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Abstract In this work we prove that the set of points at infinity Soo := Clgrpm (S)NHxo
of a semialgebraic set S C R™ that is the image of a polynomial map f : R" — R™
is connected. This result is no longer true in general if f is a regular map. However,
it still works for a large family of regular maps that we call quasi-polynomial maps.
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1 Introduction

Amap f = (fi,..., fm) : R* — R™ is a polynomial map if each component
fi € R[x] :=R[x1,...,x,]. Asubset S of R" is a polynomial image of R" if there
exists a polynomial map f : R” — R” suchthat S = f(R"). More generally, the map
f is regular if each component f; is a regular function of R(x) := R(xy, ..., X,),
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that is, f; := }gl—i is a quotient of polynomials such that the zero set of 4; is empty.
Analogously, a subset S of R™ is a regular image of R" if it is the image S = f(R")
of R" given by a regular map f.

The present work continues the general study of polynomial and regular images of
Euclidean spaces already began in [3,4]. A celebrated Theorem of Tarski—Seidenberg
[1, 1.4] says that the image of any polynomial map (and more generally of a regular
map) f : R™ — R” is a semialgebraic subset S of R”, that is, it can be written as a
finite boolean combination of polynomial equations and inequalities, which we will
call a semialgebraic description. By elimination of quantifiers S is semialgebraic if it
has a description by a first order formula possibly with quantifiers. Such a freedom
gives easy semialgebraic descriptions for topological operations: interiors, closures,
borders of semialgebraic sets are again semialgebraic.

In an Oberwolfach week [10] Gamboa proposed to characterize the semialgebraic
sets of R that are polynomial images of R” for some n > 1. The open ones deserve
a special attention in connection with the real Jacobian Conjecture [14,15,18]. The
interest of polynomial (and also regular) images arises because there exist certain
problems in Real Algebraic Geometry that can be reduced for such sets to the case
S = R" (see [8,9]). Examples of such problems are:

e Optimization of polynomial (and/or regular) functions on S,

e Characterization of the polynomial (or regular functions) that are positive semidef-
inite on S (Hilbert’s 17th problem and Positivstellensatz),

e Computation of trajectories inside S parametrizable by polynomial (or regular)
maps.

1.1 Main Result

We denote the projective space of coordinates (xo : X1 : -+ : Xp,) with RP™”. It
contains R™ as the set of points with x9 = 1. The hyperplane at infinity Hy, has
equation xg = 0. Given a semialgebraic set S C R™, the set of points at infinity of S
is Soo := Clgpm (S) N Hy. Our main result in this work is the following.

Theorem 1.1 Let f : R* — R™ be a non-constant polynomial map and denote
S := f(R™). Then S« is non-empty and connected.

It seems a difficult matter to provide a full geometric characterization of all polyno-
mial and/or regular images S C R™. We only know it for the 1-dimensional case [2].
Nevertheless, we have approached the representation as polynomial or regular images
of ample families of n-dimensional semialgebraic sets whose boundaries are piece-
wise linear. We have focused on: convex polyhedra, their interiors, their exteriors and
the closure of their exteriors [6,8,9,23]. The proofs are constructive but the arguments
are developed ad hoc. Two main difficulties arise:

e To develop a strategy to produce an either polynomial or regular map whose image
is the desired semialgebraic set.
e To prove the surjectivity of the constructed map.
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In [3] appear some straightforward properties that a polynomial (resp. regular)
image S C R™ must satisfy: S must be pure dimensional, connected, semialgebraic
and its Zariski closure must be irreducible. It follows from [5, 3.1] that S must be
irreducible in the sense proposed in [5]. All these properties follow readily from the
fact [7, 3.6]:

() Given two points p, g € S, there exists a polynomial (resp. regular) image L of R
(also known as parametric semiline) contained in S and passing through p, g.

There are many examples of semialgebraic sets with property () that are poly-
nomial images of no R”. Take § := {0 < x < 1,0 < yJU{0 < y < x} C R?,
which satisfies (x). By Theorem 1.1 S is a polynomial image of no R” because its
set of points at infinity is disconnected. Consequently Theorem 1.1 provides a new
obstruction to be a polynomial image of R”.

We wondered in [4, 7.3] about the number of connected components of the exterior
of a polynomial image of dimension >2. The first author was convinced that the answer
was one, but the second author showed in [22] that this number can be arbitrarily large.
Nevertheless, Theorem 1.1 is in the vein of the wrong initial position concerning the
number of connected components of the exterior of a polynomial image.

1.2 Strategy of the Proof and Structure of the Article

The proof of Theorem 1.1 involves techniques inspired by those employed by Jelonek
in his works [14,15] where he studies the geometry of the set of points Sy at which
an either complex or real polynomial map f : K" — K" is not proper (K denotes
either R or C). We highlight the following:

e Resolution of indeterminacy of rational maps defined on projective surfaces.

o Sufficient conditions to guarantee that the intersection of two connected complex
projective curves of a complex projective surface is either empty or a singleton.

e A “rational” curve selection lemma.

For the sake of the reader we include a careful exposition of these techniques in
Sect. 2. The reader can proceed directly to Sect. 3 and refer to the Preliminaries only
when needed. In Sect. 3 we prove Theorem 1.1 in the more general setting of quasi-
polynomial maps. In Sect. 4 we show that the set of points at infinity of the image of a
general regular map does not need to be connected and we provide some enlightening
examples.

2 Preliminaries

We write K to refer indistinctly to R or C. We denote the hyperplane at infinity of
KP™ with Hyo (K) := {x¢ = 0}. Clearly, KIP"* contains K™ as the set KP"\Hoo (K) =
{xo = 1}. If m = 1, we denote the point at infinity KIP! with {pso} := {xo = 0} and
if m = 2, we write £oo(K) := {xo = 0} for the line at infinity of KP2. We use
freely that the real projective space RP”* can be immersed in R* for k large enough as
an affine non-singular real algebraic variety [1, 3.4.4]. Thus, the closure in RP"” of a
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semialgebraic subset of R™ is again a semialgebraic set. It will be useful to understand
real algebraic objects as fixed parts under conjugation of complex algebraic objects
that are invariant under conjugation.

2.1 Invariant Projective Objects
For each n > 1 denote the complex conjugation with
0:=0,:CP" - CP", z=(z0:21:" - :20)—~2=(QZ0:Z1: " :2n)-

Clearly, RP" is the set of fixed points of 0. A set A C CP” is called invariant if
o0(A) = A. If Z C CP” is an invariant non-singular (complex) projective variety,
then Z N RP" is a non-singular (real) projective variety. We say that a rational map
h : CP"* --» CP™ is invariant if h o 6, = o, o h. Of course, h is invariant if its
components are homogeneous polynomials with real coefficients, so it provides by
restriction a real rational map i|gps : RP" --» RP”. We use freely usual concepts
of Algebraic Geometry such as: rational map, regular map, divisor, blow-up, etc. and
refer the reader to [11,17,19,20] for further details. For the sake of the reader we
denote complex dimension with dim¢(-) and real dimension with dimp(-). Recall the
following fact concerning the regularity of rational maps defined on a non-singular
projective curve [17, 7.1].

Lemma 2.1 Let Z C CP”" be a non-singular projective curve and F : Z --+» CP™ a
rational map. Then F extends to a regular map F' . Z — CP™. In addition, if Z, F
are invariant, so is F’.

One of the main tools is the resolution of indeterminacy of an invariant rational
map. We provide a careful presentation of this well-known tool keeping track of the
invariance properties along the process.

2.2 Resolution of Indeterminacy of an Invariant Rational Map

Let Zop C CP" be an invariant non-singular projective variety of dimension d and
Fc == (Fy :---: Fy) : Zy --» CP" an invariant rational map. To compute the
set of indeterminacy of F¢ one proceeds as follows [19, III.1.4]. Consider for each
i =0,...,mthedivisor D; in Zg defined by F; andlet |D| := hcd{Dy, D1, ..., Dpn}
be the highest common divisor of the divisors Dy, Dy, ..., Dy,. The divisors le =
D; — |D| are relatively prime. By [19, III.1.4.Theorem 2] the map Fg fails to be
regular exactly at the points of the invariant set Yo := (L, supp(D;), which has
dimension < d — 2. As Fg is invariant, it can be restricted to a real rational map
Fr : Zo NRP" --» RP" whose set of indeterminacy is Yg := Yc N RP2.

We assume that Z( has dimension 2. As it is well-known, F¢ : Zy --+ CP™ admits
an invariant resolution. Namely,

2.2.1. There exist

(i) An invariant non-singular projective surface Z, C CP¥ for some k > 2.
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(ii) An invariant (composition of a) sequence of blow-ups ¢ : Z1 — Zo C CP”
such that 7T(C|ZI\JT(E](YC) : Zl\rr(al (Yc) — Zo\Yc is a biregular isomorphism
and Ye = {p € Zo : #r5'(p) > 1.

(iii) An invariant regular map Fc : Zy — CP™ such that

Felziaz ey = FComClz\n ey

In addition, for each y € Yc the irreducible components of mn 1(y) are non-

singular projective curves K; y that are biregularly equivalent to CP! (via regular
maps D; y : CP! — K; y that are invariant for invariant K; y) and satisfy

(iv) Ify € Yc\YR, then o (K; y) = Ki o (y) and K; y N RP* = &,

(v) Ify € Yr, then either Ki,yﬂR}P’k = D and there exists j # i suchthato (K; y) =
Kjyoro(K;y) = K;yand C;y, = K; y N RP¥ is a non-singular projective
curve biregularly equivalent to RP' (via the restriction map biy = Diylrp! :
RP! — C; ).

A triple (Zy, 7, I?(c) satisfying the previous properties is an invariant resolution for
Fc.

Let us recall some terminology and results concerning blow-ups of non-singular
projective varieties at non-singular centers, from which 2.2.1. follows readily.

2.3 Blow-Up with a Non-singular Variety as Center

Let Zg C CP" be a non-singular irreducible projective variety and ¥ C Zg a non-
singular subvariety. Let Hy, ..., H,, be a system of homogeneous polynomials of the
same degree that generates an ideal / whose saturation

1:={H € C[z]:=Clzo, z1, ..., za] : (z)YH C I for somek > 0}
equals the ideal 7 (Y') of (homogeneous) polynomials of C[z] vanishing identically
onY.
2.3.1. The blow-up Bly (Zo) of Zo with center Y is the closure in Zg x CP"~! of the
set

{(z; (H1(2) -+ : Hu(2))) € (Zo\Y) x CP" 1}

together with the projection 7 : Bly(Zg) C Zo x cP-! — z,, (z;y) = z (see
[11,7.18] and [20, V1.2.2]). Recall the following facts:

e Bly(Zy) is a non-singular irreducible projective variety of the same dimension as
Zy, independent of the choices made in the process.

e 7 1 (Y)isa non-singular hypersurface of Bly (Zp).

® TRl (Zo\r—1(Y) ° Bly (Zo)\n ~'(Y) — Zo\Y is a biregular isomorphism.
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e Y admits a finite cover by affine open subsets {Uy}, satisfying ~ YU, =
Uy x CP"~! where r := dimg(Z) — dimg(Y). In particular, the fiber of each
y € Y is a projective space CP" .

e If Y1, ..., Y, are the irreducible components of Y, then they are pairwise disjoint
and non-singular and it holds

Bly(Zo) = Bly, (- - - Bly,(Bly,(Z0)) - - ).

If Zp, Y are invariant, Bly (Zp) can be assumed invariant, too, by choosing an ideal
I with saturation [J (Y') and whose generators are invariant (given any family of gen-
erators, consider the real and the imaginary parts of all of them). If we consider
the immersion of Bly(Zo) in some CPV using Segre’s map, also the regular map
7 : Bly(Zy) — Zy is invariant.

2.3.2. Assume that Zj is an invariant non-singular projective surface and Y is a finite
invariant subset. Consider the invariant blow-up (Bly (Zy), 7) of Zo with center Y:

(i) For each y € Y the fiber 7~ !(y) is a CP'. If y € ¥ N RPY, there exists an
invariant biregular equivalence between 7 ~'(y) and CP'. If y € Y\RP", then
7 '(y) NRPN = 2.

(i) If C C Zpisanon-singular curve not contained in the center Y, its strict transform

C := Clai,(z)(x " (C\Y)) Cc 77 1(C)

is as well a non-singular curve. In addition, if there exists an invariant biregular
equivalence @ : CP! — C, the strict transform C € 7 ~'(C) of C under 7 is
invariant and there exists an invariant biregular equivalence ¥ : CP! — C.

Proof (Sketch of proof of statement 2.2.1.) To solve the indeterminacy of the rational
map Fg : Zy --+ CP™, one blows the set of points of indeterminacy Y¢ of Fr up and
considers the composition G of F¢ with the previous sequence of blowing-ups [19,
IV.3.3.Theorem 3]. If G is regular, the process is concluded. Otherwise one applies
the previous procedure to G. In finitely many steps one achieves a regular map and
the process finishes. By 2.3 we may assume that each rational map involved in the
process is invariant, so in the last step of the process we obtain

e An invariant non-singular projective surface Z; C CP* for some k > 2,
e An invariant sequence of blow-ups ¢ : Z; — Zo C CP" and
e An invariant regular map F¢ : Z; — CP™ such that

Felziazt ey = Feomelzn s ey

The triple (Z1, 7, I?C) satisfies conditions (i) to (iii). The fiber of each point of
Yc under 7 is a complex projective curve by 2.3 whose irreducible components are
non-singular rational curves while the fiber of each point of Zp\Yc under 7 is a
singleton. Thus, Y is the fundamental set of ¢, so (ii) holds. Assertions (iv) and (v)
are straightforward consequences of 2.3. O
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2.4 Projective Curves Intersecting Each Other in a Singleton

It will be useful to know sufficient conditions that guarantee that the intersection of
two connected complex projective curves of a complex projective surface is either
empty or a singleton. The following result is a reformulation of [14, 4.6] and [15, 3.1].

Lemma 2.2 Let X be a complex projective surface. Assume that

e U C X is a connected orientable manifold such that
H\(U;Z) = Hy(U; Z) = 0,

e U is dense in X and the complement A := X\U is a complex projective curve.

Let C1, Cy C A be two connected, complex projective curves without common irre-
ducible components. Then the intersection C1NC» is either the empty set or a singleton.

Proof The proof is conducted in several steps:

2.4.1. We prove first that H'(A; Z) = 0.

Assume that X is a compact polyhedron of dimension 4 and A a closed subpolyhe-
dron of X. As U is an orientable real manifold of dimension 4, by Lefschetz duality
[21, 6.1.11 & 6.2.19] we have Hi(X, A;Z) = Hy—i(U; Z) fori =0, ..., 4. By the
long exact sequence of cohomology [21, 5.4.13]

HY(X,A;7) > H'(X;7Z) > HY(A;7Z) > H*(X, A;7) = Hy(U; Z) = 0,

so HY(X;Z) - H'(A;Z)isan epimorphism. As U is a connected open dense subset
of X, there exists by [14, 4.7] an epimorphism

0=H|(U;Z) - H((X, Z),
so Hi (X, Z) = 0. By the universal-coefficient theorem for cohomology [21, 5.5.3]
HY(X,Z) = Hom(H,(X, Z), Z) ® Ext(Z, Z),

so by [21,5.5.1] H'(X; Z) = 0. Consequently, H'(A; Z) = 0.

2.4.2. Let C C A be a projective algebraic curve. Then H'(C; Z) = 0. In particular,
itholds H'(C; U Cy; Z) = 0.

Let C’ be the union of the irreducible components of A not contained in C. Clearly,
F := CNC’isafinite set. As C and C’ are analytic sets, they are locally contractible,
so for each x € F there exists a neighborhood V* in A such that

e V*N C and V¥ N C’ have the singleton {x} as a deformation retract,
e V¥NCNC' ={x}and
o VIINVY =g ifxy,xy € Fand x; # xo.
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Itholds that V := C U |J,.£(V*NC)and W := C'U |J,r(V* N C) are open
subsets of Asuchthat VUW = A, VAW = J,.z(V N (CUC)) and C, C" are
respective deformation retracts of V and W. In addition, F is a deformation retract of
V N W. By Mayer—Vietoris’ exact sequence for cohomology [21, 5.4.9]

0=H" (A:2)=H' (VUW;Z) > H'(V:Z)® H'(W: Z)
— H\(VNW;Z) = H'(F; Z).

As Fis a finite set, H' (F; Z) = 0,s0 H'(C:Z) = H'(V;Z) = 0.

2.4.3. C1 N Cy is either empty or a singleton.
Assume C| N Cy # @. Let Vi, V5 be two open subsets of C; U C, such that

e C; C V; is a deformation retract of V; fori =1, 2,
e ViUV, =C;UC,and C; N C, is a deformation retract of V; N V»

(for the construction of Vi, V, proceed similarly to 2.4.2). By Mayer—Vietoris’ exact
sequence for reduced cohomology [21, 5.4.8 & p. 240] applied to the open subsets V;
and V, of C; U C> (whose intersection V1 NV, D C1 N Cy # &), we deduce

H(C;Z) @ H(Cy; Z) = HO(V1: Z) @ H(Vy; Z)
— H'VvinVy;2) = HY(C1 N Cy; Z)
— H' ViUV Z) X HY(CLUCy; Z) = H'(C, U Cy; Z) = 0.

As Cy, C, are connected, I:IO(Ci; Z) = 0, so I:IO(Cl N Cy; Z) = 0. Thus, the finite
set C1 N C3 is connected, so it is a singleton. O

Example 2.3 Let F C C? be a finite set and U := C2\F its complement. Then
H\(U,7) = H,(U,7Z) = 0.

By Hurewicz’s theorem H;(U,Z) is the abelianization of m;(U) = 0, so
H{(U,7Z) = 0. We identify C> = R*. To compute H>(U,Z), we may assume
F = {p1,..., pr} where p, := 2k — 1,0,0,0). Notice that D, := Ule S;’,’,
where S;I_ = {x € R*: |lx — p;|| = 1} is a deformation retract of U = R*\ F.
Observe

$ g :[{pi,- =y il jl= 1
b= P %) if|i — j| > 1.

Denote Dy = Uf:l S?,l_ and observe Hy(D; Z) = HZ(S?H; 7Z) = 0. By induction

hypothesis, we assume H>(D,_1; Z) = 0. By Mayer—Vietoris’ exact sequence for
homology [21, Sect. 4.6]

0= Hy(D,—1,Z) ® Hy(S, : Z) > Hy(Dy: Z) = Hy(U: Z)
— H\(D,_1 NS, . Z) = Hi({pr-1.,}: Z) =0,

so Hy(U; Z) = 0, as required. O
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Remark 2.4 Lemma 2.2 applies if U is homeomorphic to the complement in C? of a
finite subset.

2.5 Rational Curve Selection Lemma

To finish this section we present the following variation of the curve selection lemma
adapted to the situations we will approach later. We refer the reader to [16, 4.7] for a
result of similar nature.

Lemma 2.5 Let f : R" — R™ be a regular map and S = f(R"). Let S C §
be a semialgebraic dense subset of S and p € Clgpm (S)\S. Then there exist (after
reordering the variables of R") a rational path

o= (£th, thp, . thp,) e R(b)”,

where

o ki € Z, ki = min{ky, ..., k,} <0,

e p; e R[t]andp;(0) A0 fori =2,...,n

and an integer r > 1 such that for each B € (t)'R[t]"

() p=lim;,o+(f o (e + B))(t) and
(i) (fo(x+ B))(@) C S fort > 0 small enough.

Before proving the previous result, we need a technical lemma.

Lemma 2.6 Let F € R[x] be a polynomial that is not identically zero and let
g € R((t))". Then for each s > 1 there exists r > 1 such that if h € (£)"R[[t]]", we
have F(g) — F(g +h) € (£)*R[[t]].

Proof Write g := f—,: where k > 0 and ¢’ € R[[t]]". Let z and y := (y1,...,¥Yn)
be variables. Write F(x 4+ zy) = F(x) + zH (X, vy, z) where H € R[x,v, z] is a
polynomial of degree d. Let r := s 4 kd and observe thatif 4 € (t)"R[[t]]", we may
write b := t"h’ where b’ € R[[t]] and

/
F(g+h)— F(g) = trH(g, Woer).

Observe that the order of the series F (g + h) — F(g) is > r — kd = s, as required.O0

Proof of Lemma 2.5 The proof is conducted in several steps:

2.5.1. We may assume: S’ is open in S.

As S’ is dense in S and S is pure dimensional because it is the image of R”
under a regular map, it holds that Clgn (S\S’) has dimension < dimp(S) — 1. Thus,
S§” .= S\ Clgn (S\S") C S’ is dense and open in S. Changing S” with S”, we may
assume that S’ is open in S.

2.5.2. There exists a Nash path ) : (—1,1) — RP" such that (f o 1)(0,1) C &,
lim;_o A(t)= g € RP"\R" and lim;_,o(f o A)(¢) = p.

@ Springer



592 Discrete Comput Geom (2014) 52:583-611

As p € Clgpn (8)\ S, there exists by the Nash curve selection Lemma [1, 8.1.13]
aNash path y : (—1, 1) — RIP" such that y ((0, 1)) € §"and y(0) = p. Let {x; }x C
R™ and {# }x>1 C (0, 1) be sequences such that limg_~ #%x = 0 and f(xx) = v (%)
for all k > 1. We may assume that {x; };>1 converges to g € RP". As § = f(R") and
p = v(0) € Clgp= (S)\S, we have g € RP"\R" = Hyo (R).

As dimg (£~ 1(y((0, 1)))) = dimg (¥ ((0, 1)) = 1 and

g € Clgp (f = (y (0, DY\~ (r (0, 1)),

there exists a Nash path A : (—1,1) — RP” such that A((0, 1)) C £ Yy (0, 1))
and A(0) = gq.

2.5.3. Construction of the integer k1. After reparametrizing y, we may assume f ol =
y, so there exist Ao, A1, ..., An, Y0, V15 - - -» Ym € R[[t]] such that

A A
fo,\zf(—l,...,—")=(ﬂ,...,y—’”)=y,
AQ AQ Y0 Y0

lim;_, o+ (1 : A(¢)) = g and lim;_, o+ (1 : y(¢)) = p. As ¢ € Hoo(R), we may assume
after reordering the variables x1, ..., x, that the order

A . A )
ki :=a)(—) =m1n{a)<—) = 1,...,n} < 0.
20 A0

After a change of the type t +— tu(t) where u € R[[t]] is a unit, we assume

% = +tk with k; < 0. Write

)\.' ’
)\—l = tKip; where

[kf €Z, pi € R[[t]]land p;(0) #£0  if £ 0,
0

ki =0andp; =0 if 7 = 0.

2.5.4. Construction of the integer r. Write f = (% ey %) where f; € R[x]

and fp does not vanish on R". By Lemma 2.6 there exists 79 > 1 such that if
woi=((1, ..., mp) € (£)°R[[t]]", then

tlir(r)l+(1 A+ u@®) =q

and lim (1 : %(A(t) + () - %(k(t) + IL(I))) =p.

t—0t
Since §’ is open in S, also f~1(S’) is open in R”. As

20, 1)) € £, ) C 7S,

there exist finitely many polynomials g, ..., g, € R[x] such that
M0, 61) C {g1>0,.... 89 >0} C f71(S)
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for some 1 > 0 small enough. Thus, g; o A = aitti + ... whereq; > 0and ¢; € Z.
By Lemma 2.6 there exists r > max{ro, k5, ..., k,} + 1 such that if n € (£)"R[[t]],
then

(gi o (A +n) — (gi o A) € (£)'R[[t]],
where s := max{0, {1, ..., £;} + 1. Consequently, if n € (t)"R[[t]], each series

gi o(A+mn) > 0fort > 0 small enough, so (A + n)(t) € F~1(S) for t > 0 small
enough.

2.5.5. Construction of the rational path «. Choose u = (0, uz,...,Uy) €
(£)"RI[E]]" such that £ (3 + ;) = p; + £ 7% i € R[E]\{0}. Write

thi (i + t7hipy) = thip;,
where k; € Z, p; € R[t] and p;(0) # 0. The rational path
o= (£th thp,, . tRp,) € R(b)"

and the integer r satisfy the conditions in the statement. O

3 Connectedness of the Set of Points at Infinity of a Polynomial Image
3.1 Proof of Theorem 1.1

The purpose of this section is to prove Theorem 1.1. We approach this result in the
more general framework of quasi-polynomial maps. Given a regular map

f::(%,~-~,%):IR"—>Rm,

where each f; € R[x], consider the invariant rational map

Fo:CP" - CP", x :=(xg:x1:" - :x) = (Fo(x) : F1(x) : -+ : F(x)),
where Fi(xg : X1 ¢ -+ 1 Xp) 1= ngi(i—é, e 2—8) and d := max;—o,_._n{deg(f)}.
Let Y be the set of indeterminacy of F¢ and write Fy = x{F; where ¢ > 0 and
Fé € R[xg, %1, ..., x,] is a homogeneous polynomial that is not divisible by x.

Observe that F can be restricted to a rational map Fg : RP” --» RP™ whose set of
indeterminacy is Yr := Y¢ N RP™.

Definition 3.1 We say that f is a quasi-polynomial map if Fc(H: (C)) C HZ (C)

and no real indeterminacy point of Fc belongs to {F; = 0}, that is, Yc N RP"N
{F; =0} =@.
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Remarks 3.2 (i) The condition Fc(HA,(C)) € HZ (C) is equivalent to

e := max{deg(f1),...,deg(fm)} — deg(fo) > 0.

(ii) If the polynomials fy, f1, ..., fin are relatively prime, then
YcN{Fy=0}={Fy=0,F =0,..., F, =0}.

(i1) Quasi-polynomial maps include polynomial maps, but also more general regular
maps. If e > 0 and {F; = 0} NRP" = &, then f is a quasi polynomial map.
This occurs for instance if e > 0 and fy := b3 + (b3x3* + - - + b2x2K)¢ where
k, ¢ > 0and b; € R\{0}.

(iv) If n = 1, the condition e := max{deg(fi), ..., deg(fm)} — deg(fo) > O char-
acterizes quasi-polynomial maps.

Theorem 3.3 Let S C R™ be a semialgebraic set that is the image of a quasi-
polynomial map f : R" — R™. Then So is connected.

Proof of Theorem 3.3 for the case n = 2 Write

f = (ﬂ f—m):RzeRm,

ol fo
where each f; € R[xj, x2] and fj has an empty zero set. Keep notations from 3.1 and
assume gcd(fo, f1,--., fm) = 1, so the set of points of indeterminacy of Fi (where
K=RorC)is

Y = {xoF, =0, F; =0,..., Fy =0} NKP?,

By 2.2 Yk is a finite subset of £, (K) U ({Fé =0}NKP?). As fis quasi-polynomial,
YR C Loo(R)\{F;, = 0}. The proof is conducted in several steps:

Step 1. Initial Preparation. Let (Z1, nc, f@) be an invariant resolution for F. Keep
notations from 2.2.1. and denote

e X[ := Z; NRP¥, which is a non-singular real projective surface.
e R = nclx, : X1 —> RP?, which is the composition of a sequence of finitely

many blow-ups and its restriction JTR|X1\71H£1(YR) : Xl\nﬁl(YR) — RP%\Yg is a

biregular isomorphism.
e IR := Fclx, : X1 — RP", which is a real regular map and satisfies

FRIx \nzt () = FR O TR\ ()

As YR C floo(R), it holds mr(x) € RP?\lso(R) = R? for each point x €
X1\ (€o(R)). Thus,

Fr(x) = Fr o tp(x) = f(R(X)) € R™ = RP"\Hu(R),

50 Fg ' (Hoo (R)) C 715" (€os (R)).
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3.1.1. The strict transform Ko, under ¢ of £ (C) is an invariant non-singular rational
curve and nclk,, : Koo = £oo(C) = CP! is an invariant biregular isomorphism.
Consequently, Co, := Ko, N RP¥ is a real non-singular rational curve and it is the
strict transform under g of £~ (R).

3.1.2. Define E := {Fj(z) = 0} C CP? and let E be its strict transform under c,
which is an invariant projective curve. As fo has empty zero set and x¢ does not
divide F, the intersection E N RP? is a finite subset of £o (R). In addition e YE) =

Eu UyeEnre ﬂ(El(y). We have:

3.1.3. ENUyey, 7¢' () = and ENRP € Cws. B
Let y € YR and let us show E N n(E] (y) = @. Otherwise, there exists x € EN
Jt(al(y), so y = nic(x) € e (E) = E. Consequently,

yeYRNE=YrN{F; =0} =02,
which is a contradiction. As ¢ (E NRPF) ¢ ENRP? C £o(R), we have

ENRP! € 7' (o ®D\ | 73" () € Crv
YEYR

3.14. As F(C|ZI\H<EI(YC) =Fco mC|Zl\JTC_1(Yc)’ it holds
E UKo C Fi'(Hoo(C)) € EUK Uns! (Ye).

Thus, f(c_ "(Hso(©)) is an invariant projective curve whose irreducible components
different from E are by 2.2.1. either singletons or non-singular rational curves.

3.1.5. The following diagram summarizes the achieved situation:

EUKy E N RP
N N
Fg' (Hoo(©)) l(C)UE D Yr Cu lo(R) D YR
N N N N
TT T
Z] —%C_) CPZ X] ’L RPZ
Fc Fc IR Fr
Cp™ RP™
U U
Hoo (C) Hoo (R)
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Step 2. We prove next:

3.1.6. fé Y(Hoo (©)) is connected. Consequently, I?(E "(Hoo (©)) does not contain iso-
lated points and its irreducible components different from E are non-singular rational
curves.

Indeed, by Stein’s factorization theorem [13, III.11.5] applied to the projective mor-
phism ﬁc : Z1 — CIP™, there exist a projective variety V and projective morphisms
Gi:Zy — Vand G, : V — CP™ such that

e G is surjective and its fibers are connected,
e G is a finite morphism and
o Fc =Gr0G].

To prove 3.1.6. it is enough to show that H := GZ_I(HOO((C)) and Gl_l(H) =
EEI (Hso(C)) are connected.

3.1.7. H is connected.
As G is finite, it is by [13, I1.5.17] an affine morphism. Thus,

G5 (C™) = G (CP")\G; ! (Hxo(C)) = V\H

is an affine algebraic variety. As V is a complete manifold, we deduce by [12, 6.2, p.
79] thatH = V\G, ! (C™) is connected because it is the complement in V of an affine
open subvariety.

3.1.8. Gl_l(H) is connected.

Suppose that Gl_l (H) is the disjoint union of two closed subsets A1, Az. As G| is
proper and surjective, G1(A1), G1(A,) are closed subsets of Hand H = G{(A) U
G1(A2). Incase G1(A;) # @ fori = 1, 2, the intersection G1(A1) N G1(A2) # @
because H is connected. If x € G1(A1) N G1(Aj3), the fiber

Grlx) = (G xh NAD L (G (xh N Ag)

is the disjoint union of two non-empty closed sets, so Gl_1 ({x}) is disconnected, which
is a contradiction because the fibers of G| are connected.

Step 3. In the following we use Lemma 2.2 several times. To ease the procedure we
point out the key facts. By 2.3.2. A := e ! (Loo(C) UY() is an algebraic curve whose
irreducible components are non-singular rational curves. Observe that U := Z;\A =
e 1((CZ\YC) is a dense subset of Z; biregularly equivalent to C?\Y¢ (that is, the
complement in C? of a finite subset).

3.1.9. Let By, By C A be two connected compact algebraic curves without common
irreducible components. Then the intersection By N By is either empty or a singleton
by Lemma 2.2, Example 2.3 and Remark 2.4.
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Step 4. By Zariski’s Main Theorem [13, 111.11.4] applied to the birational projective
morphism 7¢ : Z; — CP2, the fiber e ! (y) is connected for each y € Yc. We prove
next:

3.1.10. If y € YR, the invariant projective variety Ty = JT(El(y) N F(El(Hoo((C))
is connected and Ko, N T, is a singleton. In addition, if T, has dimension 1 and
Kiy, ..., Ky, y are the invariant irreducible components of Ty, the projective curve
Ulr‘=1 Ki,y is connected and Koo N Ty, = Koo N Ulrvzl K,y is a singleton contained in
Xi.

The clue to prove 3.1.10. is the following:

3.1.11. Let y € Yr and T be an invariant connected union of irreducible components
of ie ! (y). Let K1, ..., K, be the invariant irreducible components of T and denote
C; := K; NRP*, which is by 2.2.1(v) a real non-singular rational curve for i =
1,...,r. We have:

(i) The projective curve | Ji_, K; is connected.
(ii) Suppose moreover Koo N'T # &. Then the intersection

.
KoomTzKoomUK,-
i=1

is a singleton contained in X . In particular, Koo U J;_, K; is connected.

(iii) We may order the indicesi =1, ..., r in such a way that CooNCi =KsoNTis
a singleton and C; N U’J_:l1 Cj is a singleton fori =2, ..., r. In particular, the
real projective curve C := | Ji_, C; is connected and Coo N C # .

We prove first 3.1.11.(1). If T = |J;_, K;, there is nothing to prove.
Otherwise, denote the non-invariant irreducible components of 7' with K, 1,
..., K. Denote

t := max {#.7:: Fcl,...,r}, U K; is connected}
ieF

and let us check r+ = r. Suppose by contradiction ¢+ < r. We may assume that
K = Ule K; is connected. As each Ky is connected, each intersection K N K; = &
fort < € < r.As T is connected and invariant and K N {J;j_, . K; = @, we may
assume K N K,41 # & and 0 (K;+1) = K,42. As K is invariant, K N K, 47 # O,
so K U K,41 U K,y is connected and invariant. Repeating the previous argument
recursively, we find indices r < r +2jy < s and t < € < r such that (after reordering
the indicesi =r +1,...,5s)

r+2jo
IQﬂ(KU U Kj) + o
i=r+l1

and foreach 1 < j < jj it holds
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25 o
o K UL, K; is connected and invariant and

o 0(Kr2j-1) = Kri2j.

Such indices r + 2 jo, £ exist because T = | J;_; K; is connected.

. . o 2j
The invariant connected projective curves Ky and K U Ulr; i 1

in A= mg 1(EOQ((C) U Y¢) because y € Yr. The non-empty invariant intersection

K;N (KU Ulr;zil K ) is by 3.1.9. a singleton {p¢} C X1 = Z NRPF. As K; C
CP*\RP* fori =r +1,...,s (see 2.2.1(iv)), we have py € K, N K # @, which is
a contradiction. Then r = ¢, so U,r: 1 Ki is connected.

Next we prove 3.1.11.(ii). Since Ko, T C A are invariant connected projective
curves, the non-empty invariant intersection Koo N 7 is by 3.1.9 a singleton {p} C X;.
Thus, p € T NRP* (Ui, Ki because the non-invariant irreducible components of
T are by 2.2.1(v) contained in CP¥\RP¥. Consequently, Koo N T = Ky N U Ki =
{p}

Finally, we show 3.1.11(iii). Asp € X1 =Z1 N RP,

K ; are contained

CooﬂCzCooﬁUC,-:(KooﬂLrJKi)ﬂRIP’kz{p}yéQ.
i=1 i=1

We may assume Coo N Cy # @, thatis, Coo N C1 = {p} = Koo NT. As |J;_; K, is
connected, we claim: We may order the indices i = 2, ..., r in such a way that K;
intersects the union U’j_:ll Kjfori=2,...,r.

Indeed, as K = |Ji_, K; is connected, the intersection K| N |Ji_, K; # & and
we assume K1 N Ky # @. As K is connected, the intersection of K1 U K7 and
Ui_s Ki # @isnon-empty. We may assume that K3 intersects K | UK and proceeding
this way we prove the claim.

Next, since K; and Ulj_:ll K ; are invariant connected projective curves contained
in A, the non-empty invariant intersection K; N U;;ll K; is by 3.1.9. a singleton
{gi} C X;. Thus,

i—1 i—1
qi ERPkﬂKiﬂUKj=CiﬂUCj,
j=1 j=1

soC;iN Ui-_:ll Cj # @fori =2,...,r.Aseach C; is anon-singular curve biregularly
equivalent to RP!, we deduce that the projective curve C := Ui, Ci is connected.

3.1.12. Now we are ready to prove 3.1.10. As y € Yp C £xx(R) C €x(C) and
1c(Ke) = €oo(C), we deduce nél(y) NKs # @.If y1 # y;, the intersection

me' () N7g' (v2) = @ and by 3.1.3. EN ' (y) = 2. Consequently, by 3.1.4.

Ty MK =7:"' (1) N F' (Hoo(©) NKso
= (75" M NK) Uns' (0)) NKoo = 15" () N Koo # 2,
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so by 3.1.11.3ii) T, N K is a singleton. Denote

Ry =EUKwU || (g'@ N Fg'(Ha(©))
zeYe,z#y

and observe f(al(Hoo((C)) = T, U R, by 3.1.4. Using again EN n(al(y) = & and
n(El(yl) N n(El(y2) = @ if y1 # y2, we deduce Ty, N Ry = Ty N Ky, which is a
singleton. Consequently, if 7, was disconnected, then I?(C_ ! (Hs(€)) would have been

disconnected, which contradicts 3.1.6. Thus, the first part of claim 3.1.10. holds. The
second part follows readily from 3.1.11.

Step 5. Next we show:

3.1.13. ﬁﬂgl(Hw(R)) is connected. Consequently, fR(fﬁl(Ho@(R))) is also con-
nected.A R R
As Fg is invariant, F ' (Hoo(R)) = F ' (Hoo (C)) N RPX. By 3.1.4.

Fg'(Hoo(©) = EUKs U | (" (3) N Fg ! (Hoo (). 3.1)
YEXC

Fix y € YR and consider 7\ := nél(y) N fél(Hoo(C)). If Ty is a singleton,
we deduce by 3.1.10 that T, C K. Otherwise we denote the invariant irreducible
components of 7, with Kl,y, R Kryy y. As the non-invariant irreducible components

of n(El (y) do not intersect RP¥ by 2.2.1(v), we deduce T,N RPF = Uf;l KiyN RP*.

In addition by 2.2.1(iv) n(al (y) NRP¥ = & forall y € Y\ Yg. Denote the subset
of points of Yg such that Ty is not a singleton with Yp,. If we intersect expression (3.1)
with RPX, we deduce by 3.1.3

ry
Fr'(Hoo(R)) = F& ' (Hoo(©)) NRP* = Coo U | J | Kiy NRPE.
erﬁi:l

By 3.1.10. the projective curve Ulr‘: 1 Ki,y is connected and the intersection Koo N
Ulr‘=1 Ki,y is a singleton {p,} for each y € Y. By 3.1.11(iii) each projective curve
C, = Ulrvzl Ci,, is connected and each intersection Coo N Cy # @. As Cro =
Koo N RIP¥ is by 3.1.1. connected, we conclude that

Fp'(Ho@®) =Cx U | J |JCiy
yevg i=1

is connected too.
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Final Step. Conclusion. As fR(fﬂg l(HoQ(R))) is connected, to prove that Sy, is
connected, too, it is enough to show that both sets are equal, that is,

Fr(Fg ' (Hx(R))) = Sco.
As X| = Z; N RP* is compact, FR is proper, so the restriction
Frlp 1 gm  Fg ' R™) —> R”
is also proper. As nﬂgl(Rz) is dense in X and
S = f(R?) = Fr(R?) = Fr(rg ' (R?),
we have

Fr(Fg'(R™) = Fa(Clp1 g (g (R?))

= Clgn (Fg (75 '(R?))) = Clgn (f (R?)) = Clgn (S),
SO FR(Fﬂgl(R'")) = Clgn (S). As Fg is proper,

Clpn (S) U Soo = Clgpn () = Clgpn (Fr(Fg ' (R™)))
= Fr(Cly, (Fg ' (R™))) = Fr(X))
= Fr(Fg' (R™) U Fr(Fg ' (Ho (R))).

Consequenlty, Soo = fR(fﬁ ! (Hso (R))), which is by 3.1.13. connected, as required.

O

We are ready to prove Theorem 1.1. We present an independent proof from the one
of Theorem 3.3. This is enlightening for the proof of Theorem 3.3 for n > 3.

Proof (Proof of Theorem 1.1) For n = 1 the result follows from [2, 1.1]. To prove
that S« is connected if n > 2, it is enough to show that for any given pair of points
P, q € Seo there exists a connected subset of Sy, containing p and g. By Lemma 2.5
there exist polynomials p;, g; € R[t] such that p;(0), q;(0) # 0 and integers k;, ¢;
such that the rational paths o := (thpy, ..., thp,) and B = (thq,..., tha,)
satisfy

lim (foa)(t)=p and lim (fo B)() =gq.
=0t t—0t
At least one couple (k;, £;) is of negative integers. Consider the polynomials

(—y)llg;(x) ife; <0,
xligi(x) ift; >0

vikilp; (%) ifk; <0,

Pi(x,y) = { inpi (x) ifk; >0

and 0i(x,) = {
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and let

xy + 1 1 —
ho=T " (p.. .. P)+

Xy
2 2 (Q1,-.., On).

Consider the polynomial map g := f o h : R> — R™ and observe

o Tp:= im(g) Cim(f) = 5,50 7,00 C Seo-
o p=lim,_ o+ g(t, 1) € Ty oo and g = lim, o+ g(t, —1) € T oc.

As Ty, is connected for n = 2 by Theorem 3.3, we are done. O

3.2 Proof of Theorem 3.3

Now we prove Theorem 3.3 for an arbitrary n.

Proof (Proof of Theorem 3.3 for an arbitrary n.) The case n = 1 follows from
[2, 1.4]. Assume n > 2 and write f = (%,..., %) where each f; € R[x],
gcd(fo, f1, ..., fm) = 1 and fy does not vanish on R". The proof is conducted
in several steps:

3.2.1. Initial assumptions to simplify the proof. Assume deg(f1) > deg(f;) for j =

1, ..., m. After a change of the type (y1, ..., Ym) = V1, y2+b2Y1, -, Ym +bmy1)
where b; € R we can suppose

deg(fi) = -~ = deg(fn) = d > deg(fo) =d — e

for some e > 1. Denote

and Fy = x{F; where e > 1 and Fj € R[x0, %1, ..., %,] is not divisible by xq.
Notice that x( does not divide F; for j =1, ..., m because deg(f;) = deg(F;) =d.
After a change of the type (x1,...,x,) — (x1,Xx2 + axx1, ..., x, + a,x1) where
a; € R we can suppose deg(f;) = deg,, (f;) for each j.

3.2.2. Equivalent formulation for the statement. To prove that Sy, is connected, it is
equivalent to show: There exists a point py € S such that for any other point q € Sx
there exists a connected subset of So containing po and q.

We will prove this last fact. Fix

. 1
po:= lim (Fo: :~~:Fm)(1:;:O:M:O)GSOO(R)

t—

and let g € So. By Lemma 2.5 there exist a rational path

a:= (thp, ..., t5p,) e R(v)",

@ Springer



602 Discrete Comput Geom (2014) 52:583-611

where

e ki € Z, kjy == minfky, ..., k,} <0,

e p; € R[t] withp;(0) #0fori =1,...,nand p;, = *1

and an integer r > 1 such that ¢ = lim;_, o+ (f o (e 4 B))(¢) foreach 8 € (£)"R[t]".
After the change t — t® we may assume ki, < —6 and even. We keep all initial
notations.

3.2.3. Construction of an auxiliary regular map. Write p; = Zj{":o aij t/ where
d; := deg(p;) and consider the formula

. Xe.l'y
P;(x, = a: kit + a:: ,
i (%, ¥) Z ijY Z 1 ((xy — 1)2+y4)qj
JAki <0 J+ki=0

where j + ki +1 =4g;j +ej,q; >0and0 < e; < 3 foreach 0 < j < d; such
that j +k; > 0. Observe P;(t, 1) = thip;(t) fori = 1,...,nand P;, = p;, vl =
:ty|ki0|_

Denote £o := max;{qy, : d; +k; > 0} and notice ((xy — 1)> + vy P; € R[x,y]
for each £ > £¢. In addition

deg(((xy — l)2 + y4)lP,~) <max{—k; +4¢,4 —4q;j +ej+1: ki + j >0}
< 4¢ + max{—k;, 4} < 4L + |k;,|

and the equality deg(((xy — DZ4+vHip) =40+ |ki,| holds if and only if k; = k;,.
As |kiy| > 6,

deg, (xy — D? +vHP)

Z(E—qdi)+3ifk,-+di20} 4
= {5 itk +d; <0) =204 =3F Ikl
foralli =1,...,n. Let £ := max{{g, r} and define
((xy — 1> +vH° if i =0,
hi(x.y) = {((xy — D* + yH Pi(x.y) + pr@x* ol if i =1,
(xy — D? +vHiPi(x,y) ifi=2,...,n.
Consider the regular map h := (Z—(l), e, Z—:’)) : R? — R” and observe

h(t,0) = (p1(O)e*Fl 0, 0)
1
and h(t. =) = a(t) + POl 0. 0),
so lim,_, o+ (f 0 h)(+,0) = po and lim, o+ (f 0 h)(t, 1) = q.
3.2.4. Construction of an auxiliary quasi-polynomial map such that po, q belong

to the set of points at infinity of its image. Let g := f o h : RZ — R™ and denote
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gi 1= Fi(ho, hi, ..., hy) € R[uy, up]fori =0, 1, ..., m.Observeg = (g—é, e ‘Z—'g)
and gy does not vanish on R%. We claim: g is a quasi-polynomial map and po, q €
g(Rz)ocw

First we have

e Tp:= im(g) C im(f) = 5,50 7,00 C Soo-
o po=lim,_ o+ g(+,0) € To.0 and g = lim, o+ g(t. 1) € To,cc.
o g0 = ((upuz — D? +u3)““F(ho, h1, ..., hy).

In addition,
deg(go) = d(4€ + |k;y|) — elkiy| < d(4€ + |ki,|) = max{deg(g1), ..., deg(gm)}-

Indeed, since

o deg(Fy) = deg(fo) =deg,, (fo) =d —e,

o deg(F;) = deg(fj) = deg, (fj) =d,

o deg(h;) <4+ |k;|, deg(hy) = 4€ + |k;,| and

o (ho,hi,...,hy)(t,0) = (1, pr0)e*tkiol 0 ... 0),

we have

deg(go) = 4el + (d — e)(4Ll + |kiy|) = d(4€ + |kiy|) — elkiy|

< d(4L + |kiy|) = deg(g;)
foreach j =1,...,m.
Let o := 4€ + |k;,| and write H; := ugh,-(fl—(]), 2) and G, = ug“gj o 5,

which are homogeneous polynomials. Notice that

G] = uglLFj(hO(Ey 2)7 hl(ﬂa 2)1 ceey hn(Es E))

ug ug up uo up uo
= F](H()s Hl’ an)
ki

and Gy = ug‘ O‘Gg where G, := ((uluz—u%)z—i—u‘z‘)eeFé(Ho, Hy, ..., H,).Count-

ing degrees one realizes: ug does not divide G,.

In the following all zero sets are considered in RP"”. To prove that g is
quasi-polynomial it only remains to check {G, = 0,G; = 0,...,G,, = 0}
=UJ.

Indeed, as {F(; =0,F=0,..., F, =0} = g, the following equality holds

{Gy=0,G1=0,....,G, =0} ={Hy=0,..., H, =0}
U{((uuz —ud)? +ud“=0,G61=0,...,G, =0}

Notice
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IKig | 2,2 N
Ho(uo, up, uz) = uy * ((wjuz —ug)” +us)’,

40+k; .
p1 O, ol ifkio < k1,

ki | 4L+|kig | .
p1(0) ((u%u% + u‘z‘)lu2 O 4y, Y ) ifkjo = kq,

10,0, |° if i > 2andkip < ki,
i (U, 0, u3) = .
: Oy ol i i > 2and ki = ;.

H1(0,ur, uz) =[

Consequently, {Hy =0, ..., H, = 0} = & because

e Hy = 0 provides ug = 0,
e H1(0,uy,uz) = 0 provides u; = 0 (we have used here that k;, is even) and
e H;,(0,0,uz) = 0 provides uy = 0.

On the other hand ((ujuz — u3)? + u3)¢* = 0 provides ugp = 0, u» = 0. As G| =0,
we have

0=G1(0,u,0)
= F1(Hp(0,uy1,0), H1(0,uy,0), ..., H,(0,u1, 0)) = F1(0, u’f,O,...,O).

For the last equality use that deg, (((xy — D? + yH'P;) < 4€ + |k, | for all
i = 1,...,n. As deg(F1) = deg(f1) = degy, (f1) = deg, (F1), we obtain
a:=F0,1,0,...,0) £0. As

0= F(0,u",0,...,0) = au’”,

we getu; = 0, s0 {((uluz—u(z))z—i-ué)e( =0,G;1=0,...,G, =0} = &.Therefore
{Gy=0,G1=0,...,Gp =0} = @, 50 g : R> - R™ is a quasi-polynomial map.

3.2.5. Conclusion. By Theorem 3.3 for the case n = 2 (already proved in 3.1) applied
to the quasi-polynomial map g, we deduce that 7Ty oo = (g(Rz))Oo C S is connected
and since po, g € Tp,o0, We are done. O

The set of points at infinity of a semialgebraic set S C R™ is a semialgebraic subset
of the hyperplane of infinity Heo (R) of RIP”. It seems reasonable to ask the following.

Question 3.4 Let Sy be a connected closed semialgebraic subset of Hoo (R). Is there
a polynomial (or a quasi-polynomial) map f : R" — R"™ such that f(R")eo = So?

For m = 2 the answer is positive but for higher dimension we have no further
information.

Example 3.5 For each connected closed semialgebraic subset Sy C £o(R) there
exists a polynomial map f : R? — R? such that dimg (£ (R?)) = 2 and (f (R?))se =
So.

If Sy is not a singleton, the assertion follows from [11,12,23]. On the other hand, the
polynomial map f : R? — R2, (x,y) — (x, y>+x?) satisfies f (R?))oo = {(0:1:0)},
which is a singleton.
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Remarks 3.6 We have introduced quasi-polynomial maps to understand the limitations
of the image of a regular map to have a connected set of points at infinity. The following
examples show that they do not enjoy a very nice behavior.

(i) The composition of the quasi-polynomial maps

g:R? 5 R (x,y) — (x,y%)
3 3

X y
and :R2—>R2, , I—>( ) )
f (. ) 14+ x2+y2" 1+ x2+y?

is not a quasi-polynomial map.
(ii) The image of the quasi-polynomial map g : R — R?, ¢ - (l—itz’ 14 12) is the
semialgebraic set S = {xy = 1, y > 1}, which is not a polynomial image of R".

4 Set of Points at Infinity of a Regular Image of R"

We have proved in Sect. 3 that the set of points at infinity of the image of a quasi-
polynomial map f : R" — R™ is connected. This is no longer true in general for
regular maps even if n = 1.

4.1 Preliminary Examples

We present some examples to illustrate the previous fact and to show that the conditions
in the statement of Theorem 3.3 are sharp.

Examples 4.1 (i) The image of the regular map

1
. 2 2 12 2
f:R =R, (x,y) — ((xy D"+ x ’—(xy— 1)2+x2)
is S :={a > 0,ab = 1}, so Soc = {(0:1:0), (0:0:1)} is disconnected.
(i) The image of the regular map

2 2 x? y2
R - R2, (x, (_ _)
f - (x,y) — T2 T2
isS:={a>0,b>0,ab < 1}, 50 So = {(0:1:0), (0:0:1)} is disconnected. If
we write f 1= (ﬂ, Q) where each f; is a non-zero polynomial, then deg( fy) =

0
max{deg(f1), deg(f2)}.
(iii) The image of the regular map

(1+xHyS (1+ y4)x4)

.2 2
f:R —>R,(x,y)|—>((1+y4)2, DL

is a semialgebraic set S such that Soo = {(0: 1:0), (0 : 0 : 1)} is disconnected.
If we write f := (f—‘, f—z) where each f; is a non-zero polynomial, then deg( fo) <
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max{deg( f1), deg(f2)}. The set Y = {(0:1:0), (0:0:1)} of indeterminacy of the
rational map

Fe := (Fo:F1:F») : CP? --> CP?
is contained in { Fj, = 0}NRP? where F| = (xg+x])?(x¢+x3)? and Fy = x} F}).

Proof Observe that f(R?) C {a?b < 1,a > 0, b > 0} because

(1 +xhHy0\2 A+ yHat oyt

( ) ( )= (57) () =

(1 +y4)2 (1 +x4)3 1+y4 1+x4
Thus, Seo C {(0:1:0), (0:0:1)}. To prove the converse inclusion it is enough to pick
two rational paths ¢; : (0, 1] — RR? such that lim,_, ¢+ ||; (1)]|*> = +oo and

lim $X(a1(1)) = +00, lim 22 (a1(1) =0,
t—0% g0 t—0% go

lim S (ar@) =0, Tim 22(aa (1)) = 400
t—0% 8o =07 8o

For instance, o (t) := (%, 1) and o (1) := (1, %) do the job. ]

The following question arises naturally.

Question 4.2 Given a closed semialgebraic subset Sg C ¢ (R) C RP2: [s there a
regular map f : R2 — R? such that (f(RZ))oo = Sy?

In case Sy is either connected or a finite set, the answer to Question 4.2 is by
Example 3.5 above and Proposition 4.3 below affirmative.

4.2 More Sophisticated Examples

If Sy is a finite set, we proceed as follows.

Proposition 4.3 Let H; := c;jx — d;y be linear equations such that c;d; # 0 and the
lines ¢; .= {H; = 0} are pairwise different. Denote p; := (0 : a’i2 : 61.2). Then the
image of the regular map

) ) x? )’2
h:= (h1, ) : R — R, (x,y) > ’
(h1, ) x, ) (1+Hf:1 Hi(x, y)? 1+, Hi(x’y)Q)

is a semialgebraic set S such that Soo = {p1, ..., pr}-

Proof Observe first

di ¢ d-zc‘z_z,z,zf—“)+ )
h(T,T)Z(t—lz,t—lz)=(t 'di .Cl-)—>(0.dl~ -Ci)=Pi7
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so {p1, ..., pr} C Seo. Next, we prove the converse inclusion So, C {p1, ..., pr}.
The Jacobian of 4 is not identically zero, so § := h(R?) has dimension 2. In
addition, § is pure dimensional because it is a regular image of R?. Thus,

§":= S\(h({x = 0) U h({y = 0}) U h({Jac(h) = 0}))

is dense in S. Fix a point p € So. After interchanging the variables and changing x
with —x if necessary, there exists by Lemma 2.5 a rational path o := (£ %, tp) where
k,l € Z,—k = min{—k, £} < 0,p € R[t]andp(0) # Osuchthatlim,_, o+ (hoa) = p
and (h o @)((0, ¢)) C §' for ¢ > 0 small enough. Our change of variables does not
modify the structure of 4, so we keep the same notations. As p € £5,(R), one of the
following limits is infinity:

(2k(r=1)

lim (h t) = lim ’
Jim (hyoe)(t) = lim -~ [Ti—, Hi (1, t+p(1))?

t2kr+2@p(t)2

lim (% 1=l '
,_I)I(I)Er( 20a)(t) t_l)r(r)lJr 12kr 4 H?:l H; (1, tk+Ep(1))?

Notice the following:

(1) The first limit is infinity if and only if

,
A+ [THA, £ p))? = £"qu(v)

i=1

for some q; € R[t] and an integer vi > 2k(r — 1) + 1.
(2) The second limit is infinity if and only if £ < 0 and

,
2+ [T H L 7)) = £2qa(0)

i=1

for some q» € R[t] and an integer vo > 2kr 4+ 2¢ + 1.

As k + £ > 0, we deduce in both cases that there exists an index i = 1,...,r
such that lim,_, o+ H; (1, tk‘Mp(t)) = 0. Since by hypothesis c;, d; # 0, we conclude
{ = —k < 0andp0) = %.Denoteu i=v; —2k(r —1)—1>0andq :=gq; in
both cases, so

r
e+ [T H L £ p(e))? = 20 DH ek,
i=1
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We deduce

p = lim @+ [T Hi(1,p)? - 2070 202 0)2)
- i=1

— llm (t2k(r71)+ltu,q(t) . t2k(r71) : t2k(r71)p(t)2)
t—0t
2

_ . M+1 . . 2 — . C_l
= lim (a0 1:p0%) = (0515 55).
$0 Soo C {p1,---, Pr} .

We present next an example of a regular image S such that S, has exactly two
1-dimensional connected components.

Lemma 4.4 There exists a regular map [ : R? — R? whose image S satisfies
1 1
soo={(0:u:1): 0§u§§}U{(O:1:v): OSva}.

Proof We build f as the composition of two regular maps that we construct next:
4B.1. LetT :={0 <a<1,b>0}U{0 <b <1,a > 0}. The image of the regular
map

2 5 x2 41 y2 +1
g R =R (xy) e (1 + x2y2’ l+x2y2)
is a semialgebraic set Sy such that T C Sy C T U0, 212 ¢ {a >0,b>0}.In
particular, S1,00 ={(0:1:0),(0:0: 1}

We check first S; € T U [0, 2]%. Let (x, y) € R? and write f3(x, y) =: (a, b). We
claim: If b > 2,then 0 < a < 1.If a > 2, we will have by symmetry 0 < b < 1, so
Sy c TUl0,2]%

It is clear that ¢ > 0. Suppose by contradiction ¢ > 1. Then x> > x?y? and
y2 > 14 2x2y?, s0

x? < x? —|—2x4y2 < x2y2 <x?

which is a contradiction.
Next, we check T' C Sj. It is enough to prove by symmetry that

Ti:={0<a<1,b>0}CS.
Let (a, b) € T1 and consider the system of equations

{x2+1=a(1+x2y2) . {b(x2+1)—a(y2+l):0,
y24+1=5b(1 + x%y?) ay* +@—1-b)y>+b—1=0.
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A simple discussion shows that both systems are equivalent. The discriminant A of
the biquadratic equation ay* + (@ — 1 —b)y> +b—1=01s

(@a—1=5b2—4ab—1)= b —3a+ 1> +8a(l —a),

which is > O because 0 < a < 1. Asa — 1 — b < 0, the real number

b+ —a)+/(b-3a+ 12 +8a(l —a)
- 2a

20 -
is positive and has a square root yg, which is a solution of the biquadratic equation
4 2 _
ay"+@—-1-b)y"+b—-1=0.

The equation b(x2+1) — a(yg + 1) = 0 has a real solution xg if

0<2a(yi+1)—b) =2az04+2a—2b=-b+1+a
+V(b—3a+ 12 +8a(l —a)

or equivalently if
0<(b-3a+1>+8(1—a)—(b—1-a)=4b(1 —a).

Asb > 0anda < 1,itholds 4b(1 — a) > 0, so we deduce (a, b) € S, as required.

4.22. Let By ;= {0 < 2a < b} and B, := {0 < 2b < a}. Write also
Al ={0 <x <1, 4 <yland Ay := {0 < y < 1, 4 < x}. Then the image
of A := A1 U A, under the regular map

h:R?— Rz,
(ﬂy—b%9+ﬂx—b%)y«x—D%2+My—D%n
Il+x(x—D2y(y -1 ~ IT4+x(x—1D2yQy-—1?2

(x,y) =
is a semialgebraic set Sy contained in B := By U Bo, which satisfies
1 1
Saio = Brow UBroo = {0:u:D: 0=u=sfuf{0:1:0: 00 =),
Write / := (Z—(l), Z—g) where

ho(x,y) i= 1+ x(x — D*y(y — 1)?,
h(x,y) = x((y — D*y* 4+ 2(x — 1)*x),
ha(x,y) = y((x — 1)*x* + 2y — 1)%y).
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hy,x) _ ha(xy)

As hi(y,x) = hao(x,y) and ho(y, x) = ho(x, y), we have M0 = haGey) SO it is
enough to prove: h(A1) C By and (h(A1))oc = Bl,c0-

Let (x, y) € Ay. Itholds Ay (x, y) > 0 and

ha(x, y)=2h1(x, y) =y ((x— D22 +2(y— 1)2y) —2(x ((y— D*y* +2(x — 1)%x))
=21—-x)(y -+ —Hx—-1D*x2>0

because 0 < x < 1 and y > 4, so h(x,y) € B;. Therefore, (h(A1))oc C Bi1,0c and it
only remains to check B1,00 C (h(A1))oo-

Indeed, for each 0 < A < 1 consider the half-line x = A, y =t > 4 and the curve
C) C h(Ap) parametrized by

o, (t) = (), a20)) =g, 1)
_ (A(t — D22 4 2apmp) 2(t — 122 +/\mz)
U I+t —-D2 T T4 urc -2

where py := A(h — 1)2. As

. . () A
lim () = 400, lim a)2(t) =400 and lim — = —,
t——+o00 t— 400 t—+o0 oy (1) 2

we deduce Cj oo = {(0: % : 1)}, s0

Bo= U Guxc( U 6) =0
0<A<l1 0<A<l1

as required.

4.2.3. The image of the regular map f := h o g : R> — R? is a semialgebraic set §
suchthat Soo ={(0:u:1): 0<u < %}U{(O: l:v): 0<v < %},asrequired. O

Question 4.5 Let Sy be a closed semialgebraic subset of the hyperplane of infinity
Hoo (R) of RP™. Is there a regular map [ : R" — R™ such that (f (R"))oo = So?
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