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Abstract. We prove that there is a finite list of 3-polytopes so that every rationald-
polytope,d ≥ 9, contains a three-dimensional face in the list. A similar result where “faces”
are replaced by “quotients” is proved already for (general) 5-polytopes. We also prove that
everyd-polytope,d ≥ 9, contains a three-dimensional quotient which is a simplex.

1. Introduction

Theorem 1. There is a finite list of three-dimensional polytopes such that every rational
9-polytope contains a three-dimensional face in the list.

Here, a rational polytope is a polytope whose vertices have rational coordinates. Duals
of neighborly 4-polytopes show that the dimension 9 cannot be reduced to 4.

Theorem 2. Every nine-dimensional polytope has the three-dimensional simplex as a
quotient.

The 24-cell shows that, here too, the dimension 9 cannot be reduced to 4.
The analogous situation for two-dimensional faces and quotients is classic. It follows

easily from Euler’s theorem that every 3-polytope (and hence every higher-dimensional
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polytope) has a two-dimensional face which is a triangle, quadrangle, or a pentagon.
In fact, this result (in a dual form) can be traced back to the writings of Descartes on
polyhedra, see [4]. It also follows easily from Euler’s theorem that every 3-polytope or
its dual contains a triangular face and thus everyd-polytope,d ≥ 3, contains a triangle
as a quotient.

Theorems 1 and 2 are special cases of some far-reaching conjectures, see [11]: Define
for everyk > 1 four functionsd1 = d1(k), d2 = d2(k), d3 = d3(k), andd4 = d4(k) to
be the smallest integers so that:

• There is a finite list ofk-polytopes so that everyd-polytope,d ≥ d1(k), has a
k-dimensional quotient in the list.
• There is a finite list ofk-polytopes so that everyd-polytope,d ≥ d2(k), contains a

k-face in the list.
• Everyd-polytope,d ≥ d3(k), has a simplex as ak-dimensional quotient.
• Everyd-polytope,d ≥ d4(k), contains ak-face which is combinatorially isomor-

phic to a simplex or to a cube.

It is conjectured that all these four functions are finite. This will be easiest to prove for
d1 and hardest ford4. Clearly,d1(k) ≤ d3(k) ≤ d4(k + 1) andd1(k) ≤ d2(k) ≤ d4(k).
The following theorem gives thatd1(3) ≤ 5. We do not know if the correct value for
d1(3) is 4 or 5. We can prove also thatd1(4) ≤ 7. d4(2) = 5 [11].

Theorem 3. Every5-polytope contains a three-dimensional quotient with at most eight
vertices.

The proofs of Theorems 1–3 as a consequence of (rather deep) known inequalities
for flag numbers of polytopes were achieved by a computerized program FLAGTOOL,
see [12] and [14]. A comprehensive description of FLAGTOOL and theorems proved
by FLAGTOOL has appeared in [14].

This work is closely related to various ideas and results by Gr¨unbaum. The proof uses
the lower bound theorem for polytopes and some of its far-reaching generalizations.
Some of these generalizations are based on the rigidity theory for polytopes, a topic of
“lost mathematics” Gr¨unbaum helped to revive [8]. The type of reasoning (convolutions)
used here also has roots in some early papers of Gr¨unbaum. However, more than that, we
feel these proofs touch on some fundamental issues concerning mathematical interest,
elegance in mathematics, and the use of computers raised by Gr¨unbaum in various places,
see [5]–[7].

2. Face Numbers, Flag Numbers,g-Numbers, and Convolutions

For ad-polytopeP the number ofk-faces is denoted byfk(P). (We also use the notation
f d
k unless the value ofd is clear from the context.) The vector( f0(P), f1(P), . . . fd−1(P))

is called thef -vector of P. For a subsetS= {i1, . . . , i k} ⊂ {0,1, . . . ,d − 1} the flag
number fS(P) is the number of chainsF1 ⊂ F2 ⊂ · · · ⊂ Fk of faces ofP such that
dim Fj = i j . (Again, we also use the notationf d

S .) A remarkable theorem of Bayer and
Billera asserts that the affine dimension of the space of flag numbers ofd-polytopes is
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cd − 1, wherecd is thedth Fibonacci number. Bayer and Billera showed that every flag
number f d

S can be expressed as a linear combination ofspecialflag numbersf d
T , where

T ⊂ {0,1, . . . ,d−2} andT contains no two consecutive integers. Their argument relies
only on Euler’s formula (for arbitrary dimension) and it therefore applies not only for
polytopes but for arbitraryEulerianposets, see [17].

Certain linear combinations of face numbers of simplicial polytopes calledh-numbers
andg-numbers play a crucial role in the combinatorial theory of simplicial polytopes, see
[13] and [16]. Intersection homology theory has led to deep and mysterious extensions of
h- andg-numbers from simplicial polytopes to general polytopes. The definition (which
can also be found in [15]) goes as follows. For a polytopeP denote byPk the set of
k-faces ofP.

Define by induction two polynomials

hP(x) =
d∑

k=0

hd
k xd−k, gP(x) =

[d/2]∑
k=0

gd
k xd−k,

by the rules: (a)gd
k = hd

k − hd
k−1, (b) if P is the empty polytope or a 0-polytopeP,

hP = gP = 1, and

hP(x) =
d∑

k=0

(x − 1)d−k
∑
{gF (x): x ∈ Pk}.

(If the value ofd is clear from the context the superscripts ofhd
k andgd

k are omitted.)
Thusgd

1(P) = f0(P)− d − 1 and

gd
2(P) = f1(P)+

∑
{ f0(F)− 3: F ∈ P2} − d f0(P)+

(
d + 1

2

)
.

The value ofgd
2 for generald-polytopes has a rigidity theoretic meaning [9] and

is nonnegative for every polytope. This extends the famous lower bound theorem of
Barnette [1]. The nonnegativity ofgd

2 is still open for more general objects like polyhedral
(d − 1)-spheres and manifolds. It follows from intersection homology theory for toric
varieties that thegd

k are nonnegative for every rationald-polytope. This is still open in
the nonrational case. For ad-polytopeP we denoteḡd

k (P) = gd
k (P

∗), whereP is the
dual polytope toP.

Letmd,me be linear combinations of flag numbers ofd- ande-polytopes, respectively.
For a polytopeP of dimensiond + e+ 1 define the convolution ofmd and me by
md ∗me(P) =∑ {md(F) ·me(P/F): F ad-face ofP}.

The following lemma [10] is immediate:

Lemma 4.

(1) md ∗me(P) is a linear combination of flag numbers of(d + e+ 1)-polytopes.
(2) If md(P) = 0 for every d-polytope P or me(Q) = 0 for every e-polytope Q, then

md ∗me(R) = 0 for every(d + e+ 1)-polytope R.
(3) If md(P) ≥ 0 for every d-polytope P and me(Q) ≥ 0 for every e-polytope Q,

then md ∗me(R) ≥ 0 for every(d + e+ 1)-polytope R.



416 G. Meisinger, P. Kleinschmidt, and G. Kalai

3. FLAGTOOL

FLAGTOOL [14], [12] is a computer program that

• computes all (known) linear relations between the flag numbers of generald-
polytopes for small dimensions, 3≤ d ≤ 10,
• extracts and automatically proves new results from those relations.

Since every flag number can be expressed as an affine combination of special flag
numbers, all inequalities generated by the program will be expressed in terms of spe-
cial flag numbers. See Fig. 1 for the general scheme supporting theorem proving with
FLAGTOOL.

Theorem 1 is a consequence of the following stronger statement.

Theorem 5. Every rational d-polytope(d ≥ 9) has a3-face with less than78vertices
or 78 facets.

Fig. 1. Automated theorem proving by FLAGTOOL.
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Proof. Assume that there exists a 9-polytope in which every 3-face has at least 78
vertices and at least 78 facets. This assumption can be expressed by the inequalities
f 3
0 − 78≥ 0 and f 3

2 − 78≥ 0. The following system of 53 linear 9-forms obtained by
convolutions of theg-numbers and of these two added inequalities (in the bottom interval
[−1,3]) has no nonnegative feasible solution and therefore Theorem 1 is proved.

[1] g1
0 ∗ g2

1 ∗ g0
0 ∗ g2

1 ∗ g0
0 = 6 f0246− 18 f025+ 6 f135+ 36 f15− 18 f146− 3 f0257

+ f1357+ 6 f157,
[2] g2

1 ∗ g2
1 ∗ g2

1 ∗ g0
0 = −54 f25− 9 f257− 54 f36+ 27 f036+ 54 f26− 18 f035

+36 f35+ 9 f246− 3 f0357+ 6 f357+ 18 f025+ 3 f0257

−9 f136− 18 f026+ 6 f135− 3 f0246+ f1357,
[3] g0

0 ∗ g4
2 ∗ g2

1 ∗ g0
0 = −60 f05− 10 f057− 60 f16− 30 f036+ 60 f06+ 48 f15

+8 f157− 12 f135− 2 f1357+ 18 f035+ 3 f0357

+12 f046− 6 f146− 6 f025− f0257+ 18 f136+ 12 f026,
[4] g0

0 ∗ g2
1 ∗ g4

1 ∗ g0
0 = −6 f146+ 6 f046+ 6 f147− 6 f047+ 30 f03+ 9 f035

−15 f036+ 15 f037+ 30 f14− 30 f04+ f0246− f0247

−20 f13− 5 f024− 6 f135+ 10 f136− 10 f137,
[5] g0

0 ∗ g2
1 ∗ g1

4 ∗ g0
0 = 30 f03+ 15 f035− 15 f036+ 9 f037+ 30 f14− 30 f04

−20 f13− 5 f024− 10 f135+ 10 f136− 6 f137,
[6] g3

0 ∗ g4
2 ∗ g0

0 = 3 f246− 3 f146+ 3 f046− f247+ f147− f047+ 20 f3

+4 f35− 10 f36+ 4 f37− 10 f24+ 10 f14− 10 f04,
[7] ( f0− 78) ∗ g4

2 ∗ g0
0 = 3 f0246− f0247+ 20 f03+ 4 f035− 10 f036+ 4 f037

−10 f024− 234f246+ 228f146− 228f046+ 78 f247

−76 f147+ 76 f047− 1560f3− 312f35+ 780f36

−312f37+ 780f24− 760f14+ 760f04,
[8] ( f2− 78) ∗ g4

1 ∗ g0
0 = −10 f13+ 10 f03− 3 f135+ 3 f035+ 5 f136− 5 f036

−5 f137+ 5 f037+ 76 f246− 78 f146+ 78 f046

−76 f247+ 78 f147− 78 f047+ 760f3+ 228f35

−380f36+ 380f37− 380f24+ 390f14− 390f04,
[9] ( f2− 78) ∗ g1

4 ∗ g0
0 = −10 f13+ 10 f03− 5 f135+ 5 f035+ 5 f136− 5 f036

−3 f137+ 3 f037+ 760f3+ 380f35− 380f36

+228f37− 380f24+ 390f14− 390f04,
[10] ( f2− 78) ∗ g4

2 ∗ g0
0 = 20 f13− 20 f03+ 4 f135− 4 f035− 10 f136+ 10 f036

+4 f137− 4 f037− 228f246+ 234f146− 234f046

+76 f247− 78 f147+ 78 f047− 1520f3− 304f35

+760f36− 304f37+ 760f24− 780f14+ 780f04,
[11] g0

0 ∗ g7
1 ∗ g0

0 = 2 f13− 2 f14+ 2 f15− 2 f16+ 2 f17+ 6 f02− 8 f03

+8 f04− 8 f05+ 8 f06− 8 f07− 12 f1,
[12] g0

0 ∗ g1
7 ∗ g0

0 = 8 f02− 8 f03+ 8 f04− 8 f05+ 8 f06− 6 f07− 16 f1,
[13] g1

8 ∗ g0
0 = −18+ 9 f0− 9 f1+ 9 f2− 9 f3+ 9 f4− 9 f5+ 9 f6

−7 f7,
[14] g2

8 ∗ g0
0 = 72− 36 f0+ 36 f1− 36 f2+ 36 f3− 36 f4− 36 f6

+30 f5+ 3 f46− 3 f36+ 3 f26− 3 f16+ 3 f06− f47

+ f37− f27+ f17− f07+ 22 f7,
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[15] g3
8 ∗ g0

0 = −168+ 84 f0− 84 f1+ 84 f2+ 84 f4+ 84 f6+ 7 f27

−7 f17+ 7 f07− 42 f7− f047+ f147− f247+ 3 f046

−3 f146+ 3 f246− 64 f3− 3 f37− 10 f24+ 10 f14

−10 f04+ 5 f47+ 4 f25− 4 f15+ 4 f05− 54 f5

−15 f46+ 9 f36− 19 f26+ 19 f16− 19 f06,
[16] g0

0 ∗ g2
1 ∗ g0

0 ∗ g2
1 ∗ g1

0 = 4 f1357− 6 f0357+ 18 f047+ 3 f0247− 18 f147,
[17] g1

0 ∗ g2
1 ∗ g2

1 ∗ g1
0 = −6 f157+ 3 f0257− f1357− 3 f0247+ 9 f147,

[18] g4
0 ∗ g2

1 ∗ g1
0 = 2 f57− f057+ f157− f257+ f357− 3 f47,

[19] g1
4 ∗ g2

1 ∗ g1
0 = −3 f047+ 3 f147− 3 f247− 10 f57+ 5 f057− 5 f157

+5 f257− 3 f357+ 15 f47,
[20] g4

2 ∗ g2
1 ∗ g1

0 = 3 f0257− f0357+ 20 f57− 10 f057+ 4 f157− 10 f257

+4 f357− 30 f47+ 12 f047− 3 f0247+ 9 f247− 3 f147,
[21] g2

0 ∗ g4
1 ∗ g1

0 = 2 f37− f037+ f137− 5 f27,
[22] g2

1 ∗ g4
1 ∗ g1

0 = −6 f37+ 3 f037− f137+ 15 f27− 5 f027,
[23] g2

1 ∗ g1
4 ∗ g1

0 = − f0247+ f0257+ 3 f247− 3 f257− f137+ 3 f037

−6 f37+ 15 f27− 5 f027,
[24] g2

1 ∗ g4
2 ∗ g1

0 = −6 f357+ 3 f0357− f1357+ 24 f37− 12 f037

+ 4 f137− 30 f27+ 9 f257− 3 f247+ 10 f027

− 3 f0257+ f0247,
[25] g0

0 ∗ g6
3 ∗ g1

0 = 2 f147− 8 f157+ 2 f1357− 8 f137+ 30 f17− 35 f07

−5 f027+ f0257− 3 f0357+ 10 f057− 4 f047+ 13 f037,
[26] g2

7 ∗ g1
0 = 7 f07− 7 f17+ 7 f27− 7 f37+ f357− f257+ f157

− f057− 4 f57+ 4 f47+ 14 f7,
[27] g2

1 ∗ g2
1 ∗ g0

0 ∗ g2
1 = −54 f26− 27 f036+ 54 f36+ 18 f257− 9 f246+ 6 f0357

−12 f357+ 18 f026+ 9 f136− 6 f0257+ 3 f0246

−2 f1357,
[28] g0

0 ∗ g4
2 ∗ g0

0 ∗ g2
1 = −60 f06+ 30 f036+ 60 f16+ 20 f057− 16 f157

+4 f1357+ 6 f146− 12 f046− 6 f0357− 12 f026

−18 f136+ 2 f0257,
[29] g1

0 ∗ g2
1 ∗ g1

0 ∗ g2
1 = 3 f0257− 6 f157− 3 f0246− f1357+ 9 f146,

[30] g1
4 ∗ g1

0 ∗ g2
1 = −3 f046+ 3 f146− 3 f246− 3 f357+ 5 f257− 5 f157

+5 f057− 10 f57+ 15 f46,
[31] g2

1 ∗ g0
0 ∗ g2

1 ∗ g2
1 = 18 f246− 54 f36+ 27 f036− 18 f037+ 36 f37− 18 f247

−3 f0357+ 6 f357− 6 f0246− 9 f136+ 6 f137+ 6 f0247

+ f1357,
[32] g0

0 ∗ g2
1 ∗ g2

1 ∗ g2
1 = 18 f046− 18 f146+ 18 f037+ 3 f0357+ 18 f147

−18 f047+ 3 f0246+ 18 f136− 12 f137− 3 f0247

−2 f1357− 27 f036,
[33] g3

0 ∗ g2
1 ∗ g2

0 = f046− f146+ f246− 3 f36,
[34] ( f2− 78) ∗ g2

0 ∗ g2
1 = 3 f036− 3 f136+ 2 f137− 2 f037+ f1357− f0357

−152f37− 76 f357+ 76 f247− 78 f147+ 78 f047

+228f36,
[35] g1

0 ∗ g4
2 ∗ g2

0 = f0246− 4 f026+ 10 f16− 3 f146+ f136,
[36] g1

0 ∗ g4
2 ∗ g2

1 = −3 f0246+ 12 f026+ 3 f0247− f0257+ 20 f17+ 4 f137

−10 f147+ 4 f157− 10 f027− 30 f16+ 9 f146− 3 f136,
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[37] g6
0 ∗ g2

1 = 2 f7− f07+ f17− f27+ f37− f47+ f57− 3 f6,
[38] g1

6 ∗ g2
1 = −14 f7+ 7 f07− 7 f17+ 7 f27− 7 f37+ 7 f47− 3 f06

+3 f16− 3 f26+ 3 f36− 3 f46− 5 f57+ 21 f6,
[39] g0

0 ∗ g4
2 ∗ g3

0 = 2 f135− 8 f15+ 10 f05− 3 f035+ f025,
[40] g0

0 ∗ g2
1 ∗ g0

0 ∗ g4
2 = −60 f04+ 60 f14+ 24 f035− 6 f0357+ 18 f047− 18 f147

−6 f046+ 6 f146− 10 f024− 16 f135+ 4 f1357+ 3 f0247

− f0246,
[41] ( f2− 78) ∗ g0

0 ∗ g4
2 = −8 f135+ 8 f035+ 2 f1357− 2 f0357− 780f04+ 780f14

−760f24+ 608f35− 152f357+ 234f047− 234f147

+228f247− 78 f046+ 78 f146− 76 f246,
[42] g1

0 ∗ g2
1 ∗ g4

2 = 10 f024− 3 f0247+ f0246+ 24 f15+ 4 f135− 12 f025

−6 f157− f1357+ 3 f0257− 3 f146+ 9 f147− 30 f14,
[43] g4

0 ∗ g4
2 = −8 f5+ 4 f05− 4 f15+ 4 f25− 4 f35+ 2 f57− f057

+ f157− f257+ f357+ f46− 3 f47+ 10 f4,
[44] g1

4 ∗ g4
0 = f04− f14+ f24− 5 f4,

[45] ( f2− 78) ∗ g5
0 = − f03+ f13− 76 f3,

[46] g2
1 ∗ g6

3 = −90 f3+ 45 f03+ 24 f35− 12 f035− 6 f357+ 3 f0357

+24 f37− 12 f037− 6 f36+ 3 f036− 15 f13+ 4 f135

− f1357+ 4 f137− f136+ 13 f025− 4 f026+ 10 f027

−3 f0257+ f0247− 5 f024− 35 f02− 39 f25+ 12 f26

−30 f27+ 9 f257− 3 f247+ 15 f24+ 105f2,
[47] g1

0 ∗ g7
1 = f02− 8 f1,

[48] g1
0 ∗ g1

7 = f13− f14+ f15− f16+ f17− f02− 6 f1,
[49] g0

0 ∗ g1
8 = − f02+ f03− f04+ f05− f06+ f07+ 2 f1− 9 f0,

[50] g0
0 ∗ g8

2 = −16 f1+ 2 f13+ f02− 3 f03+ 36 f0,
[51] g0

0 ∗ g2
8 = 8 f02− 8 f03+ 8 f04− 8 f05− 16 f1+ 2 f17+ f057

− f047+ f037− f027− 7 f07+ 5 f06+ 36 f0,
[52] g0

0 ∗ g8
4 = −112f1+ 30 f13− 8 f135− 10 f14+ 2 f147− 8 f157

+2 f1357− 8 f137+ 30 f17+ 2 f136− 10 f16

+34 f15+ 21 f04− 45 f05+ 15 f06− 3 f036+ f026

−35 f07− 5 f027+ f0257− 3 f0357+ 10 f057− 4 f047

+13 f037− 51 f03+ 12 f035− 4 f025+ 21 f02+ 126f0,
[53] g9

1 = −10+ f0.

The proof was obtained as follows. FLAGTOOL created 227 linear inequalities which
contain the 53 inequalities above. The infeasibility of the entire list of inequalities and the
creation of the smaller list of 53 inequalities which are already infeasible was first carried
using phase I of the LP-solver CPLEX. Since it was (at least theoretically) possible that
the infeasibility found by CPLEX is an artifact of numerical problems we proved the
infeasibility using the symbolic mathematical program MAPLE V.

Note that we need the nonnegativity of the formsgd
3 and it turns out that using only

the nonnegativity ofgd
i , i ≤ 2, is not sufficient to prove infeasibility. Thus, Theorem 1

is still unproved for general (nonrational) polytopes.
It seems impossible to prove the infeasibility “by hand.” The details of this proof

(which for a computer generated proof is quite short) do not seem to contribute much to
our (human) understanding why the theorem is true.
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Proof of Theorem2. We added the inequalitiesf 3
0 − 5 ≥ 0 and f 3

0 − 5 ≥ 3 (for all
intervals of rank 4) and all inequalities generated by convolutions. The theorem follows
from the infeasibility of a system of 50 linear inequalities which is contained in the
243 inequalities produced by FLAGTOOL. This time we use only the nonnegativity
of gd

i for i ≤ 2. The infeasibility was again proved by using MAPLE V. We skip the
details.

Remark. It is possible that the statements of Theorems 1 and 2 remain true for arbitrary
Eulerian lattices [2], [17] for some sufficiently large dimension. The same comment
applies to all the conjectures mentioned in Section 1. For Eulerian lattices it is no longer
true that thegd

i are nonnegative fori ≥ 2 but the nonnegativity of thegd
1 may suffice.

Proof of Theorem3. We added the inequalitiesf 3
0 −9≥ 0 and f 3

0 −9≥ 3 to the other
inequalities for 5-polytopes and used convolution to obtain a system of 14 inequalities
which turned out to be infeasible. This time, we used only the nonnegativity ofgd

1 and
hence the proof applies to arbitrary Eulerian lattices.
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