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Abstract. We consider polygons with the following “pairing property”: for each edge of
the polygon there is precisely one other edge parallel to it. We study the problem of when
such a polygonK tiles multiply the plane when translated at the locations3, where3 is a
multiset in the plane. The pairing property ofK makes this question particularly amenable
to Fourier analysis. As a first application of our approach we establish a necessary and
sufficient condition forK to tile with a given lattice3. (This was first found by Bolle for
the case of convex polygons—notice that all convex polygons that tile, necessarily have the
pairing property and, therefore, our theorems apply to them.) Our main result is a proof that
a large class of such polygons tile multiply only quasi-periodically, which for us means that
3must be a finite union of translated two-dimensional lattices in the plane. For the particular
case of convex polygons we show that all convex polygons which are not parallelograms
tile multiply only quasi-periodically, if at all.

Introduction

In this paper we study multiple tilings of the plane by translates of a polygonal region
of a certain type, the polygons with the pairing property of Definition 2 below.

Definition 1 (Tiling). Let K be a measurable subset ofR2 and let3 ∈ R2 be a discrete
multiset (i.e., its underlying set is discrete and each point has finite multiplicity). We say
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that K +3 is a (translational, multiple)tiling of R2 if∑
λ∈3

1K (x − λ) = w,

for almost all (Lebesgue)x ∈ R2, where theweightor levelw is a positive integer and
1K is the indicator function ofK .

Whenever we speak of a tiling in this paper we mean a multiple tiling at some integer
level.

Before defining the polygons with the “pairing property” we make some intuitively
obvious remarks: IfK is a polygonal region (not necessarily connected), which tiles
the plane, then each edgee of a translate ofK which participates in the tiling must be
“countered” by other edges which come from other copies ofK . These edges must have
the same direction ase and at least one of them must have its outward-pointing normal
vector oriented opposite to that ofe. Hence, for a polygonal region to have any hope to
tile by translation the following must hold:for any edge e of K there is at least another
one with the same direction whose outward-pointing normal vector is opposite to that
of e. The situation becomes much simpler if that other edge is uniquely defined.

Definition 2 (Polygons with the Pairing Property). A polygonK has thepairing prop-
erty if for each edgee there is precisely one other edge ofK parallel toe and this edge
has the same length ase.

Remarks. 1. Note that all symmetric convex polygons have the pairing property and
it is not hard to see that all convex polygons that tile by translation are necessarily
symmetric.

2. The polygonal regions we deal with are not assumed to be connected.
3. The requirement that for every edge in the polygon the other edge of the same

direction has the same length is not necessary, in the sense that, if a polygon admits
multiple tilings by translations, it is always true, assuming only the uniqueness of the
other edge of the same direction.

Using Fourier analysis we prove that a large class of polygons with the pairing property
can only tile in a “quasi-periodic” manner, if they tile at all.

Definition 3 (Quasi-Periodic Multisets). A multiset3 ⊆ Rd is called quasi-periodic
if it is the union of finitely manyd-dimensional lattices (see Definition 6) inRd.

Dealing with multiple tilings of space often brings in added difficulty and quite
different behavior from simple (level 1) tilings by, say, polyhedra, and this is true even if
one deals with lattice tilings only. As an example, we mention Minkowski’s conjecture
(a theorem of Haj´os since 1940) which states that in every lattice tiling (at level 1) of
Euclidean space by translates of the unit cube at least two cubes share an entire face of
codimension one. However, this ceases to be true for multiple lattice tilings by the unit
cube, when the dimension is larger than three (see, for example, [SS]).
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Also, although the convex polygons that tile by translation at level 1 have long been
known to be just the parallelograms and the symmetric hexagons, there are many more
polygons that tile multiply, as Bolle’s theorem (see Section 2) states. This implies that
there are multiple tilings by polygons which are indecomposable, that is, they cannot
be made up by overlapping simpler tilings and, therefore, the study of multiple tilings
encompasses more than just simple tilings. One can see a concrete example of such an
indecomposable multiple tiling, at level 239, by a nonregular octagon on p. 648 of [GS].

This paper is organized as follows:
In Section 1 we describe the general approach to translational tiling using the Fourier

Transforms of certain measures which are supported on pairs of opposite edges and, in
particular, their zero-set. These zero-sets are then calculated explicitly for polygons with
the pairing property.

As a first application of our Fourier analytic method, and a demonstration that, using
it, some problems become almost a matter of calculation, we give in Section 2 a necessary
and sufficient condition (Theorem 2) for a polygonK with the pairing property to tile
multiply with a lattice3. This has been proved (by elementary methods) previously
by Bolle for the more special case of convex polygons (although his method probably
applies for the case of pairing polygons as well). Our approach is based on the calculation
of Section 1. Another case when the Fourier analytic method has proved to be very useful
can be found in [K2] where the author, after explicitly calculating the Fourier Transform
of the indicator function of certain polyhedra, was able to demonstrate the existence
of a lattice of the appropriate volume in their zero-set, thus (in a manner very similar
to that described in Section 1) establishing the fact that these polyhedra are lattice
tiles.

The main contribution of this paper comes in Section 3. There we find a very large
class of polygons with the pairing property that tile only in a quasi-periodic manner.
In particular we show that every convex polygon that is not a parallelogram can tile
(multiply) only in a quasi-periodic way (meaning translated at a finite union of lattices),
if it can tile at all. This result should be viewed in the context of the so-called Periodic
Tiling Conjecture (see, e.g., [KL]) which states that any domain that tiles (at level 1)Rd

by translation can also tile space in a periodic manner (this means that the tiling has a
d-dimensional period lattice).

Here is an outline of our approach using the Fourier Transform. The tiling condition,
thatK +3 is anm-fold tiling of R2, implies that (and, under additional assumptions, is
equivalent to the fact that) the Fourier Transform of

∑
λ∈3 δλ (a unit mass at each point

of3) is supported on the zero-set of the Fourier Transform of the measureµe, whereµe

is the measure which charges with its arc-length the edgee of the polygon and with its
negative arc-length the edge opposite toe. This support property should hold for everye.
For most polygons with the pairing property this intersection (over all different edgese)
of the zero-sets turns out to be discrete. We then use a theorem of Meyer which greatly
restricts the point-sets3which give rise to such a Fourier Transform being supported on
a discrete set. The structure for3 that comes out of Meyer’s theorem is a product of the
so-called “idempotent theorem” of Cohen for general locally compact abelian groups.
The work is completed by a careful study of what Meyer’s theorem actually gives in this
case. That is, we study the structure of the “discrete coset ring” ofR2 (see Section 3 for
a definition).
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Notation. 1. The Fourier Transform of a functionf ∈ L1(Rd) is normalized as follows:

f̂ (ξ) =
∫
Rd

e−2π i 〈ξ,x〉 f (x)dx.

2. The action of a tempered distribution (see [R2])α on a functionϕ of Schwarz class
is denoted byα(ϕ). The Fourier Transform̂α of α is a tempered distribution defined by

α̂(ϕ) = α(ϕ̂).
A tempered distributionα is supported on a closed setK if for each smooth functionϕ
with suppϕ ⊂ K c we haveα(ϕ) = 0. The intersection of all such closed setsK is called
the support ofα and denoted by suppα.

1. The Fourier Analytic Approach

1.1. General

SupposeK is a polygon with the pairing property and lete1 ande2 be two edges of the
same directionu and the same length. We can then write (heree1 ande2 are viewed as
point-sets inR2 andτ as a vector)

e2 = e1+ τ,
for someτ ∈ R2. (For each setA and vectorx we write A+ x = {a+ x: a ∈ A}.) Then
letµu be the measure which is equal to the arc-length one1 and the negative arc-length
one2. Suppose also thatK +3 is a multiple tiling ofR2. Since every part of a translate
of e1 in the tiling has to be canceled by part of a copy ofe2 it follows that∑

λ∈3
µu(x − λ)

is the zero measure inR2. It is also intuitively obvious that the vanishing of the above
measure for all directionsu also implies tiling at some integer level.

So a polygonK with the pairing property tiles multiply with a multiset3 if and only
if, for each paire ande+ τ of parallel edges ofK ,∑

λ∈3
µe(x − λ) = 0, (1)

whereµe is the measure inR2 that is the arc-length one and the negative arc-length on
e+ τ . Write

δ3 =
∑
λ∈3

δλ,

whereδa is a unit point mass ata. Thusδ3 is locally a measure but is globally unbounded
when3 is infinite. However, wheneverK +3 is a multiple tiling, it is obvious that3
cannot have more thancR2 points in any disk of radiusR, R> 1 (c depends onK and
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the weight of the tiling). This implies thatδ3 is a tempered distribution and we can take
its Fourier Transform, denoted bŷδ3. Condition (1) then becomesµe∗δ3 = 0 or, taking
Fourier Transforms,

µ̂e · δ̂3 = 0. (2)

When3 is a lattice3 = AZ2, whereA is a 2× 2 invertible matrix, itsdual lattice
3∗ is defined by

3∗ = {x ∈ R2: 〈x, λ〉 ∈ Z,∀λ ∈ 3},
and we have3∗ = A−>Z2. The Poisson Summation Formula then takes the form

δ̂3 = det3 · δ3∗ . (3)

Sinceµ̂e is a continuous function we have in this case, and wheneverδ̂3 is locally a
measure, that condition (2) is equivalent to

suppδ̂3 ⊆ Z(µ̂e), (4)

where for every continuous functionf we write Z( f ) for the set of points where it
vanishes. (If we do not know that̂δ3 is locally a measure we cannot infer tiling given
(4). That is, (4) does not imply (2), simply because for a function to “kill” a tempered
distribution it must vanish to high enough order. For example,x · δ′0 is a nonzero distri-
bution even though the support ofδ′0 (the derivative of the unit point mass at zero) is just
the point 0 wherex vanishes.) When3 is a lattice (2) is equivalent to

µ̂e(x) = 0, ∀x ∈ 3∗.
So, to check if a given polygonK with the pairing property tiles multiplyR2 with the

lattice3, one has to check that̂µe vanishes on3∗ for every edgee of K .

1.2. The Shape of the Zero-Set

Here we study the zero-set of the Fourier Transform of the measureµe of Section 1.1
and determine its structure. The result (Theorem 1) will be used throughout the rest of
the paper.

We first calculate the Fourier Transform ofµe in the particular case whene is parallel
to thex-axis, for simplicity. Letµ ∈ M(R2) be the measure defined by duality by

µ(ϕ) =
∫ 1/2

−1/2
ϕ(x,0)dx, ∀ϕ ∈ C(R2).

That is,µ is the arc-length on the line segment joining the points(− 1
2,0) and( 1

2,0).
Calculation gives

µ̂(ξ, η) = sinπξ

πξ
.

Notice that̂µ(ξ, η) = 0 is equivalent toξ ∈ Z\{0}.
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If µL is the arc-length measure on the line segment joining(−L/2,0) and(L/2,0)
we have

µ̂L(ξ, η) = sinπLξ

πξ

and

Z(µ̂L) = {(ξ, η): ξ ∈ L−1Z\{0}}.
Write τ = (a,b) and letµL ,τ be the measure which is the arc-length on the segment
joining (−L/2,0) and (L/2,0) translated byτ/2 and the negative arc-length on the
same segment translated by−τ/2. That is, we have

µL ,τ = µL ∗ (δτ/2− δ−τ/2),
and, taking Fourier Transforms, we get

µ̂L ,τ (ξ, η) = −2
sinπLξ

πξ
sinπ(aξ + bη).

Defineu = τ/|τ |2 andv = (1/L ,0). It follows that (u⊥ is a unit vector orthogonal tou)

Z(µ̂L ,τ ) = (Zu+ Ru⊥) ∪ (Z\{0}v + Rv⊥).
(Each of the two summands in the union above corresponds to each of the factors in
the formula forµ̂L ,τ .) This is a set of straight lines of directionu⊥ spaced by|u| and
containing zero plus a similar set of lines of directionv⊥ spaced by|v| and contain-
ing zero. However in the latter set of parallel lines the straight line through zero has
been removed. We state this as a theorem for later use, formulated in a coordinate-free
way.

Definition 4 (Geometric Inverse of a Vector). The geometric inverse of a nonzero vec-
tor u ∈ R2 is the vector

u∗ = u

|u|2 .

Theorem 1. Let e and e+τ be two parallel line segments(translated byτ ,of magnitude
and direction described by e,symmetric with respect to zero).Let alsoµe,τ be the measure
which charges e with its arc-length and e+ τ with its negative arc-length. Then

Z(µ̂e,τ ) = (Zτ ∗ + Rτ ∗⊥) ∪ (Z\{0}e∗ + Re∗⊥). (5)

2. When Does a Polygon Tile with a Certain Lattice?

The following theorem has been proved by Bolle [B] who used combinatorial methods.

Theorem (Bolle). A convex polygon K, which is centrally symmetric about zero, tiles
multiply with the lattice3 (for some weightw ∈ N) if and only if for each edge e of K
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the following two conditions are satisfied:

(i) In the relative interior of e there is a point of1
23.

(ii) If the midpoint of e is not in123, then the vector e is in3.

Remark. Notice that Bolle’s theorem implies that all centrally symmetic convex poly-
gons with vertices in3 tile multiply with 3 at some level.

We prove the following which is easily seen to be a generalization of Bolle’s theorem
to polygons with the pairing property.

Theorem 2. If the polygon K has the pairing property and3 is a lattice inR2, then
K +3 is a multiple tiling ofR2 if and only if, for each pair of edges e and e+ τ of K,

(i) τ ∈ 3, or
(ii) e∈ 3 andτ + θe∈ 3, for some0< θ < 1.

Proof of Theorem2. Once again we simplify matters and take the edgee to be parallel
to thex-axis and follow the notation of Section 1.1.

For an arbitrary nonzero vectorw ∈ R2 define the group

G(w) = Zw + Rw⊥,

which is a set of straight lines inR2 of directionw⊥ spaced regularly at distance|w|. It
follows that

Z(µ̂L ,τ ) ⊆ G(u) ∪ G(v),

whereu = τ ∗ andv = e∗. From Theorem 1 it follows that3∗ ⊆ Z(µ̂L ,τ )which implies
that3∗ ⊂ G(u) or3∗ ⊂ G(v).

This is a consequence of the following.

Observation 1. If G, H, K are groups and G⊆ H ∪ K , then G⊆ H or G ⊆ K .

For, ifa ∈ G\K andb ∈ G\H , thena·b ∈ H , say, which impliesb ∈ H , a contradiction.
So we have the two alternatives

1. 3∗ ⊂ G(u), and
2. 3∗ ⊂ G(v).

However, since not all ofG(v) is in Z(µ̂L ,τ ), if alternative 2 holds and alternative 1 does
not, it follows that

3∗ ⊆ spanZ{v,w}, (6)

wherew is the smallest (in length) multiple ofv⊥ which is inG(u), i.e.,

w =
(

0,
1

b

)
.
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We have that (6) is equivalent to

3 ⊇ (spanZ{v,w}
)∗ = Z(L ,0)+ Z(0,b),

which is in turn equivalent to

(L ,0) ∈ 3 and (0,b) ∈ 3.

Notice also that

3∗ ⊆ G(u) ⇐⇒ 3 ⊇ G(u)∗ ⇐⇒ 3 3 u

|u|2 = τ.

We have therefore proved the following lemma.

Lemma 1. If 3 is a lattice, u = (a,b)/(a2+ b2), andv = (L ,0), then

3∗ ⊂ (Zu+ Ru⊥) ∪ (Z\{0}v + Rv⊥)

if and only if

1. (a,b) ∈ 3, or
2. (L ,0) ∈ 3 and(0,b) ∈ 3.

Allowing for a general linear transformation, letτ,e∈ R2, and letµe,τ be the measure
that “charges” with its arc-length the line segmente translated so that its midpoint is
at τ/2 and charges with its negative arc-length the line segmente with its midpoint at
−τ/2. We have proved the following:

3∗⊂ Z(µ̂e,τ ) ⇐⇒
{
τ ∈ 3, or
e∈3 and τ+θe∈3, for some 0<θ <1.

(7)

This completes the proof of Theorem 2.

3. Polygons that Tile Only Quasi-Periodically

3.1. Meyer’s Theorem

We now deal with the following question: which polygons with the pairing property
admit only quasi-periodic multiple tilings. The main tool here, as it was in [KL], is the
idempotent theorem of Cohen for general locally compact abelian groups, in the form
of the following theorem of Meyer [M].

Definition 5 (The Coset Ring). Thecoset ringof an abelian groupG is the smallest
collection of subsets ofG which is closed under finite unions, finite intersections, and
complements (that is, the smallestring of subsets ofG) and which contains all cosets
of G.
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Remark. When the group is equipped with a topology one usually only demands that
theopencosets ofG are in the coset ring, but we take all cosets in our definition.

Theorem (Meyer). Let3 ⊆ Rd be a discrete set and letδ3 be the Radon measure

δ3 =
∑
λ∈3

cλδλ, cλ ∈ S,

where S⊆ C\{0} is a finite set. Suppose thatδ3 is tempered, and thatδ̂3 is a Radon
measure onRd which satisfies∣∣δ̂3∣∣([−R, R]d) ≤ C Rd, as R→∞, (8)

where C> 0 is a constant. Then, for each s∈ S, the set

3s = {λ ∈ 3: cλ = s}

is in the coset ring ofRd.

A proof of Meyer’s theorem ford = 1 can be found in [KL]. The proof works verbatim
for all d.

3.2. Discrete Elements of the Coset Ring of a General Group

In this section we determine the structure of the discrete elements of the coset ring
of Rd.

In dimensiond = 1 we have the following characterization of the discrete elements
of the coset ring ofR, due to Rosenthal [R1].

Theorem (Rosenthal). The elements of the coset ring ofR which are discrete in the
usual topology ofR are precisely the sets of the form

F 4
J⋃

j=1

(αjZ+ βj ), (9)

where F⊆ R is finite, αj > 0, andβj ∈ R (4 denotes symmetric difference).

Rosenthal’s proof does not extend to dimensiond ≥ 2. Since we need to know what
kind of sets the elements of the coset ring ofR2 are, we prove the following general
theorem, which says that discrete elements of the coset ring can always be constructed
from discretecosets using finitely many unions, intersections, and complementations.

Theorem 3. Let G be a topological abelian group and letR be the least ring of sets
which contains the discrete cosets of G. ThenR contains all discrete elements of the
coset ring of G.
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In other words, a discrete element of the coset ring can always be written as a finite union
of sets of the type

A1 ∩ · · · ∩ Am ∩ Bc
1 ∩ · · · ∩ Bc

n, (10)

where theAi andBi arediscretecosets ofG. Observing that the intersection of any two
cosets is a coset, we may rewrite (10) as

A∩ Bc
1 ∩ · · · ∩ Bc

n, (11)

whereA and allBi are discrete cosets.
We need the following lemma.

Lemma 2. Suppose that A is a nondiscrete topological abelian group, F ⊂ A is
discrete, and B1, . . . , Bm are cosets in A disjoint from F. Then

A = F ∪ B1 ∪ · · · ∪ Bn (12)

implies that F= ∅. This remains true if A is a nondiscrete coset in a larger group.

Proof of Lemma2. Write Bi = xi +Gi and letk be the number of different subgroups
Gi appearing in (12). We do induction onk. Notice that the groupG1 may be assumed
to be nondiscrete, by the nondiscreteness ofA.

Whenk = 1 the theorem is true as thenF is a union of cosets ofG1 and cannot be
discrete unless it is empty. (Here is where the disjointness ofF from theBi is used.)

Assume the theorem is true fork ≤ n and suppose that preciselyn+1 groups appear
in (12) and thatF 6= ∅. Assume that theG1-cosets in (12) are

x1+ G1, . . . , xr + G1,

and lety ∈ F . We then have

y+ G1 ⊆ F ∪ (X2+ G2) ∪ · · · ∪ (Xn+1+ Gn+1),

with all setsXi , i = 2, . . . ,n+ 1, being finite. Hence

G1 ⊆ (−y+ F) ∪ (−y+ X2+ G2) ∪ · · · ∪ (−y+ Xn+1+ Gn+1)

= F ′ ∪ (X′2+ G2) ∪ · · · ∪ (X′n+1+ Gn+1),

with F ′ = −y+ F , X′i = −y+ Xi .
Furthermore, one may takeX′i ⊂ G1, i = 2, . . . ,n+ 1 (possibly empty), to get

G1 = (F ′ ∩ G1) ∪ (X′2+ G2 ∩ G1) ∪ · · · ∪ (X′n+1+ Gn+1 ∩ G1).

Sincey ∈ F we have thatF ′ ∩ G1 3 0 (hence it is nonempty) and

(F ′ ∩ G1) ∩ (X′i + Gi ∩ G1) = ∅, i = 2, . . . ,n+ 1.

By the induction hypothesis we get a contradiction.
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Proof of Theorem3. By Lemma 2, if A is nondiscrete, thenA ∩ Bc
1 ∩ · · · ∩ Bc

n is
either nondiscrete or empty. Hence a finite union of such sets can only be discrete if all
participatingA’s are discrete. Rewrite then

A∩ Bc
1 ∩ · · · ∩ Bc

n = A∩ (B1 ∩ A)c ∩ · · · ∩ (Bn ∩ A)c

so as to have the arbitrary discrete element of the coset ring made up with finitely many
operations from discrete cosets.

3.3. Discrete Elements of the Coset Ring ofR2

In this section we specialize the results of the previous section to the groupR2.

Definition 6 (Dimension, Lattices). Thedimensionof a setA ⊆ Rd is the dimension
of the smallest translated subspace ofRd that containsA. A lattice is a discrete subgroup
of Rd.

Remark. It is well known that allk-dimensional lattices inRd are of the formAZk,
whereA is ad × k real matrix of rankk.

Theorem 4. Let C= A∩ Bc
1 ∩ · · · ∩ Bc

n, with A, Bi being discrete cosets ofRd. Then
C may be written as a finite(possibly empty) union of sets of the type

K ∩ Lc
1 ∩ · · · ∩ Lc

m, Li ⊆ K ⊆ A, m≥ 1, (13)

where the K, Li are discrete cosets and, when C is not empty,

dim Li < dim K = dim A = dimC (i = 1, . . . ,m). (14)

Observation 2. If A and B are discrete cosets inRd with dim A = dim B = dim(A∩
B), then A∩ Bc is a finite (possibly empty) union of disjoint cosets of A∩ B and,
therefore, dim(A ∩ Bc) = dim A, except when A∩ Bc = ∅. Hence A and B can each
be written as a finite disjoint union of translates of A∩ B.

Proof of Theorem4. Notice that

C = A∩ (B1 ∩ A)c ∩ · · · ∩ (Bn ∩ A)c.

Let r ≥ 0 be such that

α = dim A = dim(B1 ∩ A) = · · · = dim(Br ∩ A)

and dim(Bi ∩ A) < α for i > r . Let

C′ = A∩ (B1 ∩ A)c ∩ · · · ∩ (Br ∩ A)c.
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By induction onr ≥ 0 we prove thatC′ is a finite union of sets of type (13) satisfying
(14). Forr = 0 this is obvious. If it is true forr − 1, thenC′ is a finite union of sets of
type

K ∩ Lc
1 ∩ · · · ∩ Lc

m ∩ (Br ∩ A)c,

with α = dim K > dim Li , i = 1, . . . ,m. Each of these sets falls into one of two
categories:

Category1: dim(K ∩ (Br ∩ A)) = α. Then, by Observation 2 above,K ∩ (Br ∩ A)c

is a finite union of cosetsK1, . . . , Ks of dimensionα and henceC′ is a finite union of
Ki ∩ Lc

1 ∩ · · · ∩ Lc
m, i = 1, . . . , s.

Category2: dim(K ∩ (Br ∩ A)) < α. Then

K ∩ Lc
1 ∩ · · · ∩ Lc

m ∩ (Br ∩ A)c

is already of the desired form.

From Theorems 3 and 4 it follows ford = 2 that every discrete elementSof the coset
ring ofR2 may be written in the form

S=
(

J⋃
j=1

Aj \(B( j )
1 ∪ · · · ∪ B( j )

nj
)

)
∪

L⋃
l=1

Ll 4 F, (15)

where A1, . . . , AJ are two-dimensional translated lattices,Ll and B( j )
i are one-

dimensional translated lattices andF is a finite set (J, L ≥ 0). Repeatedly using
Observation 2, the latticesAj may be assumed to be have pairwise intersections of
dimension at most one.

3.4. Purely Discrete Fourier Transform

Definition 7 (Uniform Density). A multiset3 ⊆ Rd has asymptotic densityρ if

lim
R→∞

#(3 ∩ BR(x))

|BR(x)| → ρ

uniformly in x ∈ Rd. We writeρ = dens3.

We say that3 has (uniformly) bounded density if the fraction above is bounded by a
constantρ uniformly for x ∈ R andR> 1. We say then that3 has density (uniformly)
bounded byρ.

Assume that3 ⊂ R2 is a discrete multiset of bounded density which satisfies the
assumptions of Meyer’s theorem (if we writecλ for the multiplicity ofλ ∈ 3). Then, if
3k is the subset of3 of multiplicity k,3k is a discrete element of the coset ring and is
of the form (15).
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Assume now in addition that̂δ3 has discrete support. We shall prove (Theorem 6
below) that all setsF , Ll , andB( j )

i are empty in (15) and so

3 =
J⋃

j=1

Aj ,

where theAi are translated two-dimensional lattices inR2, which intersect pairwise at
most on dimension one.

One can easily show that wheneverÄ ⊆ Rd of finite measure tiles with3 at levelw
then3 has densityw/|Ä|.

Theorem 5. Suppose that3 ∈ Rd is a multiset with densityρ, δ3 =
∑

λ∈3 δλ, and
that δ̂3 is a measure in a neighborhood of zero. Thenδ̂3({0}) = ρ.

Proof of Theorem5. Takeϕ ∈ C∞ of compact support withϕ(0) = 1. We have

δ̂3({0}) = lim
t→∞ δ̂3(ϕ(t x))

= lim
t→∞ δ3(t

−dϕ̂(ξ/t))

= lim
t→∞ t−d

∑
λ∈3

ϕ̂(λ/t)

= lim
t→∞

∑
n∈Zd

∑
λ∈Qn

t−dϕ̂(λ/t),

where, for fixed and largeT > 0,

Qn = [0, T)d + T n, n ∈ Zd.

Since3 has densityρ it follows that for eachε > 0 we can chooseT large enough so
that, for alln,

|3 ∩ Qn| = ρ|Qn|(1+ δn),

with |δn| ≤ ε. For eachn andλ ∈ Qn we have

ϕ̂(λ/t) = ϕ̂(T n/t)+ rλ

with |rλ| ≤ CT t−1‖∇ϕ̂‖L∞(t−1Qn)
. Hence

δ̂3({0}) = lim
t→∞

∑
n∈Zd

t−d
∑
λ∈Qn

(ϕ̂(T n/t)+ rλ)

= lim
t→∞

∑
n∈Zd

t−dρ|Qn|(1+ δn)ϕ̂(T n/t)

+ lim
t→∞

∑
n∈Zd

t−d
∑
λ∈Qn

rλ

= lim
t→∞ S1+ lim

t→∞ S2.
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We have ∣∣∣∣∣S1−
∑

n

t−dρ|Qn|ϕ̂(T n/t)

∣∣∣∣∣ ≤ ε∑
n

t−dρ|Qn||ϕ̂(T n/t)|. (16)

The first sum in (16) is a Riemann sum forρ
∫
Rd ϕ̂ = ρ and the second is a Riemann

sum forρ
∫
Rd |ϕ̂| <∞.

For S2 we have

|S2| ≤ C
∑
n∈Zd

t−dρ|Qn|(1+ δn)T t−1‖∇ϕ̂‖L∞(t−1Qn)

≤ CρT t−1
∑
n∈Zd

t−d|Qn|‖∇ϕ̂‖L∞(t−1Qn)
.

The sum above is a Riemann sum for
∫
Rd |∇ϕ̂|, which is finite, hence limt→∞ S2 = 0.

Sinceε is arbitrary the proof is complete.

Remark. The same proof as that of Theorem 5 shows that if

µ =
∑
λ∈3

cλδλ,

with |cλ| ≤ C,3 is of density zero, and the tempered distributionµ̂ is locally a measure
in the neighborhood of some pointa ∈ R2, then we havêµ({a}) = 0.

Theorem 6. Suppose that3 ⊂ R2 is a discrete multiset of uniformly bounded density
and that

δ̂3 =
(∑
λ∈3

δλ

)∧
is locally a measure with ∣∣δ̂3∣∣(BR(0)) ≤ C R2,

for some positive constant C and R≥ 1.Assume also that̂δ3 has discrete support. Then
3 is a finite union of translated lattices.

Proof of Theorem6. Define the sets (not multisets)

3k = {λ ∈ 3: λ has multiplicityk}.
By Meyer’s theorem (applied for the base set of the multiset3 with the coefficientscλ
equal to the corresponding multiplicities) each of the3k is in the coset ring ofR2 and,
being discrete, is of the type (15).

We may thus write

3k = A4 B, (17)

with A = ⋃J
j=1 Aj , where the two-dimensional translated latticesAj have pairwise

intersections of dimension at most one, and densB = 0.
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Hence

δ3k =
J∑

j=1

δAj + µ,

whereµ =∑ f ∈F cf δ f , densF = 0, and
∣∣cf

∣∣ ≤ C(J). The setF consists ofB and all
points contained in at least two of theAj .

Combining for allk, and reusing the symbolsAj , µ, andF , we get

δ3 =
J∑

j=1

δAj + µ.

However,δ̂3 and
∑J

j=1 δ̂Aj are both (by the assumption and the Poisson Summation
Formula) discrete measures, and so is thereforeµ̂. However, densF = 0 and the bound-
edness of the coefficientscf implies that̂µ has no point masses (see the Remark after
the proof of Theorem 5), which means thatµ̂ = 0 and so isµ. Henceδ3 =

∑J
j=1 δAj , or

3 =
J⋃

j=1

Aj , as multisets.

Finally, we show that discrete support for̂δ3 implies thatδ̂3 is locally a measure.

Theorem 7. Suppose that the multiset3 ⊂ Rd has density uniformly bounded byρ
and that, for some point a∈ Rd and R> 0,

suppδ̂3 ∩ BR(a) = {a}.
Then, in BR(a), we haveδ̂3 = wδa, for somew ∈ C with |w| ≤ ρ.

Proof of Theorem7. It is well known that the only tempered distributions supported at
a pointa are finite linear combinations of the derivatives ofδa. So we may assume that,
for ϕ ∈ C∞(BR(a)),

δ̂3(ϕ) =
∑
α

cα(D
αδa)(ϕ) =

∑
α

(−1)|α|cαDαϕ(a), (18)

where the sum extends over all values of the multi-indexα = (α1, . . . , αd) with |α| =
α1+ · · · + αd ≤ m (the finite degree) andDα = ∂α1

1 · · · ∂αd
d as usual.

We want to show thatm = 0. Assume the contrary and letα0 be a multi-index that
appears in (18) with a nonzero coefficient and has|α0| = m. Pick a smooth function
ϕ supported in a neighborhood of zero which is such that for each multi-indexα with
|α| ≤ m we haveDαϕ(0) = 0 if α 6= α0 and Dα0ϕ(0) = 1. (To construct such aϕ,
multiply the polynomial(1/α0!)xα0 with a smooth function supported in a neighborhood
of zero, which is identically equal to one in a neighborhood of zero.)

For t →∞ let ϕt (x) = ϕ(t (x − a)). Equation (18) then gives that

δ̂3(ϕt ) = tm(−1)mcα0. (19)
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On the other hand, using

(ϕ(t (x − a)))∧ (ξ) = e−2π i 〈a,ξ/t〉t−dϕ̂(ξ/t),

we get

δ̂3(ϕt ) =
∑
λ∈3

e−2π i 〈a,λ/t〉t−dϕ̂(λ/t). (20)

Notice that (20) is a bounded quantity ast →∞ by a proof similar to that of Theorem 5,
while (19) increases liketm, a contradiction.

Henceδ̂3 = wδa in a neighborhood ofa. The proof of Theorem 5 again gives that
|w| ≤ ρ.

Using Theorem 7 we may drop from Theorem 6 the assumption thatδ̂3 has to be
locally a measure, as this is now implied by the discrete support which we assume for
δ̂3. Summing up we have the following.

Theorem 8. Suppose that the multiset3 has uniformly bounded density, that S =
suppδ̂3 is discrete, and that

|S∩ BR(0)| ≤ C Rd,

for some positive constant C.Then3 is a finite union of translated d-dimensional lattices.

3.5. Application to Tilings by Polygons

In this section we apply Theorem 8 and the characterization of the zero-sets of the
functions µ̂e,τ (Theorem 1) in order to give very general sufficient conditions for a
polygonK to admit only quasi-periodic tilings, if it tiles at all.

Theorem 9. Let the polygon K have the pairing property and let it tile multiply the
plane with the multiset3.Denote the edges of K by(we follow the notation of Section1.1)

e1,e1+ τ1,e2,e2+ τ2, . . . ,en,en + τn.

Suppose also that

{ẽ1, τ̃1} ∩ · · · ∩ {ẽn, τ̃n} = ∅, (21)

where with̃vwe denote the orientation of vectorv⊥. Then3 is a finite union of translated
two-dimensional lattices.

Proof of Theorem9. By Theorem 1 and the tiling assumption we get

suppδ̂3 ⊆ Z(µ̂e1,τ1) ∩ · · · ∩ Z(µ̂en,τn).

By Theorem 1 in the intersection above each of the sets is contained in a collection of
lines in the directioñei union a collection of lines in the directioñτi . Because of as-
sumption (21) these sets have a discrete intersection as two lines of different orientations
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intersect at a point. Furthermore, because of the regular spacing of these pairs of sets of
lines, it follows that the resulting intersection has at mostC R2 points in a large disk of
radiusR. Theorem 8 now implies that3 is a finite union of translated two-dimensional
lattices.

Condition (21) is particularly easy to check for convex polygons.

Theorem 10. Suppose that K is a symmetric convex polygon which is not a parallel-
ogram. Then K admits only quasi-periodic multiple tilings.

Proof of Theorem10. Suppose that (21) fails and that the intersection in (21) contains
a vector which is, say, parallel to they-axis. It follows that each pair of edgesei ,ei + τi

of edges ofK either (a) has both edges parallel to thex-axis, or (b) has the line joining
the two midpoints parallel to thex-axis. As this latter line goes through the origin it is
clear that (b) can only happen for one pair of edges and, since (a) cannot happen for two
consecutive pairs of edges, (a) can hold at most once as well. This means thatK is a
parallelogram.

Remarks. 1. It is clear that parallelograms admit tilings which are not quasi-periodic.
Take for example the regular tiling by a square and move each vertical column of squares
arbitrarily up or down.

2. Some very intersecting classes of polygons are left out of reach of Theorem 9. An
important class consists of all polygons whose edges are parallel to either thex- or the
y-axis.
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