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Abstract. We consider polygons with the following “pairing property”: for each edge of
the polygon there is precisely one other edge parallel to it. We study the problem of when
such a polygorK tiles multiply the plane when translated at the locatisnsvhereA is a
multiset in the plane. The pairing property K¥fmakes this question particularly amenable

to Fourier analysis. As a first application of our approach we establish a necessary and
sufficient condition forK to tile with a given latticeA. (This was first found by Bolle for

the case of convex polygons—notice that all convex polygons that tile, necessarily have the
pairing property and, therefore, our theorems apply to them.) Our main result is a proof that
a large class of such polygons tile multiply only quasi-periodically, which for us means that
A must be afinite union of translated two-dimensional lattices in the plane. For the particular
case of convex polygons we show that all convex polygons which are not parallelograms
tile multiply only quasi-periodically, if at all.

Introduction

In this paper we study multiple tilings of the plane by translates of a polygonal region
of a certain type, the polygons with the pairing property of Definition 2 below.

Definition 1 (Tiling). Let K be a measurable subsef®fand letA € R? be a discrete
multiset (i.e., its underlying set is discrete and each point has finite multiplicity). We say
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thatkK + A is a (translational, multiplejjling of R? if

ZlK(X—A):w,

rEA

for almost all (Lebesguey € R?, where theweightor levelw is a positive integer and
1k is the indicator function oK.

Whenever we speak of a tiling in this paper we mean a multiple tiling at some integer
level.

Before defining the polygons with the “pairing property” we make some intuitively
obvious remarks: 1K is a polygonal region (not necessarily connected), which tiles
the plane, then each edgef a translate oK which participates in the tiling must be
“countered” by other edges which come from other copids of hese edges must have
the same direction asand at least one of them must have its outward-pointing normal
vector oriented opposite to that efHence, for a polygonal region to have any hope to
tile by translation the following must holdor any edge e of K there is at least another
one with the same direction whose outward-pointing normal vector is opposite to that
of e The situation becomes much simpler if that other edge is uniquely defined.

Definition 2 (Polygons with the Pairing Property). A polygéhhas thepairing prop-
erty if for each edgee there is precisely one other edgelofparallel toe and this edge
has the same length as

Remarks. 1. Note that all symmetric convex polygons have the pairing property and
it is not hard to see that all convex polygons that tile by translation are necessarily
symmetric.

2. The polygonal regions we deal with are not assumed to be connected.

3. The requirement that for every edge in the polygon the other edge of the same
direction has the same length is not necessary, in the sense that, if a polygon admits
multiple tilings by translations, it is always true, assuming only the uniqueness of the
other edge of the same direction.

Using Fourier analysis we prove that a large class of polygons with the pairing property
can only tile in a “quasi-periodic” manner, if they tile at all.

Definition 3 (Quasi-Periodic Multisets). A multiset € RY is called quasi-periodic
if it is the union of finitely manyd-dimensional lattices (see Definition 6)Rf.

Dealing with multiple tilings of space often brings in added difficulty and quite
different behavior from simple (level 1) tilings by, say, polyhedra, and this is true even if
one deals with lattice tilings only. As an example, we mention Minkowski’s conjecture
(a theorem of Ha$ since 1940) which states that in every lattice tiling (at level 1) of
Euclidean space by translates of the unit cube at least two cubes share an entire face of
codimension one. However, this ceases to be true for multiple lattice tilings by the unit
cube, when the dimension is larger than three (see, for example, [SS]).
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Also, although the convex polygons that tile by translation at level 1 have long been
known to be just the parallelograms and the symmetric hexagons, there are many more
polygons that tile multiply, as Bolle’s theorem (see Section 2) states. This implies that
there are multiple tilings by polygons which are indecomposable, that is, they cannot
be made up by overlapping simpler tilings and, therefore, the study of multiple tilings
encompasses more than just simple tilings. One can see a concrete example of such an
indecomposable multiple tiling, at level 239, by a nonregular octagon on p. 648 of [GS].

This paper is organized as follows:

In Section 1 we describe the general approach to translational tiling using the Fourier
Transforms of certain measures which are supported on pairs of opposite edges and, in
particular, their zero-set. These zero-sets are then calculated explicitly for polygons with
the pairing property.

As a first application of our Fourier analytic method, and a demonstration that, using
it, some problems become almost a matter of calculation, we give in 8@atioecessary
and sufficient condition (Theorem 2) for a polygBnwith the pairing property to tile
multiply with a lattice A. This has been proved (by elementary methods) previously
by Bolle for the more special case of convex polygons (although his method probably
applies for the case of pairing polygons as well). Our approach is based on the calculation
of Section 1. Another case when the Fourier analytic method has proved to be very useful
can be found in [K2] where the author, after explicitly calculating the Fourier Transform
of the indicator function of certain polyhedra, was able to demonstrate the existence
of a lattice of the appropriate volume in their zero-set, thus (in a manner very similar
to that described in Section 1) establishing the fact that these polyhedra are lattice
tiles.

The main contribution of this paper comes in Section 3. There we find a very large
class of polygons with the pairing property that tile only in a quasi-periodic manner.
In particular we show that every convex polygon that is not a parallelogram can tile
(multiply) only in a quasi-periodic way (meaning translated at a finite union of lattices),
if it can tile at all. This result should be viewed in the context of the so-called Periodic
Tiling Conjecture (see, e.g., [KL]) which states that any domain that tiles (at le®4 1)
by translation can also tile space in a periodic manner (this means that the tiling has a
d-dimensional period lattice).

Here is an outline of our approach using the Fourier Transform. The tiling condition,
thatK + A is anm-fold tiling of R?, implies that (and, under additional assumptions, is
equivalent to the fact that) the Fourier Transformdof_, &, (a unit mass at each point
of A) is supported on the zero-set of the Fourier Transform of the meaguvéhereue
is the measure which charges with its arc-length the edgfdehe polygon and with its
negative arc-length the edge opposite.tdhis support property should hold for evexry
For most polygons with the pairing property this intersection (over all different egJges
of the zero-sets turns out to be discrete. We then use a theorem of Meyer which greatly
restricts the point-sets which give rise to such a Fourier Transform being supported on
a discrete set. The structure farthat comes out of Meyer’s theorem is a product of the
so-called “idempotent theorem” of Cohen for general locally compact abelian groups.
The work is completed by a careful study of what Meyer’s theorem actually gives in this
case. That is, we study the structure of the “discrete coset ring2 ¢see Section 3 for
a definition).
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Notation. 1. The Fourier Transform ofafunctione L1(RY) is normalized as follows:
(&) :/ e 2ZMEX £ (x) dx.
Rd

2. The action of a tempered distribution (see [R2fn a functionp of Schwarz class
is denoted byt (¢). The Fourier Transformx of « is a tempered distribution defined by

ap) = a(@).

A tempered distributior is supported on a closed sg¢tif for each smooth functiop
with suppp C K€ we havex(¢) = 0. The intersection of all such closed sKtss called
the support ofx and denoted by supp

1. The Fourier Analytic Approach
1.1. General

SupposeK is a polygon with the pairing property and ltande, be two edges of the
same directioru and the same length. We can then write (h@rande, are viewed as
point-sets irfR2 andr as a vector)

e =e+r,

for somer e R?. (For each sefs and vectox we write A+ x = {a+ x: a € A}.) Then
let u, be the measure which is equal to the arc-lengtie;caind the negative arc-length
one,. Suppose also thét + A is a multiple tiling ofR?. Since every part of a translate
of e; in the tiling has to be canceled by part of a copyepit follows that

D Hu(X = 1)

reEA

is the zero measure iR?. It is also intuitively obvious that the vanishing of the above
measure for all directions also implies tiling at some integer level.

So a polygorK with the pairing property tiles multiply with a multiset if and only
if, for each paire ande + 7 of parallel edges oK,

D He(x = 1) =0, @

rEA

wherep is the measure iiR? that is the arc-length oeand the negative arc-length on

e+ t. Write
=) %
reA
whered, is a unit point mass @t Thuss, is locally a measure but is globally unbounded
whenA is infinite. However, whenevef + A is a multiple tiling, it is obvious that
cannot have more tharR? points in any disk of radiu®, R > 1 (c depends oK and
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the weight of the tiling). This implies that, is a tempered distribution and we can take
its Fourier Transform, denoted By. Condition (1) then becomeg 5, = 0 or, taking
Fourier Transforms,

fie- 85 = 0. 2
WhenaA is a latticeA = AZZ2, whereA is a 2x 2 invertible matrix, itsdual lattice
A* is defined by
A*={x eR?% (x,1) € Z,VA € A},

and we haveA* = A~ TZ2. The Poisson Summation Formula then takes the form
Sp = detA - §pe. (3)

Sincejie is a continuous function we have in this case, and whengyés locally a
measure, that condition (2) is equivalent to

suppSa € Z(jie). (4)

where for every continuous functioh we write Z(f) for the set of points where it
vanishes. (If we do not know thah is locally a measure we cannot infer tiling given
(4). That is, (4) does not imply (2), simply because for a function to “kill” a tempered
distribution it must vanish to high enough order. For examyple; is a nonzero distri-
bution even though the supporté&f(the derivative of the unit point mass at zero) is just
the point 0 wherex vanishes.) Whenm is a lattice (2) is equivalent to

Le(X) =0, VX € A*.

So, to check if a given polygol with the pairing property tiles multipliR? with the
lattice A, one has to check thak vanishes om\* for every edgee of K.

1.2. The Shape of the Zero-Set

Here we study the zero-set of the Fourier Transform of the meaguoé Section 1.1
and determine its structure. The result (Theorem 1) will be used throughout the rest of
the paper.
We first calculate the Fourier Transformaf in the particular case wheis parallel
to thex-axis, for simplicity. Letu € M(RR?) be the measure defined by duality by

12
w(p) = /1 2<p(X, 0dx, Vg e CR?.
—y

That is, u is the arc-length on the line segment joining the poirts, 0) and (3, 0).
Calculation gives
R sinm
pnE,m = :
43

Notice thatii (¢, n) = 0 is equivalent t& < Z\{0}.
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If « is the arc-length measure on the line segment joiiging /2, 0) and(L /2, 0)
we have
sinTLé&

n§

mL,n) =
and

Z(i0) = (&, n): £ € L7'Z\{0}).

Write © = (a, b) and letu . be the measure which is the arc-length on the segment
joining (—L/2,0) and (L/2, 0) translated byr/2 and the negative arc-length on the
same segment translated by /2. That is, we have

ML = pL * (82 — 8¢/2),
and, taking Fourier Transforms, we get

LE

Ao = =227 G ag + b,
&

Defineu = t/|t|?andv = (1/L, 0). It follows that (i is a unit vector orthogonal )
Z(jiLy) = (Zu + Rut) U (Z\{O}v + Rovt).

(Each of the two summands in the union above corresponds to each of the factors in
the formula forgi ,.) This is a set of straight lines of directiart- spaced byu| and
containing zero plus a similar set of lines of directioh spaced bylv| and contain-

ing zero. However in the latter set of parallel lines the straight line through zero has
been removed. We state this as a theorem for later use, formulated in a coordinate-free
way.

Definition 4 (Geometric Inverse of a Vector). The geometric inverse of a nonzero vec-

tor u € R? is the vector
u

u* = —.
|u?

Theorem 1. Lete ande-t betwo parallel line segmenfsanslated by, of magnitude
and direction described by symmetric with respectto zgrhet alsou. . be the measure
which charges e with its arc-length andter with its negative arc-lengthThen

Z(fier) = (Zt* + Rt*) U (Z\(0})e* 4+ Re*h). (5)

2. When Does a Polygon Tile with a Certain Lattice?
The following theorem has been proved by Bolle [B] who used combinatorial methods.

Theorem (Bolle). A convex polygon Kwhich is centrally symmetric about zetdes
multiply with the latticeA (for some weightv € N) if and only if for each edge e of K
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the following two conditions are satisfied

(i) Inthe relative interior of e there is a point éfA.
(ii) If the midpoint of e is not i A, then the vector e is in.

Remark. Notice that Bolle’s theorem implies that all centrally symmetic convex poly-
gons with vertices im\ tile multiply with A at some level.

We prove the following which is easily seen to be a generalization of Bolle’s theorem
to polygons with the pairing property.

Theorem 2. If the polygon K has the pairing property andis a lattice inR?, then
K + A is a multiple tiling ofR? if and only if for each pair of edges e and4er of K,
(i) teA,or
(i) ee Aandt +0ee A, forsomed <6 < 1.

Proof of Theoren2. Once again we simplify matters and take the ezlgebe parallel
to thex-axis and follow the notation of Section 1.1.
For an arbitrary nonzero vectar € R? define the group

G(w) = Zw + Rw*,

which is a set of straight lines iR? of directionw' spaced regularly at distange|. It
follows that
Z(jrL ;) € G(u) UG(v),

whereu = t* andv = e*. From Theorem 1 it follows that* C Z(jz_,) which implies
thatA* C G(u) or A* C G(v).
This is a consequence of the following.

Observation 1. If G, H, K are groups and GZ H U K, then GC H or G C K.

For,ifa € G\K andb € G\ H, thena-b € H, say, whichimplie® € H, a contradiction.
So we have the two alternatives

1. A* Cc G(u), and
2. A* C G(v).

However, since not all & (v) is in Z ([ ,), if alternative 2 holds and alternative 1 does
not, it follows that

A* C span{v, w), )

wherew is the smallest (in length) multiple of- which is inG(u), i.e.,

- (0})
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We have that (6) is equivalent to
A 2 (span{v, w})" = Z(L, 0) + Z(0, b),
which is in turn equivalent to
(L,O)e A and (0,b) € A.
Notice also that

u
A*CGU) <+— ADGU)*" — Aaﬁzr.
u

We have therefore proved the following lemma.
Lemmal. If Aisalatticg u = (a, b)/(a? + b?), andv = (L, 0), then
A* C (Zu + Rub) U (Z\{O}v + Rvt)

if and only if

1. (a,b)ye A, or
2. (L,0) e Aand(0, b) € A.

Allowing for a general linear transformation, kete € R?, and letie . be the measure
that “charges” with its arc-length the line segmerttanslated so that its midpoint is
at r/2 and charges with its negative arc-length the line segmerith its midpoint at
—1/2. We have proved the following:

TeA, or

ATCZ(fter) {eeA and t+6hecA, forsome 0<6<1. Y
This completes the proof of Theorem 2. O

3. Polygons that Tile Only Quasi-Periodically
3.1. Meyer’'s Theorem

We now deal with the following question: which polygons with the pairing property
admit only quasi-periodic multiple tilings. The main tool here, as it was in [KL], is the
idempotent theorem of Cohen for general locally compact abelian groups, in the form
of the following theorem of Meyer [M].

Definition 5 (The Coset Ring). Theoset ringof an abelian grougs is the smallest
collection of subsets aB which is closed under finite unions, finite intersections, and
complements (that is, the smallestg of subsets of5) and which contains all cosets
of G.
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Remark. When the group is equipped with a topology one usually only demands that
theopencosets ofG are in the coset ring, but we take all cosets in our definition.

Theorem (Meyer). LetA € RY be a discrete set and I}, be the Radon measure

51\ = ZCASA’ C, € S,

AEA

where SC C\{0} is afinite set Suppose thai, is temperedand thats, is a Radon
measure oR? which satisfies

5A|(-R RI9) <CR', as R-— oo, ®
where C> 0is a constantThen for each se S, the set
As={reAic, =59}

is in the coset ring oRY.

A proof of Meyer's theorem fod = 1 can be found in [KL]. The proof works verbatim
for all d.

3.2. Discrete Elements of the Coset Ring of a General Group

In this section we determine the structure of the discrete elements of the coset ring
of RY.

In dimensiond = 1 we have the following characterization of the discrete elements
of the coset ring oR, due to Rosenthal [R1].

Theorem (Rosenthal). The elements of the coset ringfwhich are discrete in the
usual topology oR are precisely the sets of the form

J
Falez+ . )
i=1

where FC Ris finitg «j > 0, and g € R (A denotes symmetric differer)ce

Rosenthal’s proof does not extend to dimension 2. Since we need to know what
kind of sets the elements of the coset ringRfare, we prove the following general
theorem, which says that discrete elements of the coset ring can always be constructed
from discretecosets using finitely many unions, intersections, and complementations.

Theorem 3. Let G be a topological abelian group and IRt be the least ring of sets
which contains the discrete cosets of BhenR contains all discrete elements of the
coset ring of G
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In other words, a discrete element of the coset ring can always be written as a finite union
of sets of the type

AlN---NARNB{N---N B, (10

where theA; andB; arediscretecosets ofc. Observing that the intersection of any two
cosets is a coset, we may rewrite (10) as

ANB{N---N B, (11

whereA and all B; are discrete cosets.
We need the following lemma.

Lemma 2. Suppose that A is a nondiscrete topological abelian grdepc A is
discreteand B, ..., By, are cosets in A disjoint from FThen

A=FUBU---UB, (12

implies that F= @. This remains true if A is a nondiscrete coset in a larger group

Proof of Lemm&. Write B = x; + G; and letk be the number of different subgroups
Gj appearing in (12). We do induction ¢nNotice that the grouf; may be assumed
to be nondiscrete, by the nondiscretenesé.of
Whenk = 1 the theorem is true as thénis a union of cosets d6; and cannot be
discrete unless it is empty. (Here is where the disjointne$sfobm the B; is used.)
Assume the theorem is true for< n and suppose that preciseiy 1 groups appear
in (12) and thaf # . Assume that th&;-cosets in (12) are

X1+ Gq, ..., X% + Gy,
and lety € F. We then have
y+G1 S FUMX2+G2)U---U (Xny1+ Gnia),
with all setsX;,i =2, ...,n+ 1, being finite. Hence

G1 € (-y+PUEY+Xo+G) U+ U(=y+ Xns1+ Gny1)
= F'UX;+G2) U - U(Xjq + Gni),

with F' = -y + F, X = -y + X,.
Furthermore, one may tak§ C G1,i =2, ..., n+ 1 (possibly empty), to get

Gi=(F' NGYUX;+G2NG)U---U (X[, 1+ GnpaNGy).
Sincey € F we have thaF’ N G; > 0 (hence it is nonempty) and
(FFNG)NX +G NGy =4, i=2...,n+1.

By the induction hypothesis we get a contradiction. |
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Proof of Theoren8. By Lemma 2, ifA is nondiscrete, the®A N Bf N --- N B is
either nondiscrete or empty. Hence a finite union of such sets can only be discrete if all
participatingA’'s are discrete. Rewrite then

ANBiN---NBf=ANBNAN---N(ByNA°

so as to have the arbitrary discrete element of the coset ring made up with finitely many
operations from discrete cosets. O

3.3. Discrete Elements of the Coset RingRsf
In this section we specialize the results of the previous section to the oup

Definition 6 (Dimension, Lattices). Thdimensiorof a setA € RY is the dimension
of the smallest translated subspac®&6that containsA. A latticeis a discrete subgroup
of RY.

Remark. It is well known that allk-dimensional lattices ifR? are of the formAZK,
whereA is ad x k real matrix of rankk.

Theorem 4. LetC= ANB{n---N B, with A, B being discrete cosets . Then
C may be written as a finitgossibly empfyunion of sets of the type

KNLfn---NLg, Li C K CA, m>1, (13
where the K L; are discrete cosets andihen C is not empty

dimL; < dimK =dimA =dimC i=1,...,m. (14

Observation 2. If A and B are discrete cosets Bf' with dim A = dimB = dim(AN
B), then An B¢ is a finite (possibly empfyunion of disjoint cosets of A B and
therefore dim(A N B® = dim A, except when A B¢ = @. Hence A and B can each
be written as a finite disjoint union of translates of ¥B.

Proof of Theorend. Notice that
C=ANBNAN---N(B,N A"
Letr > 0 be such that
a=dmA=dmB;NA) =---=dim(B; N A)
anddim(BiN A) <« fori >r. Let

C'=ANnBINAN.---N(B N A°
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By induction onr > 0 we prove thaC’ is a finite union of sets of type (13) satisfying
(14). Forr = 0 this is obvious. If it is true for — 1, thenC’ is a finite union of sets of

type
KNLin-.-NL N (B NAYS,

with « = dimK > dimL;,i = 1,..., m. Each of these sets falls into one of two
categories:

Categoryl: dim(K N (B, N A)) = «. Then, by Observation 2 abov, N (B, N A)¢
is a finite union of cosetK 4, ..., Ks of dimensionz and henceC’ is a finite union of
KinL{n---NL§,i=1,....s

Category2: dim(K N (B, N A)) < «. Then
KNnLin---NnL;N (B NAS°

is already of the desired form. O

From Theorems 3 and 4 it follows fdr= 2 that every discrete eleme®bf the coset
ring of R? may be written in the form

J ) _ L
S:(UAj\(Bi”U-~-UB,(,f)))UlLJL|AF, (15)

j=1 =1
where Ay, ..., A; are two-dimensional translated latticels, and Bi(j) are one-

dimensional translated lattices aid is a finite set §, L > 0). Repeatedly using
Observation 2, the lattices; may be assumed to be have pairwise intersections of
dimension at most one.

3.4. Purely Discrete Fourier Transform

Definition 7 (Uniform Density). A multisetA € RY has asymptotic density if

im AN BrX))
Roco  |Br(X)|

uniformly in x € RY. We write p = densA.

We say thatA has (uniformly) bounded density if the fraction above is bounded by a
constanip uniformly for x € R andR > 1. We say then thak has density (uniformly)
bounded byp.

Assume thatA ¢ R? is a discrete multiset of bounded density which satisfies the
assumptions of Meyer’s theorem (if we write for the multiplicity of A € A). Then, if
Ay is the subset of\ of multiplicity k, Ay is a discrete element of the coset ring and is
of the form (15).



On the Structure of Multiple Translational Tilings by Polygonal Regions 549

Assume now in addition thaﬁ has discrete support. We shall prove (Theorem 6
below) that all set&, L;, andB'” are empty in (15) and so

J
A:UA]‘,
=1

where theA; are translated two-dimensional latticesRiA, which intersect pairwise at
most on dimension one.

One can easily show that whenegeic RY of finite measure tiles witlA at levelw
thenA has densityw/|<2].

Theorem 5. Suppose that € RY is a multiset with density, 5, = >, ., 8,, and
thaté, is a measure in a neighborhood of zefthens, ({0}) = p.

Proof of Theorend. Takep € C* of compact support witlp(0) = 1. We have
Sa((0D) = im 8a(p(tx))
= lim 3,799 /1)

— limt95"5
= lim t Z<p(x/t)

rEA
= lim ,;Zu;nt_dm/t)’
where, for fixed and larg€ > 0,
Qn=[0.T)Y+Tn  nezd

SinceA has density it follows that for eacte > 0 we can choos@& large enough so
that, for alln,

[A N Qnl = p|Qnl(1+8n),

with |8,| < . For eacm andi € Q, we have
P /) =o(Tn/t) +r1,

with |r;| < CTt V@l L~-1q,)- Hence

Sa((0) = lim Dty @Tn/t) +1,)

oo nezd r€Qn
— 1 7d 7
= tIerC]o nEEZdt P1Qnl(1 4+ 80)@(Tn/t)

f —d
im Yy
nezd A€Qn
= lim S+ Iim S.
t—o0 t—o0
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We have
S - > tlQul@Tn/t)| <& Y t7p|Qull@(Tn/)l. (16)
n n
The first sum in (16) is a Riemann sum fprf]Rd @ = p and the second is a Riemann

sum forp [iq 9] < oo.
For S we have

1SI < C Yt lQul(L+ )Tt I VEllLx1q,)
nezd
< CoTt™ Yt QulIVPllLeg-1qy-

nezd

The sum above is a Riemann sum for |V, which is finite, hence lim, o $ = 0.
Sincee is arbitrary the proof is complete. O

Remark. The same proof as that of Theorem 5 shows that if

®= ZCASA,

reA

with |c,| < C, A is of density zero, and the tempered distribufiors locally a measure
in the neighborhood of some poiate R?, then we havéi({a}) = 0.

Theorem 6. Suppose thad c R? is a discrete multiset of uniformly bounded density

and that
A
rEA

54| (Br(0) < CR?,

is locally a measure with

for some positive constant C and>R1. Assume also that, has discrete supparThen
A is afinite union of translated lattices

Proof of Theoren®. Define the sets (not multisets)
Ax = {A € A: A has multiplicityk}.

By Meyer’s theorem (applied for the base set of the multisatith the coefficients;
equal to the corresponding multiplicities) each of theis in the coset ring oR? and,
being discrete, is of the type (15).

We may thus write

Ay=AAB, 17

with A = Uszl A;, where the two-dimensional translated lattiogshave pairwise
intersections of dimension at most one, and d&rs 0.
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Hence
J
8Ak = ZSAJ + M,
=1

wherep = 3¢ €8¢, densF = 0, and|c; | < C(J). The setF consists ofB and all
points contained in at least two of tifg.
Combining for allk, and reusing the symbol;, 1, andF, we get

J
Sp = ZaA, + u.
j=1

However,5, andY_}_; 54 are both (by the assumption and the Poisson Summation
Formula) discrete measures, and so is thergiotéowever, den§ = 0 and the bound-
edness of the coefficients implies thatir has no point masses (see the Remark after

the proof of Theorem 5), which means that 0 and so ig«. Hences, = Zle 3, 0r

J
A=JA.  asmultisets O
j=1

Finally, we show that discrete support fr implies thats, is locally a measure.

Theorem 7. Suppose that the multisat ¢ RY has density uniformly bounded by
and that for some point a= RY and R> 0,

supps, N Br(a) = {a).

Thenin Br(a), we haveS/,\\ = wé,, for somew € C with |w| < p.

Proof of TheorenY. Itis well known that the only tempered distributions supported at
a pointa are finite linear combinations of the derivativessgf So we may assume that,
for ¢ € C*(Bgr(a)),

Sa(p) =Y cu(D*8a)(9) = Y _(—1)*!c, D (a), (18

where the sum extends over all values of the multi-index (aq, ..., ag) with |a| =
a1+ - - + ag < m(the finite degree) anB* = 87 - - - 95 as usual.

We want to show thatn = 0. Assume the contrary and leg be a multi-index that
appears in (18) with a nonzero coefficient and fwa$ = m. Pick a smooth function
¢ supported in a neighborhood of zero which is such that for each multi-imdeith
] < mwe haveD%p(0) = 0 if o # ag and D*¢(0) = 1. (To construct such a,
multiply the polynomial1/ag!)x*® with a smooth function supported in a neighborhood
of zero, which is identically equal to one in a neighborhood of zero.)

Fort — oo letgi(X) = ¢(t(x — a)). Equation (18) then gives that

Sa (@) = tM(=1)MCy,. (19



552 M. N. Kolountzakis

On the other hand, using

(p(t(x —a))" (&) = e 2" @E/ME=05¢E /1),
we get
Salp) =y e @MOag0, ), (20)

reA

Notice that (20) is a bounded quantitytas> oo by a proof similar to that of Theorem 5,
while (19) increases like™, a contradiction.

Hences, = wé, in a neighborhood o&. The proof of Theorem 5 again gives that
lw| < p. 0

Using Theorem 7 we may drop from Theorem 6 the assumptionsthas to be
locally a measure, as this is now implied by the discrete support which we assume for
34- Summing up we have the following.

Theorem 8. Suppose that the multisét has uniformly bounded densithat S =
suppd, is discreteand that
SN Br(0)| < CRY,

for some positive constant ThenA is afinite union of translated d-dimensional lattices

3.5. Application to Tilings by Polygons

In this section we apply Theorem 8 and the characterization of the zero-sets of the
functions iz, (Theorem 1) in order to give very general sufficient conditions for a
polygonK to admit only quasi-periodic tilings, if it tiles at all.

Theorem 9. Let the polygon K have the pairing property and let it tile multiply the
plane with the multiser. Denote the edges of K Igye follow the notation of Sectidnl)

€, + 71,6, +T72,...,6, €+ Tn.
Suppose also that
{eL.aln---N{&, 0} =19, (21
where withy we denote the orientation of vectof. ThenA is a finite union of translated

two-dimensional lattices

Proof of Theoren®. By Theorem 1 and the tiling assumption we get

SUPPSA C Z(fter ) N -+~ N Z (e )

By Theorem 1 in the intersection above each of the sets is contained in a collection of
lines in the directior§ union a collection of lines in the directiofi. Because of as-
sumption (21) these sets have a discrete intersection as two lines of different orientations
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intersect at a point. Furthermore, because of the regular spacing of these pairs of sets of
lines, it follows that the resulting intersection has at mM@&? points in a large disk of
radiusR. Theorem 8 now implies that is a finite union of translated two-dimensional
lattices. O

Condition (21) is particularly easy to check for convex polygons.

Theorem 10. Suppose that K is a symmetric convex polygon which is not a parallel-
ogram Then K admits only quasi-periodic multiple tilings

Proof of Theoreml0. Suppose that (21) fails and that the intersection in (21) contains

a vector which is, say, parallel to tlyeaxis. It follows that each pair of edges g +

of edges oK either (a) has both edges parallel to #eaxis, or (b) has the line joining

the two midpoints parallel to the-axis. As this latter line goes through the origin it is
clear that (b) can only happen for one pair of edges and, since (a) cannot happen for two
consecutive pairs of edges, (a) can hold at most once as well. This mealks ithat
parallelogram. O

Remarks. 1. Itis clear that parallelograms admit tilings which are not quasi-periodic.
Take for example the regular tiling by a square and move each vertical column of squares
arbitrarily up or down.

2. Some very intersecting classes of polygons are left out of reach of Theorem 9. An
important class consists of all polygons whose edges are parallel to eitherdahéhe
y-axis.
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