vertices can only
get farther apart in the x-direction. Note that in our algorithm, when a vertex is shifted,
its joint box is also shifted, that is, the ports move as well.

! Note that many vertices will move several times; e.g. all points in M (w;)\ Mk (w;+1) will be translated
by 81+ 82 + -+ + &i.
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2.4. The Construction

We first show how algorithm OneBend iteratively constructs the sequence of graphs
Gy, Gy, ..., G, Itistrivial to construct the initial cases of G, G,, and G3, i.e., inserting
the first three vertices. Suppose we have embedded G; with exterior face Cy. Let C; =
(v1 = wy, wa, ..., w, = vy) be the exterior face of Gy. To construct G, let v = v
be the next vertex in the canonical ordering and recall that w; and w, are, respectively,
the leftmost and rightmost neighbors of v on the face C;. Let d, d;, d, be the respective
degrees of v, w;, and w,. Let p; be the first unused R; port in w;’s joint box. Similarly,
let p, be the first unused L; port in w,’s joint box. Recall since each port region has at
least d ports available there is always an unused port.

We insert v by shifting all vertices in the shifting set M; (w;41) by 2d + 2 positions to
the right. Additionally we shift all vertices in M, (w,) by an additional 2d + 2 positions
to the right. This implies all vertices in M (w,) actually move 44 + 4 positions. Finally,
we place v at the intersection of lines / and » where / (respectively r) is the line through
pr (respectively p,) with slope +1 (respectively —1). We route the edges between v and
w; through p; and do the same for w,. To maintain invariants one and three, notice that
if the intersection point has integer coordinates these two invariants hold. Otherwise, by
shifting M;(w,) one additional unit, we guarantee that the intersection point has integer
coordinates.

To complete the insertion and the algorithm, we need to draw the edges between v and
w;, where!l < i < r.Let w; be the rightmost vertex with an x-coordinate less than v. We
route the edges from v to vertices w; wherel < i < j through consecutive increasing
ports from M, in v’s joint box. Similarly, we route the edges from v to vertices w;, where
r > i > j through consecutive decreasing ports from M,; in v’s joint box.

Lemma 1. After shifting, any free edge segment in the free region remains in the free
region.

Proof. We first look at free edge segments in the M regions. Notice that these segments
are created by a vertex v dominating another vertex w. In this case, w joins v’s shifting
set and is only shifted whenever v is shifted. Therefore, the slope remains constant and
the free edge segment remains within M.

All other free edge segments lie inside L and R free regions. Without loss of generality,
we examine the case when a free edge segment lies in the L region. This implies that the
slope of the line segment is between 0 and +1. Since shifting only moves vertices farther
apart in the x-direction, the slope can get closer to O but it will always remain positive.
Thus the free edge segment will always remain in the L free region. The argument is
similar for free edge segments in the R free regions. (

Lemma 2. After insertion, every free edge segment passes through a free region which
contains no other segment.

Proof. After inserting a vertex vg.i, there are two types of edges added, the edges
between v+ and the outside neighbors, w; and w,, and between v;,; and w; where
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! < i < r.In both cases, each edge is routed through a port creating one free edge
segment and one port edge segment. By construction, a free edge segment of the first
type by construction has slope either +1 or —1 and so it lies inside vi.;’s joint box free
region L or R. Since vy is a new vertex, there are no other segments inside these two
free regions.

A free edge segment of the second type intersects the M region of w;’s joint box.
Since this can happen at most once, as the vertex is now no longer on an external face,
there can be no other free edge segment inside this free region. To see that the segment
actually intersects the M free region, notice that w; is bound between w; and w, and
is also added into a port on the proper side of vi41, i.e., the left or right side. Also, by
construction w; is below the lowest port of v,.’s joint box. This implies that the slope
is bound either above +1 or below —1 and, therefore, the free edge segment lies inside
the w;’s M region. O

Lemma 3. [finvariants 1-4 hold for Gy, then they also hold for Gi1.

Proof. By the nature of the shifting set, invariants one and two hold (see [7]). Note
that because shifting a vertex involves shifting the entire joint box simultaneously, after
every shift operation all port edge segments have unchanged slope. Also, after the two
shifting operations, all free edge segments on the exterior face have unchanged, albeit
+1, slope, except possibly the free edge segments (w;, w;i41) and (w,_;, w,). However,
after insertion, these free edge segments are no longer on the exterior face and are
instead replaced by two free edge segments betweéen (w;, v) and (v, w,) with slope 1.
Therefore, invariant three holds.

By Lemmas 1 and 2 and the fact that port edge segments never change slope, we see
that invariant four also holds since all edges routed in algorithm OneBend created a port
segment and a free edge segment. g

Theorem 1. Given a planar graph G, algorithm OneBend produces in O(n) time a
planar embedding on the 30n x 15n grid with angular resolution © (1/d(v)) and using
any of the following types of edges: polylines with one bend, or two circular arcs with
CO-continuity and one knot, or three circular arcs with C-continuity.

Proof. The original algorithm as stated produces polylines with one bend per edge.
This by definition can also be represented by two circular arcs, straight lines, which have
a discontinuity at the bend, or knot. Since the points are embedded on the grid, the bends
may also be replaced by circular arcs of a relatively small size to ensure C!-continuity
as well.

It has been shown by Chrobak and Payne [2] how to implement the algorithm of de
Fraysseix et al. [3] in linear time. Their approach can be easily extended to our algorithm.

It remains to show that the drawings produced by algorithm OneBend fit on the
30n x 15n grid. Every time we insert a vertex v, we increase the grid size by 4d(v;) +5
units. Summing over all the degrees of the vertices we get >, ., 4d(v) + 5 = 4(6n —
12) + 5n < 30n. The final drawing fits inside an isosceles triangle with sides of slope
0, +1, —1. The width of the base is 30n and so the height is less than 15n. O
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3. Drawing with Circular Arcs

Malitz and Papakostas [12] showed that some planar graphs, drawn with straight lines
in the O(n) x O(n) grid, must have small angles. More specifically, they found a class
of planar graphs, H, whose straight-line planar drawings require exponential area if the
angular resolution is good. Suppose we relax the condition that each edge in a graph be
drawn with a straight-line segment so that each edge is drawn with a circular arc (where
a straight-line segment is considered an arc from a circle of radius infinity). Can we draw
the graphs in H with angular resolution « > O in an O(n) x O(n) grid? Surprisingly, as
long as « is a constant, the answer is no.

Let H = {H,,n > 1} and H| be a cycle on three vertices P, Qi, and R,. For
n > 2, the graph H, is constructed from H,_; by adding a cycle on three new vertices
Pn’ Qn’ Rn» andedges (Pns Pn—l), (Qn’ Qn—l)> (Rna Rn—l) and (Pny Qn~1)a (Qn, Rn—l),
(Ry, Py—1), as shown in Fig. 4. It is easy to check that the graph is planar, triconnected,
and, thus, has a unique embedding. We show that for any planar, circular-arc drawing of
H, with angular resolution o > 0, there exists a constant ¢, > 1 such that the area of
the drawing is Q(c},).

Let I', be a planar circular-arc drawing of H, with angular resolution 0 < o < 7 /3.
If (u, v) is an edge in H,, then we refer to the arc that represents (u, v) in ', as v, and
the line segment that connects u and v as uv. (Sometimes u or v may not be a vertex of
H, but a point on some arc of I',,. In this case, v refers to the portion of the arc that
starts at # and ends at v.) If S is a set of arcs in I, that bounds a region, then we let
Area(S) be its area.

We next define regions S, S;, and S3 as follows:

St = {Po-1Qn-1, On—1 Pn, PPy},
82 = {Qn—an—ls Rn—lQn, QnQn—l}’
83 = {Rtl/—:?n—l’ Pn—IRna Ran—l}-

‘We show in the next two lemmas that the region enclosed by the three arcs in &) cannot

Fig. 4. The graph H, is constructed from H,_; by adding vertices P,, Q,, and R, along with the edges
shown above. The figure on the right shows H, drawn with circular arcs.
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Fig. 5. Arcsa and b Pisﬂlrough P,, 1, Zn—1,and Qn—1, Z,_1, respectively. Their tangentim an angle o
with the tangents of P,1Z,— and @, 1Z,, 1. The shape of the region bounded by a aand P,_1Z,_ depends
on the concavity/convexity of P,_1Qpn—1 and c.

be arbitrarily small. If all the arcs in H, are straight lines, this fact is easy to prove.
However, for circular-arc drawings, we need to take into account that the arcs can have
different curvatures. The requirement that the tangents of two incident arcs must form at
least an angle @ > O will allow us to show that Area(S)) is proportional to | P,_; Q,_|°.
Similarly, the areas of the regions enclosed by the arcs in S, and S3 cannot be arbitrarily
small. o

Let Z,_; be the midpoint of P,..; Q,-;. Consider the two circular arcs that that pass

through P,_; and Z,_; such that the tangents of the arcs form an angle o with P,_; Q,,_
Let @ be the arc that lies on the outside face of H,_;. Let b be the corresponding arc that
passes through Q,_; and Z,,_;, see Fig. 5.

Lemma 4. Area(S)) > Area({a, P,:Z\,,_l}).

Proof. Let [ be the perpendicular bisector of P,_)Q,_;. Without loss of generality,
assume that P, lies on [ or on the same side of [ as Q,—;. Notice that if P, # Z,_,,
ﬁn is always above @ except at its endpoint, P,_;. Otherwise, the angular resolution
of T, is violated or P, lies below @ and hence on the wrong side of [. Furthermore,
QT_TI\’,, cannot intersect @, except possibly at Z, ;. If it does, it crosses [ and has to
intersect m,, as well, contradicting the assumption that I',, is a planar drawing. Thus,
both ﬁ,, and QT_?’,, do not cross @; @ must lie irl the region enclosed by S). By
symmetry, if P, lies on the same side of / as P,_;, then b must lie in the region enclosed
by &7. Our resuit follows. O

Lemma 5. There exist positive constants k, and k,, such that

() Area({@, Po_1Zp-1}) = kalPr_1On_11? and
(ii) Area({a7 P, 1Z, 1)) = ké, Area({P,_1Qn-1, Pa—1Qn-1}).

Proof. Without loss of generality, we assume that P,_; is on the origin and Q,_; is on
the positive x-axis. The area enclosed by @ and P,:Z_l depends on the convexity or
concavity of P,,_/IE_I .when P,,_/l-Q\,,_l is convex and when P,,:E_l is concave.
We assume P,,_/I_Q\,,_l is convex. Let y < 1 be the angle formed between P 1On 1
and the tangents of P,,:E_l at P,y and Q,_;. When y < 2, @ is concave. Let
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f(6) = (O —sin@)/(1 — cos ). It is easy to verify that

o Area({d, Pi1Zn1)) = |Pa1 Zyo1 P f Qo — ) /4,
o Area({Pu-1Zn_1, Pa1Zu1}) = |Puc1 Za—1 P £ () /4, o
L Area({a’ Pn—lzn-l}) = Area({a, Pn—lzn—l}) + Area({Pn—IZn—la Pn—lzn—l})-

Thus,

2f(20!—}/)+f()/)

Area({@, Po_1Zn1}) = |Pai1Zn 1]

4
—————Z_I(_a)—
2 | Po1Qnil 16 cos2(y /2)
> P, (1)

where (1) follows from the fact that f(6) is monotomcally increasing when 0 <
6 < mand 0 < y < 2«. Furthermore, since y < 2q, the largest possible value of

Area({P,:@_l, P, 10n_1))is | Py Qn_1]* f (47/3)/4. Hence,
~ 55 — f(a)
A s PoyZy ) = A Pi1Qui)—————. 2
rea({a 1Zn-1}) rea({P.—1Q 1})4f(47t/3) (2)
If y > 2a, then @ is convex. Again, it is easy to verify that
o Area({@, P Zp 1)) = P Zo 1l f (v — 20)/4.
o Area({@, Pn_1Zn1}) = Area({Pn1Zyp—y, Pao1Z,1)) — Area({@, P, Z,1)).

Thus,

Area(@, P Zoor)) = [Pz p i = 1y = 200

4

e 20f'(®) ~

= PP aey ¥ m2sES O
> [P.iOns 1|’-°‘f © “)
= POl 55 )

The equality in (3) follows from the Mean Value Theorem, which states that f(y) —
f(y —2a) = f'(§) 2a where y — 2o < § < y. Since f’(8) is monotonically increasing
when (0 < 8 <, and 20 < y < 7, (4) follows as well.

It is easy to verify that

e 2
Area((B 3G, Bra o) = 1P 0220
and f(2y)cos?(y/2) < (2r + 1)/8sin® @ when 2a < ¥ < . From (3) we have
~ p— 5 _ —— af'(§)
Area({a, P,_1Z,1}) = Area({Pn—lQn—l})zcosz(y/z)f(zy)
02
> Area({P 3 Qo)) ot &) ©6)

627 + 1)
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When P,_ Q._1 is concave, @ must be concave. Using a similar argument as above,
we can show that there exist constants r, and r) such that Area({@, P,-1Z,_1}) >

ra|Pa_1 On—1|? and that Area((@, Py_1 Zn-1)) > rl, Area({P._1 On—1}) From (1) and (5)
and (2) and (6), then we have

‘ . {f(a) o }
o = My ——, —, ry ¢,
16 ' 24
;. f@) 8asin’a
Ky = min {4f(4n/3)’ 607 + 1)’r"}

Since ¢ > 0, f(«) > 0 and sina > 0. Thus, k, and k., are positive numbers. (]

We emphasize that the constants &, and &, are not dependent on y and hence the

e g sy
result can be extended to the other arcs, Q,,_1 R, and R,_, P,_;. We are now ready for
the main result of this section.

Theorem 2. Any planar, circular-arc drawing of H, that has constant angular reso-
lution @ > 0 has area Q(c}}) where ¢, > 1.

Proof. Let I'} be a planar, circular-arc drawing of H, with minimum area A,,. Let B,_;
denote the area occupied by H,_; in I'}. Clearly, B,_; = A,—;. Then

Ap = B,_| +Area(S)) + Area(S;) + Area(Ss)
> Byt + Alka [Pasi Qnei |2 + K, Area({Po 1 On—1, Pao1 Qni})
+ ko [On 1 Rn 1 + K, Area({Qn_1 Rn_1, On_1Ru_1})

+ ke (Rt Py ? + K, Area({Ru1 Pa-1, Ru_1 Pa_1})] )
min(k,, k)
= Bn—l + __(—2(’)[_"01_“[)71—1Qn—ll2 + IQn—an—I|2 + |Rn—an—1|2
+ Area({Py_1 Qn—1, Pa_1 On—1})
+ Area({Qn—1Rn—1, @n—1Rp—1})
+ Area({Ry—1 Py, Rno1 Pr1D)]
min{k,, fc('!)
> B, + _Z_—[Area({Pn—IQn—l, Qn—an—l’ Rn—an—l})
+ Area({P,_1 Qn-1, Pa_1 On1})
+Area({Qn——an—la Qn—an—l})
+ Area({Ry—1 Pr—1, Roc1 Pui})] 8
in(ky, k’
> B+ _“&(2‘1_(12 B,_,
in(k,, k/
= (1 + _‘—_mln(z a)_> An—l-

Here (7) follows from Lemmas 4 and 5, while (8) follows from the fact that
By | = Area({Py_1 Qu_1, @n-1Ru_1, Rao1 Po_1}) + Area({ Py Qn—1, Poci @ua}) +




Drawing Planar Graphs with Circular Arcs 417

Area({Qn—an—l, Qn—an—l}) + Area({Rn—IPn—lv Rn—IPn—l})- Let Co = 1 +
min(k,, k).
Since A is at least some constant a; > 0, by induction, A, > cc’;“al. O

4. Conclusion and Open Problems

In this paper we prove that drawing a planar graph with good angular resolution using
one circular arc per edge requires exponential area. We then show how to draw planar
graphs with good angular resolution using polylines with at most one bend per edge on
a grid of size 30n x 15n. Reducing the constants seems possible but this problem has
not been explored yet.

The algorithm for drawing with one bend per edge immediately implies that we can
draw planar graphs using two circular arcs with C%-continuity, or using three circular
arcs with C'-continuity. However, it still remains to show whether we can draw using
two circular arcs, or possibly two other degree-2 curves, with C!-continuity.
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