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Abstract In this work we prove that the set of points at infinity S∞ := ClRPm (S)∩H∞
of a semialgebraic set S ⊂ R

m that is the image of a polynomial map f : R
n → R

m

is connected. This result is no longer true in general if f is a regular map. However,
it still works for a large family of regular maps that we call quasi-polynomial maps.
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1 Introduction

A map f := ( f1, . . . , fm) : R
n → R

m is a polynomial map if each component
fi ∈ R[x] := R[x1, . . . ,xn]. A subset S of R

m is a polynomial image of R
n if there

exists a polynomial map f : R
n → R

m such that S = f (Rn). More generally, the map
f is regular if each component fi is a regular function of R(x) := R(x1, . . . ,xn),
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that is, fi := gi
hi

is a quotient of polynomials such that the zero set of hi is empty.
Analogously, a subset S of R

m is a regular image of R
n if it is the image S = f (Rn)

of R
n given by a regular map f .

The present work continues the general study of polynomial and regular images of
Euclidean spaces already began in [3,4]. A celebrated Theorem of Tarski–Seidenberg
[1, 1.4] says that the image of any polynomial map (and more generally of a regular
map) f : R

m → R
n is a semialgebraic subset S of R

n , that is, it can be written as a
finite boolean combination of polynomial equations and inequalities, which we will
call a semialgebraic description. By elimination of quantifiers S is semialgebraic if it
has a description by a first order formula possibly with quantifiers. Such a freedom
gives easy semialgebraic descriptions for topological operations: interiors, closures,
borders of semialgebraic sets are again semialgebraic.

In an Oberwolfach week [10] Gamboa proposed to characterize the semialgebraic
sets of R

m that are polynomial images of R
n for some n ≥ 1. The open ones deserve

a special attention in connection with the real Jacobian Conjecture [14,15,18]. The
interest of polynomial (and also regular) images arises because there exist certain
problems in Real Algebraic Geometry that can be reduced for such sets to the case
S = R

n (see [8,9]). Examples of such problems are:

• Optimization of polynomial (and/or regular) functions on S,
• Characterization of the polynomial (or regular functions) that are positive semidef-

inite on S (Hilbert’s 17th problem and Positivstellensatz),
• Computation of trajectories inside S parametrizable by polynomial (or regular)

maps.

1.1 Main Result

We denote the projective space of coordinates (x0 : x1 : · · · : xm) with RP
m . It

contains R
m as the set of points with x0 = 1. The hyperplane at infinity H∞ has

equation x0 = 0. Given a semialgebraic set S ⊂ R
m , the set of points at infinity of S

is S∞ := ClRPm (S) ∩ H∞. Our main result in this work is the following.

Theorem 1.1 Let f : R
n → R

m be a non-constant polynomial map and denote
S := f (Rm). Then S∞ is non-empty and connected.

It seems a difficult matter to provide a full geometric characterization of all polyno-
mial and/or regular images S ⊂ R

m . We only know it for the 1-dimensional case [2].
Nevertheless, we have approached the representation as polynomial or regular images
of ample families of n-dimensional semialgebraic sets whose boundaries are piece-
wise linear. We have focused on: convex polyhedra, their interiors, their exteriors and
the closure of their exteriors [6,8,9,23]. The proofs are constructive but the arguments
are developed ad hoc. Two main difficulties arise:

• To develop a strategy to produce an either polynomial or regular map whose image
is the desired semialgebraic set.

• To prove the surjectivity of the constructed map.
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In [3] appear some straightforward properties that a polynomial (resp. regular)
image S ⊂ R

m must satisfy: S must be pure dimensional, connected, semialgebraic
and its Zariski closure must be irreducible. It follows from [5, 3.1] that S must be
irreducible in the sense proposed in [5]. All these properties follow readily from the
fact [7, 3.6]:

(∗) Given two points p, q ∈ S, there exists a polynomial (resp. regular) image L of R

(also known as parametric semiline) contained in S and passing through p, q.

There are many examples of semialgebraic sets with property (∗) that are poly-
nomial images of no R

n . Take S := {0 ≤ x ≤ 1, 0 ≤ y} ∪ {0 ≤ y ≤ x} ⊂ R
2,

which satisfies (∗). By Theorem 1.1 S is a polynomial image of no R
n because its

set of points at infinity is disconnected. Consequently Theorem 1.1 provides a new
obstruction to be a polynomial image of R

n .
We wondered in [4, 7.3] about the number of connected components of the exterior

of a polynomial image of dimension ≥2. The first author was convinced that the answer
was one, but the second author showed in [22] that this number can be arbitrarily large.
Nevertheless, Theorem 1.1 is in the vein of the wrong initial position concerning the
number of connected components of the exterior of a polynomial image.

1.2 Strategy of the Proof and Structure of the Article

The proof of Theorem 1.1 involves techniques inspired by those employed by Jelonek
in his works [14,15] where he studies the geometry of the set of points S f at which
an either complex or real polynomial map f : K

n → K
m is not proper (K denotes

either R or C). We highlight the following:

• Resolution of indeterminacy of rational maps defined on projective surfaces.
• Sufficient conditions to guarantee that the intersection of two connected complex

projective curves of a complex projective surface is either empty or a singleton.
• A “rational” curve selection lemma.

For the sake of the reader we include a careful exposition of these techniques in
Sect. 2. The reader can proceed directly to Sect. 3 and refer to the Preliminaries only
when needed. In Sect. 3 we prove Theorem 1.1 in the more general setting of quasi-
polynomial maps. In Sect. 4 we show that the set of points at infinity of the image of a
general regular map does not need to be connected and we provide some enlightening
examples.

2 Preliminaries

We write K to refer indistinctly to R or C. We denote the hyperplane at infinity of
KP

m with H∞(K) := {x0 = 0}. Clearly, KP
m contains K

m as the set KP
m\H∞(K) =

{x0 = 1}. If m = 1, we denote the point at infinity KP
1 with {p∞} := {x0 = 0} and

if m = 2, we write �∞(K) := {x0 = 0} for the line at infinity of KP
2. We use

freely that the real projective space RP
m can be immersed in R

k for k large enough as
an affine non-singular real algebraic variety [1, 3.4.4]. Thus, the closure in RP

m of a
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semialgebraic subset of R
m is again a semialgebraic set. It will be useful to understand

real algebraic objects as fixed parts under conjugation of complex algebraic objects
that are invariant under conjugation.

2.1 Invariant Projective Objects

For each n ≥ 1 denote the complex conjugation with

σ := σn : CP
n → CP

n, z = (z0 : z1 : · · · : zn) �→ z = (z0 : z1 : · · · : zn).

Clearly, RP
n is the set of fixed points of σ . A set A ⊂ CP

n is called invariant if
σ(A) = A. If Z ⊂ CP

n is an invariant non-singular (complex) projective variety,
then Z ∩ RP

n is a non-singular (real) projective variety. We say that a rational map
h : CP

n ��� CP
m is invariant if h ◦ σn = σm ◦ h. Of course, h is invariant if its

components are homogeneous polynomials with real coefficients, so it provides by
restriction a real rational map h|RPn : RP

n ��� RP
m . We use freely usual concepts

of Algebraic Geometry such as: rational map, regular map, divisor, blow-up, etc. and
refer the reader to [11,17,19,20] for further details. For the sake of the reader we
denote complex dimension with dimC(·) and real dimension with dimR(·). Recall the
following fact concerning the regularity of rational maps defined on a non-singular
projective curve [17, 7.1].

Lemma 2.1 Let Z ⊂ CP
n be a non-singular projective curve and F : Z ��� CP

m a
rational map. Then F extends to a regular map F ′ : Z → CP

m. In addition, if Z , F
are invariant, so is F ′.

One of the main tools is the resolution of indeterminacy of an invariant rational
map. We provide a careful presentation of this well-known tool keeping track of the
invariance properties along the process.

2.2 Resolution of Indeterminacy of an Invariant Rational Map

Let Z0 ⊂ CP
n be an invariant non-singular projective variety of dimension d and

FC := (F1 : · · · : Fm) : Z0 ��� CP
m an invariant rational map. To compute the

set of indeterminacy of FC one proceeds as follows [19, III.1.4]. Consider for each
i = 0, . . . , m the divisor Di in Z0 defined by Fi and let |D| := hcd{D0, D1, . . . , Dm}
be the highest common divisor of the divisors D0, D1, . . . , Dm . The divisors D′

i :=
Di − |D| are relatively prime. By [19, III.1.4.Theorem 2] the map FC fails to be
regular exactly at the points of the invariant set YC := ⋂m

i=0 supp(D′
i ), which has

dimension ≤ d − 2. As FC is invariant, it can be restricted to a real rational map
FR : Z0 ∩ RP

n ��� RP
m whose set of indeterminacy is YR := YC ∩ RP

2.
We assume that Z0 has dimension 2. As it is well-known, FC : Z0 ��� CP

m admits
an invariant resolution. Namely,

2.2.1. There exist

(i) An invariant non-singular projective surface Z1 ⊂ CP
k for some k ≥ 2.
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(ii) An invariant (composition of a) sequence of blow-ups πC : Z1 → Z0 ⊂ CP
n

such that πC|Z1\π−1
C

(YC)
: Z1\π−1

C
(YC) → Z0\YC is a biregular isomorphism

and YC = {p ∈ Z0 : #π−1
C

(p) > 1}.
(iii) An invariant regular map F̂C : Z1 → CP

m such that

F̂C|Z1\π−1
C

(YC)
= FC ◦ πC|Z1\π−1

C
(YC)

.

In addition, for each y ∈ YC the irreducible components of π−1
C

(y) are non-
singular projective curves Ki,y that are biregularly equivalent to CP

1 (via regular
maps Φi,y : CP

1 → Ki,y that are invariant for invariant Ki,y) and satisfy

(iv) If y ∈ YC\YR, then σ(Ki,y) = Ki,σ (y) and Ki,y ∩ RP
k = ∅,

(v) If y ∈ YR, then either Ki,y ∩RP
k = ∅ and there exists j �= i such that σ(Ki,y) =

K j,y or σ(Ki,y) = Ki,y and Ci,y = Ki,y ∩ RP
k is a non-singular projective

curve biregularly equivalent to RP
1 (via the restriction map φi,y := Φi,y |RP1 :

RP
1 → Ci,y).

A triple (Z1, πC, F̂C) satisfying the previous properties is an invariant resolution for
FC.

Let us recall some terminology and results concerning blow-ups of non-singular
projective varieties at non-singular centers, from which 2.2.1. follows readily.

2.3 Blow-Up with a Non-singular Variety as Center

Let Z0 ⊂ CP
n be a non-singular irreducible projective variety and Y ⊂ Z0 a non-

singular subvariety. Let H1, . . . , Hm be a system of homogeneous polynomials of the
same degree that generates an ideal I whose saturation

I := {H ∈ C[z] := C[z0,z1, . . . ,zn] : (z)k H ⊂ I for some k ≥ 0}

equals the ideal J (Y ) of (homogeneous) polynomials of C[z] vanishing identically
on Y .

2.3.1. The blow-up BlY (Z0) of Z0 with center Y is the closure in Z0 × CP
m−1 of the

set

{(z; (H1(z) : · · · : Hm(z))) ∈ (Z0\Y ) × CP
m−1}

together with the projection π : BlY (Z0) ⊂ Z0 × CP
m−1 → Z0, (z; y) �→ z (see

[11, 7.18] and [20, VI.2.2]). Recall the following facts:

• BlY (Z0) is a non-singular irreducible projective variety of the same dimension as
Z0, independent of the choices made in the process.

• π−1(Y ) is a non-singular hypersurface of BlY (Z0).
• π |BlY (Z0)\π−1(Y ) : BlY (Z0)\π−1(Y ) → Z0\Y is a biregular isomorphism.
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• Y admits a finite cover by affine open subsets {Uα}α satisfying π−1(Uα) ∼=
Uα × CP

r−1 where r := dimC(Z0) − dimC(Y ). In particular, the fiber of each
y ∈ Y is a projective space CP

r−1.
• If Y1, . . . , Yr are the irreducible components of Y , then they are pairwise disjoint

and non-singular and it holds

BlY (Z0) ∼= BlYr (· · · BlY2(BlY1(Z0)) · · · ).

If Z0, Y are invariant, BlY (Z0) can be assumed invariant, too, by choosing an ideal
I with saturation J (Y ) and whose generators are invariant (given any family of gen-
erators, consider the real and the imaginary parts of all of them). If we consider
the immersion of BlY (Z0) in some CP

N using Segre’s map, also the regular map
π : BlY (Z0) → Z0 is invariant.

2.3.2. Assume that Z0 is an invariant non-singular projective surface and Y is a finite
invariant subset. Consider the invariant blow-up (BlY (Z0), π) of Z0 with center Y :

(i) For each y ∈ Y the fiber π−1(y) is a CP
1. If y ∈ Y ∩ RP

N , there exists an
invariant biregular equivalence between π−1(y) and CP

1. If y ∈ Y\RP
N , then

π−1(y) ∩ RP
N = ∅.

(ii) If C ⊂ Z0 is a non-singular curve not contained in the center Y , its strict transform

C̃ := ClBlY (Z0)(π
−1(C\Y )) ⊂ π−1(C)

is as well a non-singular curve. In addition, if there exists an invariant biregular
equivalence Φ : CP

1 → C , the strict transform C̃ ⊂ π−1(C) of C under π is
invariant and there exists an invariant biregular equivalence Ψ : CP

1 → C̃ .

Proof (Sketch of proof of statement 2.2.1.) To solve the indeterminacy of the rational
map FC : Z0 ��� CP

m , one blows the set of points of indeterminacy YC of FC up and
considers the composition G of FC with the previous sequence of blowing-ups [19,
IV.3.3.Theorem 3]. If G is regular, the process is concluded. Otherwise one applies
the previous procedure to G. In finitely many steps one achieves a regular map and
the process finishes. By 2.3 we may assume that each rational map involved in the
process is invariant, so in the last step of the process we obtain

• An invariant non-singular projective surface Z1 ⊂ CP
k for some k ≥ 2,

• An invariant sequence of blow-ups πC : Z1 → Z0 ⊂ CP
n and

• An invariant regular map F̂C : Z1 → CP
m such that

F̂C|Z1\π−1
C

(YC)
= FC ◦ πC|Z1\π−1

C
(YC)

.

The triple (Z1, πC, F̂C) satisfies conditions (i) to (iii). The fiber of each point of
YC under π is a complex projective curve by 2.3 whose irreducible components are
non-singular rational curves while the fiber of each point of Z0\YC under π is a
singleton. Thus, YC is the fundamental set of πC, so (ii) holds. Assertions (iv) and (v)
are straightforward consequences of 2.3. ��
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2.4 Projective Curves Intersecting Each Other in a Singleton

It will be useful to know sufficient conditions that guarantee that the intersection of
two connected complex projective curves of a complex projective surface is either
empty or a singleton. The following result is a reformulation of [14, 4.6] and [15, 3.1].

Lemma 2.2 Let X be a complex projective surface. Assume that

• U ⊂ X is a connected orientable manifold such that

H1(U ; Z) = H2(U ; Z) = 0,

• U is dense in X and the complement A := X\U is a complex projective curve.

Let C1, C2 ⊂ A be two connected, complex projective curves without common irre-
ducible components. Then the intersection C1∩C2 is either the empty set or a singleton.

Proof The proof is conducted in several steps:

2.4.1. We prove first that H1(A; Z) = 0.
Assume that X is a compact polyhedron of dimension 4 and A a closed subpolyhe-

dron of X . As U is an orientable real manifold of dimension 4, by Lefschetz duality
[21, 6.1.11 & 6.2.19] we have Hi (X, A; Z) ∼= H4−i (U ; Z) for i = 0, . . . , 4. By the
long exact sequence of cohomology [21, 5.4.13]

H1(X, A; Z) → H1(X; Z) → H1(A; Z) → H2(X, A; Z) ∼= H2(U ; Z) = 0,

so H1(X; Z) → H1(A; Z) is an epimorphism. As U is a connected open dense subset
of X , there exists by [14, 4.7] an epimorphism

0 = H1(U ; Z) → H1(X, Z),

so H1(X, Z) = 0. By the universal-coefficient theorem for cohomology [21, 5.5.3]

H1(X, Z) ∼= Hom(H1(X, Z), Z) ⊕ Ext(Z, Z),

so by [21, 5.5.1] H1(X; Z) = 0. Consequently, H1(A; Z) = 0.

2.4.2. Let C ⊂ A be a projective algebraic curve. Then H1(C; Z) = 0. In particular,
it holds H1(C1 ∪ C2; Z) = 0.

Let C ′ be the union of the irreducible components of A not contained in C . Clearly,
F := C ∩C ′ is a finite set. As C and C ′ are analytic sets, they are locally contractible,
so for each x ∈ F there exists a neighborhood V x in A such that

• V x ∩ C and V x ∩ C ′ have the singleton {x} as a deformation retract,
• V x ∩ C ∩ C ′ = {x} and
• V x1 ∩ V x2 = ∅ if x1, x2 ∈ F and x1 �= x2.
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It holds that V := C ∪ ⋃
x∈F (V x ∩ C ′) and W := C ′ ∪ ⋃

x∈F (V x ∩ C) are open
subsets of A such that V ∪ W = A, V ∩ W = ⋃

x∈F (V x ∩ (C ∪ C ′)) and C, C ′ are
respective deformation retracts of V and W . In addition, F is a deformation retract of
V ∩ W . By Mayer–Vietoris’ exact sequence for cohomology [21, 5.4.9]

0 = H1(A; Z) = H1(V ∪ W ; Z) → H1(V ; Z) ⊕ H1(W ; Z)

→ H1(V ∩ W ; Z) ∼= H1(F; Z).

As F is a finite set, H1(F; Z) = 0, so H1(C; Z) ∼= H1(V ; Z) = 0.

2.4.3. C1 ∩ C2 is either empty or a singleton.
Assume C1 ∩ C2 �= ∅. Let V1, V2 be two open subsets of C1 ∪ C2 such that

• Ci ⊂ Vi is a deformation retract of Vi for i = 1, 2,
• V1 ∪ V2 = C1 ∪ C2 and C1 ∩ C2 is a deformation retract of V1 ∩ V2

(for the construction of V1, V2 proceed similarly to 2.4.2). By Mayer–Vietoris’ exact
sequence for reduced cohomology [21, 5.4.8 & p. 240] applied to the open subsets V1
and V2 of C1 ∪ C2 (whose intersection V1 ∩ V2 ⊃ C1 ∩ C2 �= ∅), we deduce

H̃0(C1; Z) ⊕ H̃0(C2; Z) ∼= H̃0(V1; Z) ⊕ H̃0(V2; Z)

→ H̃0(V1 ∩ V2; Z) ∼= H̃0(C1 ∩ C2; Z)

→ H̃1(V1 ∪ V2; Z) ∼= H̃1(C1 ∪ C2; Z) ∼= H1(C1 ∪ C2; Z) = 0.

As C1, C2 are connected, H̃0(Ci ; Z) = 0, so H̃0(C1 ∩ C2; Z) = 0. Thus, the finite
set C1 ∩ C2 is connected, so it is a singleton. ��
Example 2.3 Let F ⊂ C

2 be a finite set and U := C
2\F its complement. Then

H1(U, Z) = H2(U, Z) = 0.
By Hurewicz’s theorem H1(U, Z) is the abelianization of π1(U ) = 0, so

H1(U, Z) = 0. We identify C
2 ≡ R

4. To compute H2(U, Z), we may assume
F := {p1, . . . , pr } where pk := (2k − 1, 0, 0, 0). Notice that Dr := ⋃r

i=1 S
3
pi

where S
3
pi

:= {x ∈ R
4 : ‖x − pi‖ = 1} is a deformation retract of U ≡ R

4\F .
Observe

S
3
pi

∩ S
3
p j

=
{

{pi j := pi +p j
2 } if |i − j | = 1,

∅ if |i − j | > 1.

Denote Dk := ⋃k
i=1 S

3
pi

and observe H2(D1; Z) = H2(S
3
p1

; Z) = 0. By induction
hypothesis, we assume H2(Dr−1; Z) = 0. By Mayer–Vietoris’ exact sequence for
homology [21, Sect. 4.6]

0 = H2(Dr−1, Z) ⊕ H2(S
3
pr

; Z) → H2(Dr ; Z) = H2(U ; Z)

→ H1(Dr−1 ∩ S
3
pr

, Z) = H1({pr−1,r }; Z) = 0,

so H2(U ; Z) = 0, as required. ��
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Remark 2.4 Lemma 2.2 applies if U is homeomorphic to the complement in C
2 of a

finite subset.

2.5 Rational Curve Selection Lemma

To finish this section we present the following variation of the curve selection lemma
adapted to the situations we will approach later. We refer the reader to [16, 4.7] for a
result of similar nature.

Lemma 2.5 Let f : R
n → R

m be a regular map and S := f (Rn). Let S′ ⊂ S
be a semialgebraic dense subset of S and p ∈ ClRPm (S)\S. Then there exist (after
reordering the variables of R

n) a rational path

α := (±tk1 ,tk2p2, . . . ,t
knpn) ∈ R(t)n,

where

• ki ∈ Z, k1 = min{k1, . . . , kn} < 0,
• pi ∈ R[t] and pi (0) �= 0 for i = 2, . . . , n

and an integer r ≥ 1 such that for each β ∈ (t)r
R[t]n

(i) p = limt→0+( f ◦ (α + β))(t) and
(ii) ( f ◦ (α + β))(t) ⊂ S′ for t > 0 small enough.

Before proving the previous result, we need a technical lemma.

Lemma 2.6 Let F ∈ R[x] be a polynomial that is not identically zero and let
g ∈ R((t))n. Then for each s ≥ 1 there exists r ≥ 1 such that if h ∈ (t)r

R[[t]]n, we
have F(g) − F(g + h) ∈ (t)s

R[[t]].
Proof Write g := g′

tk where k ≥ 0 and g′ ∈ R[[t]]n . Let z and y := (y1, . . . ,yn)

be variables. Write F(x + zy) = F(x) + zH(x,y,z) where H ∈ R[x,y,z] is a
polynomial of degree d. Let r := s + kd and observe that if h ∈ (t)r

R[[t]]n , we may
write h := tr h′ where h′ ∈ R[[t]] and

F(g + h) − F(g) = tr H
( g′

tk
, h′,tr

)
.

Observe that the order of the series F(g + h) − F(g) is ≥ r − kd = s, as required.��
Proof of Lemma 2.5 The proof is conducted in several steps:

2.5.1. We may assume: S′ is open in S.
As S′ is dense in S and S is pure dimensional because it is the image of R

n

under a regular map, it holds that ClRm (S\S′) has dimension ≤ dimR(S) − 1. Thus,
S′′ := S\ ClRm (S\S′) ⊂ S′ is dense and open in S. Changing S′ with S′′, we may
assume that S′ is open in S.

2.5.2. There exists a Nash path λ : (−1, 1) → RP
n such that ( f ◦ λ)(0, 1) ⊂ S′,

limt→0 λ(t)= q ∈ RP
n\R

n and limt→0( f ◦ λ)(t) = p.
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As p ∈ ClRPm (S′)\S′, there exists by the Nash curve selection Lemma [1, 8.1.13]
a Nash path γ : (−1, 1) → RP

m such that γ ((0, 1)) ⊂ S′ and γ (0) = p. Let {xk}k ⊂
R

n and {tk}k≥1 ⊂ (0, 1) be sequences such that limk→∞ tk = 0 and f (xk) = γ (tk)
for all k ≥ 1. We may assume that {xk}k≥1 converges to q ∈ RP

n . As S = f (Rn) and
p = γ (0) ∈ ClRPm (S)\S, we have q ∈ RP

n\R
n = H∞(R).

As dimR( f −1(γ ((0, 1)))) ≥ dimR(γ ((0, 1))) = 1 and

q ∈ ClRPn ( f −1(γ ((0, 1))))\( f −1(γ ((0, 1)))),

there exists a Nash path λ : (−1, 1) → RP
n such that λ((0, 1)) ⊂ f −1(γ ((0, 1)))

and λ(0) = q.

2.5.3. Construction of the integer k1. After reparametrizing γ , we may assume f ◦λ =
γ , so there exist λ0, λ1, . . . , λn, γ0, γ1, . . . , γm ∈ R[[t]] such that

f ◦ λ = f
(λ1

λ0
, . . . ,

λn

λ0

)
=

(γ1

γ0
, . . . ,

γm

γ0

)
= γ,

limt→0+(1 : λ(t)) = q and limt→0+(1 : γ (t)) = p. As q ∈ H∞(R), we may assume
after reordering the variables x1, . . . , xn that the order

k1 := ω
(λ1

λ0

)
= min

{
ω

( λi

λ0

)
: i = 1, . . . , n

}
< 0.

After a change of the type t �→ tu(t) where u ∈ R[[t]] is a unit, we assume
λ1
λ0

= ±tk1 with k1 < 0. Write

λi

λ0
= tk′

i ρi where

{
k′

i ∈ Z, ρi ∈ R[[t]] and ρi (0) �= 0 if λi
λ0

�= 0,

k′
i = 0 and ρi = 0 if λi

λ0
= 0.

2.5.4. Construction of the integer r . Write f := ( f1
f0

, . . . ,
fm
f0

)
where fi ∈ R[x]

and f0 does not vanish on R
n . By Lemma 2.6 there exists r0 ≥ 1 such that if

μ := (μ1, . . . , μn) ∈ (t)r0R[[t]]n , then

lim
t→0+(1 : λ(t) + μ(t)) = q

and lim
t→0+

(
1 : f1

f0
(λ(t) + μ(t)) : · · · : fm

f0
(λ(t) + μ(t))

)
= p.

Since S′ is open in S, also f −1(S′) is open in R
n . As

λ((0, 1)) ⊂ f −1(γ ((0, 1))) ⊂ f −1(S′),

there exist finitely many polynomials g1, . . . , gq ∈ R[x] such that

λ((0, ε1)) ⊂ {g1 > 0, . . . , gq > 0} ⊂ f −1(S′)
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for some ε1 > 0 small enough. Thus, gi ◦ λ = ai t�i + · · · where ai > 0 and �i ∈ Z.
By Lemma 2.6 there exists r ≥ max{r0, k′

2, . . . , k′
n} + 1 such that if η ∈ (t)r

R[[t]],
then

(gi ◦ (λ + η)) − (gi ◦ λ) ∈ (t)s
R[[t]],

where s := max{0, �1, . . . , �q} + 1. Consequently, if η ∈ (t)r
R[[t]], each series

gi ◦ (λ + η) > 0 for t > 0 small enough, so (λ + η)(t) ∈ f −1(S) for t > 0 small
enough.

2.5.5. Construction of the rational path α. Choose μ := (0, μ2, . . . , μn) ∈
(t)r

R[[t]]n such that t−k′
i (

λi
λ0

+ μi ) = ρi + t−k′
i μi ∈ R[t]\{0}. Write

tk′
i (ρi + t−k′

i μi ) = tkipi ,

where ki ∈ Z, pi ∈ R[t] and pi (0) �= 0. The rational path

α := (±tk1 ,tk2p2, . . . ,t
knpn) ∈ R(t)n

and the integer r satisfy the conditions in the statement. ��

3 Connectedness of the Set of Points at Infinity of a Polynomial Image

3.1 Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. We approach this result in the
more general framework of quasi-polynomial maps. Given a regular map

f :=
( f1

f0
, · · · ,

fm

f0

)
: R

n → R
m,

where each fi ∈ R[x], consider the invariant rational map

FC : CP
n ��� CP

m, x := (x0 : x1 : · · · : xn) �→ (F0(x) : F1(x) : · · · : Fm(x)),

where Fi (x0 : x1 : · · · : xn) := xd
0 fi (

x1
x0

, . . . , xn
x0

) and d := maxi=0,...,m{deg( fi )}.
Let YC be the set of indeterminacy of FC and write F0 = xe

0 F ′
0 where e ≥ 0 and

F ′
0 ∈ R[x0,x1, . . . ,xn] is a homogeneous polynomial that is not divisible by x0.

Observe that FC can be restricted to a rational map FR : RP
n ��� RP

m whose set of
indeterminacy is YR := YC ∩ RP

m .

Definition 3.1 We say that f is a quasi-polynomial map if FC(Hn∞(C)) ⊂ Hm∞(C)

and no real indeterminacy point of FC belongs to {F ′
0 = 0}, that is, YC ∩ RP

n∩
{F ′

0 = 0} = ∅.
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Remarks 3.2 (i) The condition FC(Hn∞(C)) ⊂ Hm∞(C) is equivalent to

e := max{deg( f1), . . . , deg( fm)} − deg( f0) > 0.

(ii) If the polynomials f0, f1, . . . , fm are relatively prime, then

YC ∩ {F ′
0 = 0} = {F ′

0 = 0, F1 = 0, . . . , Fm = 0}.
(ii) Quasi-polynomial maps include polynomial maps, but also more general regular

maps. If e > 0 and {F ′
0 = 0} ∩ RP

n = ∅, then f is a quasi polynomial map.
This occurs for instance if e > 0 and f0 := b2

0 + (b2
1x

2k
1 + · · · + b2

nx
2k
n )� where

k, � ≥ 0 and bi ∈ R\{0}.
(iv) If n = 1, the condition e := max{deg( f1), . . . , deg( fm)} − deg( f0) > 0 char-

acterizes quasi-polynomial maps.

Theorem 3.3 Let S ⊂ R
m be a semialgebraic set that is the image of a quasi-

polynomial map f : R
n → R

m. Then S∞ is connected.

Proof of Theorem 3.3 for the case n = 2 Write

f :=
( f1

f0
, · · · ,

fm

f0

)
: R

2 → R
m,

where each fi ∈ R[x1,x2] and f0 has an empty zero set. Keep notations from 3.1 and
assume gcd( f0, f1, . . . , fm) = 1, so the set of points of indeterminacy of FK (where
K = R or C) is

YK = {x0 F ′
0 = 0, F1 = 0, . . . , Fm = 0} ∩ KP

2.

By 2.2 YK is a finite subset of �∞(K) ∪ ({F ′
0 = 0} ∩ KP

2). As f is quasi-polynomial,
YR ⊂ �∞(R)\{F ′

0 = 0}. The proof is conducted in several steps:

Step 1. Initial Preparation. Let (Z1, πC, F̂C) be an invariant resolution for FC. Keep
notations from 2.2.1. and denote

• X1 := Z1 ∩ RP
k , which is a non-singular real projective surface.

• πR := πC|X1 : X1 → RP
2, which is the composition of a sequence of finitely

many blow-ups and its restriction πR|X1\π−1
R

(YR)
: X1\π−1

R
(YR) → RP

2\YR is a
biregular isomorphism.

• F̂R := F̂C|X1 : X1 → RP
m , which is a real regular map and satisfies

F̂R|X1\π−1
R

(YR)
= FR ◦ πR|X1\π−1

R
(YR)

.

As YR ⊂ �∞(R), it holds πR(x) ∈ RP
2\�∞(R) ≡ R

2 for each point x ∈
X1\π−1

R
(�∞(R)). Thus,

F̂R(x) = FR ◦ πR(x) = f (πR(x)) ∈ R
m ≡ RP

m\H∞(R),

so F̂−1
R

(H∞(R)) ⊂ π−1
R

(�∞(R)).
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3.1.1. The strict transform K∞ under πC of �∞(C) is an invariant non-singular rational
curve and πC|K∞ : K∞ → �∞(C) ≡ CP

1 is an invariant biregular isomorphism.
Consequently, C∞ := K∞ ∩ RP

k is a real non-singular rational curve and it is the
strict transform under πR of �∞(R).

3.1.2. Define E := {F ′
0(z) = 0} ⊂ CP

2 and let Ẽ be its strict transform under πC,
which is an invariant projective curve. As f0 has empty zero set and x0 does not
divide F ′

0, the intersection E ∩ RP
2 is a finite subset of �∞(R). In addition π−1

C
(E) =

Ẽ ∪ ⋃
y∈E∩YC

π−1
C

(y). We have:

3.1.3. Ẽ ∩ ⋃
y∈YR

π−1
C

(y) = ∅ and Ẽ ∩ RP
k ⊂ C∞.

Let y ∈ YR and let us show Ẽ ∩ π−1
C

(y) = ∅. Otherwise, there exists x ∈ Ẽ ∩
π−1

C
(y), so y = πC(x) ∈ πC(Ẽ) = E. Consequently,

y ∈ YR ∩ E = YR ∩ {F ′
0 = 0} = ∅,

which is a contradiction. As πC(Ẽ ∩ RP
k) ⊂ E ∩ RP

2 ⊂ �∞(R), we have

Ẽ ∩ RP
k ⊂ π−1

R
(�∞(R))\

⋃

y∈YR

π−1
R

(y) ⊂ C∞.

3.1.4. As F̂C|Z1\π−1
C

(YC)
= FC ◦ πC|Z1\π−1

C
(YC)

, it holds

Ẽ ∪ K∞ ⊂ F̂−1
C

(H∞(C)) ⊂ Ẽ ∪ K∞ ∪ π−1
C

(YC).

Thus, F̂−1
C

(H∞(C)) is an invariant projective curve whose irreducible components
different from Ẽ are by 2.2.1. either singletons or non-singular rational curves.

3.1.5. The following diagram summarizes the achieved situation:

Ẽ ∪ K∞
∩

F̂−1
C

(H∞(C))

∩
Z1 CP

2
∩

�∞(C) ∪ E ⊃ YC

CP
m

∪
H∞(C)

πC

F̂C
FC

Ẽ ∩ RP
k

∩
C∞
∩
X1 RP

2
∩

�∞(R) ⊃ YR

RP
m

∪
H∞(R)

πR

F̂R
FR
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Step 2. We prove next:

3.1.6. F̂−1
C

(H∞(C)) is connected. Consequently, F̂−1
C

(H∞(C)) does not contain iso-

lated points and its irreducible components different from Ẽ are non-singular rational
curves.

Indeed, by Stein’s factorization theorem [13, III.11.5] applied to the projective mor-
phism F̂C : Z1 → CP

m , there exist a projective variety V and projective morphisms
G1 : Z1 → V and G2 : V → CP

m such that

• G1 is surjective and its fibers are connected,
• G2 is a finite morphism and
• F̂C = G2 ◦ G1.

To prove 3.1.6. it is enough to show that H := G−1
2 (H∞(C)) and G−1

1 (H) =
F̂−1

C
(H∞(C)) are connected.

3.1.7. H is connected.
As G2 is finite, it is by [13, II.5.17] an affine morphism. Thus,

G−1
2 (Cm) = G−1

2 (CP
m)\G−1

2 (H∞(C)) = V \H

is an affine algebraic variety. As V is a complete manifold, we deduce by [12, 6.2, p.
79] that H = V \G−1

2 (Cm) is connected because it is the complement in V of an affine
open subvariety.

3.1.8. G−1
1 (H) is connected.

Suppose that G−1
1 (H) is the disjoint union of two closed subsets A1, A2. As G1 is

proper and surjective, G1(A1), G1(A2) are closed subsets of H and H = G1(A1) ∪
G1(A2). In case G1(Ai ) �= ∅ for i = 1, 2, the intersection G1(A1) ∩ G1(A2) �= ∅

because H is connected. If x ∈ G1(A1) ∩ G1(A2), the fiber

G−1
1 ({x}) = (G−1

1 ({x}) ∩ A1) � (G−1
1 ({x}) ∩ A2)

is the disjoint union of two non-empty closed sets, so G−1
1 ({x}) is disconnected, which

is a contradiction because the fibers of G1 are connected.

Step 3. In the following we use Lemma 2.2 several times. To ease the procedure we
point out the key facts. By 2.3.2. A := π−1

C
(�∞(C)∪ YC) is an algebraic curve whose

irreducible components are non-singular rational curves. Observe that U := Z1\A =
π−1

C
(C2\YC) is a dense subset of Z1 biregularly equivalent to C

2\YC (that is, the
complement in C

2 of a finite subset).

3.1.9. Let B1, B2 ⊂ A be two connected compact algebraic curves without common
irreducible components. Then the intersection B1 ∩ B2 is either empty or a singleton
by Lemma 2.2, Example 2.3 and Remark 2.4.
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Step 4. By Zariski’s Main Theorem [13, III.11.4] applied to the birational projective
morphism πC : Z1 → CP

2, the fiber π−1
C

(y) is connected for each y ∈ YC. We prove
next:

3.1.10. If y ∈ YR, the invariant projective variety Ty := π−1
C

(y) ∩ F̂−1
C

(H∞(C))

is connected and K∞ ∩ Ty is a singleton. In addition, if Ty has dimension 1 and
K1,y, . . . , Kry ,y are the invariant irreducible components of Ty , the projective curve
⋃ry

i=1 Ki,y is connected and K∞ ∩ Ty = K∞ ∩ ⋃ry
i=1 Ki,y is a singleton contained in

X1.
The clue to prove 3.1.10. is the following:

3.1.11. Let y ∈ YR and T be an invariant connected union of irreducible components
of π−1

C
(y). Let K1, . . . , Kr be the invariant irreducible components of T and denote

Ci := Ki ∩ RP
k , which is by 2.2.1(v) a real non-singular rational curve for i =

1, . . . , r . We have:

(i) The projective curve
⋃r

i=1 Ki is connected.
(ii) Suppose moreover K∞ ∩ T �= ∅. Then the intersection

K∞ ∩ T = K∞ ∩
r⋃

i=1

Ki

is a singleton contained in X1. In particular, K∞ ∪ ⋃r
i=1 Ki is connected.

(iii) We may order the indices i = 1, . . . , r in such a way that C∞ ∩ C1 = K∞ ∩ T is
a singleton and Ci ∩ ⋃i−1

j=1 C j is a singleton for i = 2, . . . , r . In particular, the
real projective curve C := ⋃r

i=1 Ci is connected and C∞ ∩ C �= ∅.

We prove first 3.1.11.(i). If T = ⋃r
i=1 Ki , there is nothing to prove.

Otherwise, denote the non-invariant irreducible components of T with Kr+1,

. . . , Ks . Denote

t := max
{

#F : F ⊂ {1, . . . , r},
⋃

i∈F
Ki is connected

}

and let us check t = r . Suppose by contradiction t < r . We may assume that
K := ⋃t

i=1 Ki is connected. As each K� is connected, each intersection K ∩ K� = ∅

for t < � ≤ r . As T is connected and invariant and K ∩ ⋃r
i=t+1 Ki = ∅, we may

assume K ∩ Kr+1 �= ∅ and σ(Kr+1) = Kr+2. As K is invariant, K ∩ Kr+2 �= ∅,
so K ∪ Kr+1 ∪ Kr+2 is connected and invariant. Repeating the previous argument
recursively, we find indices r < r + 2 j0 ≤ s and t < � ≤ r such that (after reordering
the indices i = r + 1, . . . , s)

K� ∩
(

K ∪
r+2 j0⋃

i=r+1

K j

)
�= ∅

and for each 1 ≤ j ≤ j0 it holds
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• K ∪ ⋃r+2 j
i=r+1 Ki is connected and invariant and

• σ(Kr+2 j−1) = Kr+2 j .

Such indices r + 2 j0, � exist because T = ⋃s
i=1 Ki is connected.

The invariant connected projective curves K� and K ∪ ⋃r+2 j
i=r+1 K j are contained

in A := π−1
C

(�∞(C) ∪ YC) because y ∈ YR. The non-empty invariant intersection

K� ∩ (K ∪ ⋃r+2 j
i=r+1 K j ) is by 3.1.9. a singleton {p�} ⊂ X1 = Z1 ∩ RP

k . As Ki ⊂
CP

k\RP
k for i = r + 1, . . . , s (see 2.2.1(iv)), we have p� ∈ K� ∩ K �= ∅, which is

a contradiction. Then r = t , so
⋃r

i=1 Ki is connected.
Next we prove 3.1.11.(ii). Since K∞, T ⊂ A are invariant connected projective

curves, the non-empty invariant intersection K∞ ∩ T is by 3.1.9 a singleton {p} ⊂ X1.
Thus, p ∈ T ∩ RP

k ⊂ ⋃r
i=1 Ki because the non-invariant irreducible components of

T are by 2.2.1(v) contained in CP
k\RP

k . Consequently, K∞ ∩ T = K∞ ∩⋃r
i=1 Ki =

{p}.
Finally, we show 3.1.11(iii). As p ∈ X1 = Z1 ∩ RP

k ,

C∞ ∩ C = C∞ ∩
r⋃

i=1

Ci =
(
K∞ ∩

r⋃

i=1

Ki

)
∩ RP

k = {p} �= ∅.

We may assume C∞ ∩ C1 �= ∅, that is, C∞ ∩ C1 = {p} = K∞ ∩ T . As
⋃r

i=1 Kr is
connected, we claim: We may order the indices i = 2, . . . , r in such a way that Ki

intersects the union
⋃i−1

j=1 K j for i = 2, . . . , r .
Indeed, as K = ⋃r

i=1 Ki is connected, the intersection K1 ∩ ⋃r
i=2 Ki �= ∅ and

we assume K1 ∩ K2 �= ∅. As K is connected, the intersection of K1 ∪ K2 and⋃r
i=3 Ki �= ∅ is non-empty. We may assume that K3 intersects K1∪K2 and proceeding

this way we prove the claim.
Next, since Ki and

⋃i−1
j=1 K j are invariant connected projective curves contained

in A, the non-empty invariant intersection Ki ∩ ⋃i−1
j=1 K j is by 3.1.9. a singleton

{qi } ⊂ X1. Thus,

qi ∈ RP
k ∩ Ki ∩

i−1⋃

j=1

K j = Ci ∩
i−1⋃

j=1

C j ,

so Ci ∩⋃i−1
j=1 C j �= ∅ for i = 2, . . . , r . As each Ci is a non-singular curve biregularly

equivalent to RP
1, we deduce that the projective curve C := ⋃r

i=1 Ci is connected.

3.1.12. Now we are ready to prove 3.1.10. As y ∈ YR ⊂ �∞(R) ⊂ �∞(C) and
πC(K∞) = �∞(C), we deduce π−1

C
(y) ∩ K∞ �= ∅. If y1 �= y2, the intersection

π−1
C

(y1) ∩ π−1
C

(y2) = ∅ and by 3.1.3. Ẽ ∩ π−1
C

(y) = ∅. Consequently, by 3.1.4.

Ty ∩ K∞ = π−1
C

(y) ∩ F̂−1
C

(H∞(C)) ∩ K∞
= ((π−1

C
(y) ∩ K∞) ∪ π−1

C
(y)) ∩ K∞ = π−1

C
(y) ∩ K∞ �= ∅,
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so by 3.1.11.(ii) Ty ∩ K∞ is a singleton. Denote

Ry := Ẽ ∪ K∞ ∪
⊔

z∈YC,z �=y

(π−1
C

(z) ∩ F̂−1
C

(H∞(C)))

and observe F̂−1
C

(H∞(C)) = Ty ∪ Ry by 3.1.4. Using again Ẽ ∩ π−1
C

(y) = ∅ and

π−1
C

(y1) ∩ π−1
C

(y2) = ∅ if y1 �= y2, we deduce Ty ∩ Ry = Ty ∩ K∞, which is a

singleton. Consequently, if Ty was disconnected, then F̂−1
C

(H∞(C)) would have been
disconnected, which contradicts 3.1.6. Thus, the first part of claim 3.1.10. holds. The
second part follows readily from 3.1.11.

Step 5. Next we show:

3.1.13. F̂−1
R

(H∞(R)) is connected. Consequently, F̂R(F̂−1
R

(H∞(R))) is also con-
nected.

As F̂C is invariant, F̂−1
R

(H∞(R)) = F̂−1
C

(H∞(C)) ∩ RP
k . By 3.1.4.

F̂−1
C

(H∞(C)) = Ẽ ∪ K∞ ∪
⋃

y∈YC

(π−1
C

(y) ∩ F̂−1
C

(H∞(C))). (3.1)

Fix y ∈ YR and consider Ty := π−1
C

(y) ∩ F̂−1
C

(H∞(C)). If Ty is a singleton,
we deduce by 3.1.10 that Ty ⊂ K∞. Otherwise we denote the invariant irreducible
components of Ty with K1,y, . . . , Kry ,y . As the non-invariant irreducible components

of π−1
C

(y) do not intersect RP
k by 2.2.1(v), we deduce Ty ∩RP

k = ⋃ry
i=1 Ki,y ∩RP

k .

In addition by 2.2.1(iv) π−1
C

(y) ∩ RP
k = ∅ for all y ∈ YC\YR. Denote the subset

of points of YR such that Ty is not a singleton with Y ′
R

. If we intersect expression (3.1)
with RP

k , we deduce by 3.1.3

F̂−1
R

(H∞(R)) = F̂−1
C

(H∞(C)) ∩ RP
k = C∞ ∪

⋃

y∈Y ′
R

ry⋃

i=1

Ki,y ∩ RP
k .

By 3.1.10. the projective curve
⋃ry

i=1 Ki,y is connected and the intersection K∞ ∩
⋃ry

i=1 Ki,y is a singleton {py} for each y ∈ Y ′
R

. By 3.1.11(iii) each projective curve

Cy := ⋃ry
i=1 Ci,y is connected and each intersection C∞ ∩ Cy �= ∅. As C∞ =

K∞ ∩ RP
k is by 3.1.1. connected, we conclude that

F̂−1
R

(H∞(R)) = C∞ ∪
⋃

y∈Y ′
R

ry⋃

i=1

Ci,y

is connected too.

123



600 Discrete Comput Geom (2014) 52:583–611

Final Step. Conclusion. As F̂R(F̂−1
R

(H∞(R))) is connected, to prove that S∞ is
connected, too, it is enough to show that both sets are equal, that is,

F̂R(F̂−1
R

(H∞(R))) = S∞.

As X1 = Z1 ∩ RP
k is compact, F̂R is proper, so the restriction

F̂R|F̂−1
R

(Rm)
: F̂−1

R
(Rm) → R

m

is also proper. As π−1
R

(R2) is dense in X1 and

S = f (R2) = FR(R2) = F̂R(π−1
R

(R2)),

we have

F̂R(F̂−1
R

(Rm)) = F̂R(ClF̂−1
R

(Rm)
(π−1

R
(R2)))

= ClRm (F̂R(π−1
R

(R2))) = ClRm ( f (R2)) = ClRm (S),

so F̂R(F̂−1
R

(Rm)) = ClRm (S). As F̂R is proper,

ClRm (S) � S∞ = ClRPm (S) = ClRPm (F̂R(F̂−1
R

(Rm)))

= F̂R(ClX1(F̂−1
R

(Rm))) = F̂R(X1)

= F̂R(F̂−1
R

(Rm)) � F̂R(F̂−1
R

(H∞(R))).

Consequenlty, S∞ = F̂R(F̂−1
R

(H∞(R))), which is by 3.1.13. connected, as required.
��

We are ready to prove Theorem 1.1. We present an independent proof from the one
of Theorem 3.3. This is enlightening for the proof of Theorem 3.3 for n ≥ 3.

Proof (Proof of Theorem 1.1) For n = 1 the result follows from [2, 1.1]. To prove
that S∞ is connected if n ≥ 2, it is enough to show that for any given pair of points
p, q ∈ S∞ there exists a connected subset of S∞ containing p and q. By Lemma 2.5
there exist polynomials pi ,qi ∈ R[t] such that pi (0),qi (0) �= 0 and integers ki , �i

such that the rational paths α := (tk1p1, . . . ,tknpn) and β := (t�1q1, . . . ,t�nqn)

satisfy

lim
t→0+( f ◦ α)(t) = p and lim

t→0+( f ◦ β)(t) = q.

At least one couple (ki , � j ) is of negative integers. Consider the polynomials

Pi (x,y) :=
{y|ki |pi (x) if ki < 0,

xkipi (x) if ki ≥ 0
and Qi (x,y) :=

{
(−y)|�i |qi (x) if �i < 0,

x�iqi (x) if �i ≥ 0
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and let

h := xy+ 1

2
(P1, . . . , Pn) + 1 − xy

2
(Q1, . . . , Qn).

Consider the polynomial map g := f ◦ h : R
2 → R

m and observe

• T0 := im(g) ⊂ im( f ) = S, so T0,∞ ⊂ S∞.
• p = limt→0+ g(t, 1

t ) ∈ T0,∞ and q = limt→0+ g(t,− 1
t ) ∈ T0,∞.

As T0,∞ is connected for n = 2 by Theorem 3.3, we are done. ��

3.2 Proof of Theorem 3.3

Now we prove Theorem 3.3 for an arbitrary n.

Proof (Proof of Theorem 3.3 for an arbitrary n.) The case n = 1 follows from
[2, 1.4]. Assume n ≥ 2 and write f := (

f1
f0

, . . . ,
fm
f0

) where each f j ∈ R[x],
gcd( f0, f1, . . . , fm) = 1 and f0 does not vanish on R

n . The proof is conducted
in several steps:

3.2.1. Initial assumptions to simplify the proof. Assume deg( f1) ≥ deg( f j ) for j =
1, . . . , m. After a change of the type (y1, . . . , ym) �→ (y1, y2 +b2 y1, . . . , ym +bm y1)

where b j ∈ R we can suppose

deg( f1) = · · · = deg( fm) = d > deg( f0) = d − e

for some e ≥ 1. Denote

Fj := xd
0 f j

(x1

x0
, . . . ,

xn

x0

)

and F0 = xe
0 F ′

0 where e ≥ 1 and F ′
0 ∈ R[x0,x1, . . . ,xn] is not divisible by x0.

Notice that x0 does not divide Fj for j = 1, . . . , m because deg( f j ) = deg(Fj ) = d.
After a change of the type (x1, . . . , xm) �→ (x1, x2 + a2x1, . . . , xn + an x1) where
ai ∈ R we can suppose deg( f j ) = degx1

( f j ) for each j .

3.2.2. Equivalent formulation for the statement. To prove that S∞ is connected, it is
equivalent to show: There exists a point p0 ∈ S∞ such that for any other point q ∈ S∞
there exists a connected subset of S∞ containing p0 and q.

We will prove this last fact. Fix

p0 := lim
t→0+(F0 : F1 : · · · : Fm)

(
1 : 1

t
: 0 : · · · : 0

)
∈ S∞(R)

and let q ∈ S∞. By Lemma 2.5 there exist a rational path

α := (tk1p1, . . . ,t
knpn) ∈ R(t)n,
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where

• ki ∈ Z, ki0 := min{k1, . . . , kn} < 0,
• pi ∈ R[t] with pi (0) �= 0 for i = 1, . . . , n and pi0 = ±1

and an integer r ≥ 1 such that q = limt→0+( f ◦ (α +β))(t) for each β ∈ (t)r
R[t]n .

After the change t → t6 we may assume ki0 ≤ −6 and even. We keep all initial
notations.

3.2.3. Construction of an auxiliary regular map. Write pi := ∑di
j=0 ai jt j where

di := deg(pi ) and consider the formula

Pi (x,y) :=
∑

j+ki <0

ai jy
|ki + j | +

∑

j+ki ≥0

ai j
xe jy

((xy− 1)2 + y4)q j
,

where j + ki + 1 = 4q j + e j , q j ≥ 0 and 0 ≤ e j ≤ 3 for each 0 ≤ j ≤ di such
that j + ki ≥ 0. Observe Pi (t, 1

t ) = tkipi (t) for i = 1, . . . , n and Pi0 = pi0y
|ki0 | =

±y|ki0 |.
Denote �0 := maxi {qdi : di + ki ≥ 0} and notice ((xy− 1)2 + y4)� Pi ∈ R[x,y]

for each � ≥ �0. In addition

deg(((xy− 1)2 + y4)� Pi ) ≤ max{−ki + 4�, 4� − 4q j + e j + 1 : ki + j ≥ 0}
≤ 4� + max{−ki , 4} ≤ 4� + |ki0 |

and the equality deg(((xy− 1)2 + y4)� Pi ) = 4� + |ki0 | holds if and only if ki = ki0 .
As |ki0 | ≥ 6,

degx(((xy− 1)2 + y4)� Pi )

≤
{2(� − qdi ) + 3 if ki + di ≥ 0

2� if ki + di < 0

}
< 2� + 4 < 4� + |ki0 |

for all i = 1, . . . , n. Let � := max{�0, r} and define

hi (x,y) :=
⎧
⎨

⎩

((xy− 1)2 + y4)� if i = 0,

((xy− 1)2 + y4)� P1(x,y) + p1(0)x4�+|ki0 | if i = 1,

((xy− 1)2 + y4)� Pi (x,y) if i = 2, . . . , n.

Consider the regular map h := ( h1
h0

, . . . , hn
h0

) : R
2 → R

n and observe

h(t, 0) = (p1(0)t4�+|ki0 |, 0, . . . , 0)

and h
(
t,

1

t

)
= α(t) + (p1(0)t8�+|ki0 |, 0, . . . , 0),

so limt→0+( f ◦ h)( 1
t , 0) = p0 and limt→0+( f ◦ h)(t, 1

t ) = q.

3.2.4. Construction of an auxiliary quasi-polynomial map such that p0, q belong
to the set of points at infinity of its image. Let g := f ◦ h : R

2 → R
m and denote
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gi := Fi (h0, h1, . . . , hn) ∈ R[u1,u2] for i = 0, 1, . . . , m. Observe g = (
g1
g0

, . . . ,
gm
g0

)

and g0 does not vanish on R
2. We claim: g is a quasi-polynomial map and p0, q ∈

g(R2)∞.
First we have

• T0 := im(g) ⊂ im( f ) = S, so T0,∞ ⊂ S∞.
• p0 = limt→0+ g( 1

t , 0) ∈ T0,∞ and q = limt→0+ g(t, 1
t ) ∈ T0,∞.

• g0 = ((u1u2 − 1)2 + u4
2)

e�F ′
0(h0, h1, . . . , hn).

In addition,

deg(g0) = d(4� + |ki0 |) − e|ki0 | < d(4� + |ki0 |) = max{deg(g1), . . . , deg(gm)}.

Indeed, since

• deg(F ′
0) = deg( f0) = degx1

( f0) = d − e,
• deg(Fj ) = deg( f j ) = degx1

( f j ) = d,
• deg(hi ) ≤ 4� + |ki0 |, deg(h1) = 4� + |ki0 | and
• (h0, h1, . . . , hn)(t, 0) = (1, p1(0)t4�+|ki0 |, 0, . . . , 0),

we have

deg(g0) = 4e� + (d − e)(4� + |ki0 |) = d(4� + |ki0 |) − e|ki0 |
< d(4� + |ki0 |) = deg(g j )

for each j = 1, . . . , m.
Let μ := 4� + |ki0 | and write Hi := uμ

0 hi (
u1
u0

, u2
u0

) and G j := udμ
0 g j (

u1
u0

, u2
u0

),
which are homogeneous polynomials. Notice that

G j = udμ
0 Fj

(
h0

(u1

u0
,
u2

u0

)
, h1

(u1

u0
,
u2

u0

)
, . . . , hn

(u1

u0
,
u2

u0

))

= Fj (H0, H1, . . . , Hn)

and G0 = u
e|ki0 |
0 G ′

0 where G ′
0 := ((u1u2 −u2

0)
2 +u4

2)
e�F ′

0(H0, H1, . . . , Hn). Count-
ing degrees one realizes: u0 does not divide G ′

0.
In the following all zero sets are considered in RP

n . To prove that g is
quasi-polynomial it only remains to check {G ′

0 = 0, G1 = 0, . . . , Gm = 0}
= ∅.

Indeed, as {F ′
0 = 0, F1 = 0, . . . , Fn = 0} = ∅, the following equality holds

{G ′
0 = 0, G1 = 0, . . . , Gm = 0} = {H0 = 0, . . . , Hn = 0}
∪{((u1u2 − u2

0)
2 + u4

2)
e� = 0, G1 = 0, . . . , Gm = 0}.

Notice

123



604 Discrete Comput Geom (2014) 52:583–611

H0(u0,u1,u2) = u
|ki0 |
0 ((u1u2 − u2

0)
2 + u4

2)
�,

H1(0,u1,u2) =
{

p1(0)u
4�+|ki0 |
1 if ki0 < k1,

p1(0)
(
(u2

1u
2
2 + u4

2)
�u

|ki0 |
2 + u

4�+|ki0 |
1

)
if ki0 = k1,

Hi (0, 0,u2) =
{

0 if i ≥ 2 and ki0 < ki ,

pi(0)u
4�+|ki0 |
2 if i ≥ 2 and ki0 = ki .

Consequently, {H0 = 0, . . . , Hn = 0} = ∅ because

• H0 = 0 provides u0 = 0,
• H1(0,u1,u2) = 0 provides u1 = 0 (we have used here that ki0 is even) and
• Hi0(0, 0,u2) = 0 provides u2 = 0.

On the other hand ((u1u2 − u2
0)

2 + u4
2)

e� = 0 provides u0 = 0,u2 = 0. As G1 = 0,
we have

0 = G1(0,u1, 0)

= F1(H0(0,u1, 0), H1(0,u1, 0), . . . , Hn(0,u1, 0)) = F1(0,uμ
1 , 0, . . . , 0).

For the last equality use that degx(((xy − 1)2 + y4)� Pi ) < 4� + |ki0 | for all
i = 1, . . . , n. As deg(F1) = deg( f1) = degx1

( f1) = degx1
(F1), we obtain

a := F1(0, 1, 0, . . . , 0) �= 0. As

0 = F1(0,uμ
1 , 0, . . . , 0) = audμ

1 ,

we getu1 = 0, so {((u1u2−u2
0)

2+u4
2)

e� = 0, G1 = 0, . . . , Gm = 0} = ∅. Therefore
{G ′

0 = 0, G1 = 0, . . . , Gm = 0} = ∅, so g : R
2 → R

m is a quasi-polynomial map.

3.2.5. Conclusion. By Theorem 3.3 for the case n = 2 (already proved in 3.1) applied
to the quasi-polynomial map g, we deduce that T0,∞ = (g(R2))∞ ⊂ S∞ is connected
and since p0, q ∈ T0,∞, we are done. ��

The set of points at infinity of a semialgebraic set S ⊂ R
m is a semialgebraic subset

of the hyperplane of infinity H∞(R) of RP
m . It seems reasonable to ask the following.

Question 3.4 Let S0 be a connected closed semialgebraic subset of H∞(R). Is there
a polynomial (or a quasi-polynomial) map f : R

n → R
m such that f (Rn)∞ = S0?

For m = 2 the answer is positive but for higher dimension we have no further
information.

Example 3.5 For each connected closed semialgebraic subset S0 ⊂ �∞(R) there
exists a polynomial map f : R

2 → R
2 such that dimR( f (R2)) = 2 and ( f (R2))∞ =

S0.
If S0 is not a singleton, the assertion follows from [11,12,23]. On the other hand, the

polynomial map f : R
2 → R

2, (x, y) �→ (x, y2+x2) satisfies f (R2))∞ = {(0:1:0)},
which is a singleton.
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Remarks 3.6 We have introduced quasi-polynomial maps to understand the limitations
of the image of a regular map to have a connected set of points at infinity. The following
examples show that they do not enjoy a very nice behavior.

(i) The composition of the quasi-polynomial maps

g : R
2 → R

2, (x, y) �→ (x, y2)

and f : R
2 → R

2, (x, y) �→
( x3

1 + x2 + y2 ,
y3

1 + x2 + y2

)

is not a quasi-polynomial map.
(ii) The image of the quasi-polynomial map g : R → R

2, t �→ ( 1
1+t2 , 1 + t2) is the

semialgebraic set S = {xy = 1, y ≥ 1}, which is not a polynomial image of R
n .

4 Set of Points at Infinity of a Regular Image of R
n

We have proved in Sect. 3 that the set of points at infinity of the image of a quasi-
polynomial map f : R

n → R
m is connected. This is no longer true in general for

regular maps even if n = 1.

4.1 Preliminary Examples

We present some examples to illustrate the previous fact and to show that the conditions
in the statement of Theorem 3.3 are sharp.

Examples 4.1 (i) The image of the regular map

f : R
2 → R

2, (x, y) �→
(
(xy − 1)2 + x2,

1

(xy − 1)2 + x2

)

is S := {a > 0, ab = 1}, so S∞ = {(0:1:0), (0:0:1)} is disconnected.
(ii) The image of the regular map

f : R
2 → R

2, (x, y) �→
( x2

1 + y2 ,
y2

1 + x2

)

is S := {a ≥ 0, b ≥ 0, ab < 1}, so S∞ = {(0:1:0), (0:0:1)} is disconnected. If
we write f := (

f1
f0

,
f2
f0

) where each fi is a non-zero polynomial, then deg( f0)=
max{deg( f1), deg( f2)}.

(iii) The image of the regular map

f : R
2 → R

2, (x, y) �→
( (1 + x4)y6

(1 + y4)2 ,
(1 + y4)x4

(1 + x4)3

)

is a semialgebraic set S such that S∞ = {(0 : 1 : 0), (0 : 0 : 1)} is disconnected.
If we write f := ( f1

f0
,

f2
f0

)
where each fi is a non-zero polynomial, then deg( f0)<
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max{deg( f1), deg( f2)}. The set YC = {(0:1:0), (0:0:1)} of indeterminacy of the
rational map

FC := (F0:F1:F2) : CP
2 ��� CP

2

is contained in {F ′
0 = 0}∩RP

2 where F ′
0 = (x4

0+x4
1)

3(x4
0+x4

2)
2 and F0 = x2

0 F ′
0.

Proof Observe that f (R2) ⊂ {a2b ≤ 1, a ≥ 0, b ≥ 0} because

( (1 + x4)y6

(1 + y4)2

)2( (1 + y4)x4

(1 + x4)3

)
=

( y4

1 + y4

)3( x4

1 + x4

)
≤ 1.

Thus, S∞ ⊂ {(0:1:0), (0:0:1)}. To prove the converse inclusion it is enough to pick
two rational paths αi : (0, 1] → R

2 such that limt→0+ ‖αi (t)‖2 = +∞ and

lim
t→0+

g1

g0
(α1(t)) = +∞, lim

t→0+
g2

g0
(α1(t)) = 0,

lim
t→0+

g1

g0
(α2(t)) = 0, lim

t→0+
g2

g0
(α2(t)) = +∞.

For instance, α1(t) := ( 1
t , 1

)
and α2(t) := (

1, 1
t

)
do the job. ��

The following question arises naturally.

Question 4.2 Given a closed semialgebraic subset S0 ⊂ �∞(R) ⊂ RP
2: Is there a

regular map f : R
2 → R

2 such that ( f (R2))∞ = S0?

In case S0 is either connected or a finite set, the answer to Question 4.2 is by
Example 3.5 above and Proposition 4.3 below affirmative.

4.2 More Sophisticated Examples

If S0 is a finite set, we proceed as follows.

Proposition 4.3 Let Hi := cix− diy be linear equations such that ci di �= 0 and the
lines �i := {Hi = 0} are pairwise different. Denote pi := (0 : d2

i : c2
i ). Then the

image of the regular map

h := (h1, h2) : R
2 → R

2, (x, y) �→
( x2

1 + ∏r
i=1 Hi (x, y)2

,
y2

1 + ∏r
i=1 Hi (x, y)2

)

is a semialgebraic set S such that S∞ = {p1, . . . , pr }.
Proof Observe first

h
(di

t
,

ci

t

)
=

(d2
i

t2 ,
c2

i

t2

)
≡ (t2 : d2

i : c2
i )

t→0+−→ (0 : d2
i : c2

i ) = pi ,

123



Discrete Comput Geom (2014) 52:583–611 607

so {p1, . . . , pr } ⊂ S∞. Next, we prove the converse inclusion S∞ ⊂ {p1, . . . , pr }.
The Jacobian of h is not identically zero, so S := h(R2) has dimension 2. In

addition, S is pure dimensional because it is a regular image of R
2. Thus,

S′ := S\(h({x = 0}) ∪ h({y = 0}) ∪ h({Jac(h) = 0}))

is dense in S. Fix a point p ∈ S∞. After interchanging the variables and changing x
with −x if necessary, there exists by Lemma 2.5 a rational path α := (t−k,t�p) where
k, � ∈ Z, −k = min{−k, �} < 0, p ∈ R[t] and p(0) �= 0 such that limt→0+(h◦α) = p
and (h ◦ α)((0, ε)) ⊂ S′ for ε > 0 small enough. Our change of variables does not
modify the structure of h, so we keep the same notations. As p ∈ �∞(R), one of the
following limits is infinity:

lim
t→0+(h1 ◦ α)(t) = lim

t→0+
t2k(r−1)

t2kr + ∏r
i=1 Hi (1, tk+�p(t))2

,

lim
t→0+(h2 ◦ α)(t) = lim

t→0+
t2kr+2�p(t)2

t2kr + ∏r
i=1 Hi (1, tk+�p(t))2 .

Notice the following:

(1) The first limit is infinity if and only if

t2kr +
r∏

i=1

Hi (1,tk+�p(t))2 = tν1 q1(t)

for some q1 ∈ R[t] and an integer ν1 ≥ 2k(r − 1) + 1.
(2) The second limit is infinity if and only if � < 0 and

t2kr +
r∏

i=1

Hi (1,tk+�p(t))2 = tν2 q2(t)

for some q2 ∈ R[t] and an integer ν2 ≥ 2kr + 2� + 1.

As k + � ≥ 0, we deduce in both cases that there exists an index i = 1, . . . , r
such that limt→0+ Hi (1, tk+�p(t)) = 0. Since by hypothesis ci , di �= 0, we conclude
� = −k < 0 and p(0) = ci

di
. Denote μ := ν j − 2k(r − 1) − 1 ≥ 0 and q := q j in

both cases, so

t2kr +
r∏

i=1

Hi (1,tk+�p(t))2 = t2k(r−1)+1tμq.
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We deduce

p = lim
t→0+(t2kr +

r∏

i=1

Hi (1, p(t))2 : t2k(r−1) : t2kr+2�p(t)2)

= lim
t→0+(t2k(r−1)+1tμq(t) : t2k(r−1) : t2k(r−1)p(t)2)

= lim
t→0+(tμ+1q(t) : 1 : p(t)2) =

(
0 : 1 : c2

i

d2
i

)
,

so S∞ ⊂ {p1, . . . , pr }. ��
We present next an example of a regular image S such that S∞ has exactly two

1-dimensional connected components.

Lemma 4.4 There exists a regular map f : R
2 → R

2 whose image S satisfies

S∞ =
{
(0 : u : 1) : 0 ≤ u ≤ 1

2

}
∪

{
(0 : 1 : v) : 0 ≤ v ≤ 1

2

}
.

Proof We build f as the composition of two regular maps that we construct next:
4.B.1. Let T := {0 < a ≤ 1, b > 0} ∪ {0 < b ≤ 1, a > 0}. The image of the regular
map

g : R
2 → R

2, (x, y) �→
( x2 + 1

1 + x2 y2 ,
y2 + 1

1 + x2 y2

)

is a semialgebraic set S1 such that T ⊂ S1 ⊂ T ∪ [0, 2]2 ⊂ {a > 0, b > 0}. In
particular, S1,∞ = {(0 : 1 : 0), (0 : 0 : 1)}.

We check first S1 ⊂ T ∪ [0, 2]2. Let (x, y) ∈ R
2 and write f3(x, y) =: (a, b). We

claim: If b > 2, then 0 < a ≤ 1. If a > 2, we will have by symmetry 0 < b ≤ 1, so
S1 ⊂ T ∪ [0, 2]2.

It is clear that a > 0. Suppose by contradiction a > 1. Then x2 > x2 y2 and
y2 > 1 + 2x2 y2, so

x2 < x2 + 2x4 y2 < x2 y2 < x2,

which is a contradiction.
Next, we check T ⊂ S1. It is enough to prove by symmetry that

T1 := {0 < a ≤ 1, b > 0} ⊂ S1.

Let (a, b) ∈ T1 and consider the system of equations

{ x2 + 1 = a(1 + x2 y2)

y2 + 1 = b(1 + x2 y2)
�

{ b(x2 + 1) − a(y2 + 1) = 0,

ay4 + (a − 1 − b)y2 + b − 1 = 0.
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A simple discussion shows that both systems are equivalent. The discriminant � of
the biquadratic equation ay4 + (a − 1 − b)y2 + b − 1 = 0 is

(a − 1 − b)2 − 4a(b − 1) = (b − 3a + 1)2 + 8a(1 − a),

which is ≥ 0 because 0 < a ≤ 1. As a − 1 − b < 0, the real number

z0 := b + (1 − a) + √
(b − 3a + 1)2 + 8a(1 − a)

2a

is positive and has a square root y0, which is a solution of the biquadratic equation

ay4 + (a − 1 − b)y2 + b − 1 = 0.

The equation b(x2 + 1) − a(y2
0 + 1) = 0 has a real solution x0 if

0 < 2(a(y2
0 + 1) − b) = 2az0 + 2a − 2b = −b + 1 + a

+
√

(b − 3a + 1)2 + 8a(1 − a)

or equivalently if

0 < (b − 3a + 1)2 + 8a(1 − a) − (b − 1 − a)2 = 4b(1 − a).

As b > 0 and a < 1, it holds 4b(1 − a) > 0, so we deduce (a, b) ∈ S1, as required.

4.2.2. Let B1 := {0 < 2a ≤ b} and B2 := {0 < 2b ≤ a}. Write also
A1 := {0 < x ≤ 1, 4 ≤ y} and A2 := {0 < y ≤ 1, 4 ≤ x}. Then the image
of A := A1 ∪ A2 under the regular map

h : R
2 → R

2,

(x, y) �→
( x((y − 1)2 y2 + 2(x − 1)2x)

1 + x(x − 1)2 y(y − 1)2 ,
y((x − 1)2x2 + 2(y − 1)2 y)

1 + x(x − 1)2 y(y − 1)2

)
,

is a semialgebraic set S2 contained in B := B1 ∪ B2, which satisfies

S2,∞ = B1,∞ ∪ B2,∞ =
{
(0 : u : 1) : 0 ≤ u ≤ 1

2

}
∪

{
(0 : 1 : v) : 0 ≤ v ≤ 1

2

}
.

Write h := ( h1
h0

, h2
h0

)
where

h0(x,y) := 1 + x(x− 1)2y(y− 1)2,

h1(x,y) := x((y− 1)2y2 + 2(x− 1)2x),

h2(x,y) := y((x− 1)2x2 + 2(y− 1)2y).
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As h1(y,x) = h2(x,y) and h0(y,x) = h0(x,y), we have h1(y,x)
h0(y,x)

= h2(x,y)
h0(x,y)

, so it is
enough to prove: h(A1) ⊂ B1 and (h(A1))∞ = B1,∞.

Let (x, y) ∈ A1. It holds h1(x, y) > 0 and

h2(x, y)−2h1(x, y)= y((x−1)2x2+2(y−1)2 y)−2(x((y−1)2 y2+2(x−1)2x))

= 2(1 − x)(y − 1)2 y2 + (y − 4)(x − 1)2x2 ≥ 0

because 0 < x ≤ 1 and y ≥ 4, so h(x, y) ∈ B1. Therefore, (h(A1))∞ ⊂ B1,∞ and it
only remains to check B1,∞ ⊂ (h(A1))∞.

Indeed, for each 0 < λ ≤ 1 consider the half-line x = λ, y = t ≥ 4 and the curve
Cλ ⊂ h(A1) parametrized by

αλ(t) := (αλ1(t), αλ2(t)) := g(λ, t)

=
(λ(t − 1)2t2 + 2λμλ)

1 + μλt (t − 1)2 ,
2(t − 1)2t2 + λμλt

1 + μλt (t − 1)2

)
,

where μλ := λ(λ − 1)2. As

lim
t→+∞ αλ1(t) = +∞, lim

t→+∞ αλ2(t) = +∞ and lim
t→+∞

αλ1(t)

αλ2(t)
= λ

2
,

we deduce Cλ,∞ = {(0 : λ
2 : 1)}, so

B1,∞ =
⋃

0<λ≤1

Cλ,∞ ⊂
( ⋃

0<λ≤1

Cλ

)

∞ = (h(A1))∞,

as required.

4.2.3. The image of the regular map f := h ◦ g : R
2 → R

2 is a semialgebraic set S
such that S∞ = {(0 : u : 1) : 0 ≤ u ≤ 1

2 } ∪ {(0 : 1 : v) : 0 ≤ v ≤ 1
2 }, as required. ��

Question 4.5 Let S0 be a closed semialgebraic subset of the hyperplane of infinity
H∞(R) of RP

m . Is there a regular map f : R
n → R

m such that ( f (Rn))∞ = S0?
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