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Abstract Let F be a field, let L1, . . . , Ld be pairwise disjoint collections of lines in
F

d , and let L = {L1, . . . , Ld}. We say that a point x ∈ F
d is a multijoint of L if x

lies on a line from each of the collections in L, and moreover the directions of these
lines span F

d . We prove that there exists a constant Cd such that if L is a generic
family of collections of lines in F

d and J is a set of multijoints of L, then there exists
a d-colouring κ : J → {1, 2, . . . , d} such that for each j , for each l ∈ L j we have
|{x ∈ J ∩ l : κ(x) = j}| ≤ Cd |J |1/d .
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1 Introduction

Let F be a field, let L1, . . . , Ld be pairwise disjoint collections of lines in F
d , and let

L = {L1, . . . , Ld}. We say that a point x ∈ F
d is a multijoint of L if x lies on a line

from each of the collections in L, and moreover the directions of these lines span F
d .

Regard each line of L j as being coloured with colour j . In this note we address
the problem of colouring the set J of multijoints of L with as few colours as possible
in such a way that no line of a given colour contains too many points of that same
colour. We need to make these notions precise, and do so in the statement of our main
result. Further clarification and a discussion of the context of the result follows in the
remarks after its statement. The family L is said to be generic if whenever l j ∈ L j

meet at x , then the directions of the l j span F
d .
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Theorem 1 Let L be a generic family of collections of lines in F
d as above, and let

J be a (finite) set of multijoints of L. Then there exists a constant Cd which depends
only on the dimension d and not on L or J , and a d-colouring κ : J → {1, 2, . . . , d}
such that for each j , for each l ∈ L j ,

|{x ∈ J ∩ l : κ(x) = j}| ≤ Cd |J |1/d .

Remark 1 We emphasise that while an x ∈ J can arise as a multijoint in several ways
(i.e. there may be many d-tuples of lines (l1, . . . , ld) ∈ L1 × · · · × Ld with x ∈ l j for
all j) we only associate a single colour to it. That is, a multijoint is a point of F

d , not
a d-tuple of lines.

Remark 2 Matters are trivial if we allow more than d colours for J : simply colour every
point of J with colour d+1. We therefore consider d-colourings κ : J → {1, 2, . . . , d}
of J .

Remark 3 We cannot hope for each line of a given colour to contain at most about
|J |β points of J of the same colour unless β ≥ 1/d. To see this consider the monkey-
bar/jungle-gym example where L j consists of N d−1 lines parallel to the x j -axis pass-
ing through the points (m1, . . . , m j−1, 0, m j+1, . . . , md) for mi ∈ {1, . . . , N }. If each
line of L j contains at most K multijoints of colour j then there are at most N d−1 K
multijoints of colour j altogether and hence at most d N d−1 K multijoints altogether.
But there are N d multijoints in this example, so we must have N d ≤ d N d−1 K . Hence
K must satisfy K ≥ N/d = |J |1/d/d.

Remark 4 We cannot expect in general to use fewer than d colours. To illustrate this
in the case d = 3, put 2N red lines parallel to e1 passing through the points (0, j, 0)

for 1 ≤ j ≤ N and (0, 0, j) for 1 ≤ j ≤ N , and similarly put 2N blue lines parallel
to e2 and 2N green lines parallel to e3 in the corresponding places. Then on the plane
x3 = 0 we have an N × N square lattice of N red lines parallel to e1 and N blue lines
parallel to e2. Through each lattice point on this plane put a green line to make it a
multijoint in J but in such a way that no new multijoints in J are created. Similarly
add red lines through lattice points on the plane x2 = 0 and blue lines through lattice
points on the plane x1 = 0. Altogether we now have 3N 2 multijoints, with the colours
red, blue and green in symmetry. Can we colour this arrangement of multijoints using
only two colours, say red and blue, in such a way that a line of a given colour contains
at most ∼N 2/3 points of that colour? If so, considering the multijoints in the the plane
x3 = 0, every red line would have at most ∼N 2/3 red multijoints, so there would be at
most ∼N × N 2/3 = N 5/3 red multijoints on this plane, and simlarly at most ∼N 5/3

blue multijoints. Hence there would be at most ∼N 5/3 multijoints on this plane, when
in fact there are ∼N 2. This contradiction shows that we cannot colour this arrangement
with fewer than three colours, and similar examples in higher dimensions show that
in F

d we will need d colours in general.

Our setting with d families of lines is a variant of the setting of the so-called joints
problem. There we have a single collection L of lines in F

d , and we define a joint of L
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to be any point which lies at the intersection of d lines from L with the condition that
the set of directions of those d lines should span F

d . In recent years there has been
quite a bit of interest in the joints problem and it is now known that if J is the set of
joints of L then we have

|J | ≤ Cd |L|d/(d−1), (1)

where Cd depends only on the dimension d. This was originally proved in the case
F = R by Guth and Katz in [7] for d = 3, then for a general d ≥ 3 by Quilodrán [10]
and independently by Kaplan, Sharir and Shustin [9]. Treatments of the extension to
general fields are in [2,5] and [11].

Let us temporarily pass to the situation F = R. Let N1, . . . , Nd be natural num-
bers and consider the grid G of points {1, 2, . . . , N1} × · · · × {1, 2, . . . , Nd} ⊆ R

d .
Let us consider the family L j of N1 N2 · · · N j−1 N j+1 · · · Nd lines parallel to the j th
coordinate axes passing through the points of the grid G. Then it is easy to see that
|J | = N1 · · · Nd while

∏d
j=1 |L j | = (N1 · · · Nd)d−1. This example therefore gives

rise to the natural question in our setting as to whether we have, with J now being the
set of multijoints of L,

|J | ≤ Cd

d∏

j=1

|L j |1/(d−1), (2)

where Cd depends only on the dimension d. At the moment this question seems difficult
(except in two dimensions, in which case it is obvious)1 and we instead consider the
related problem described above.

Let us explain the relevance of our result to inequality (2). In [4] Dvir proved the
finite field Kakeya conjecture. Since then, his central idea, dubbed the polynomial
method, has been used extensively, among other things in the cited work on the joints
problem. In another direction, Guth [6] extended the polynomial method to prove the
endpoint case of the multilinear Kakeya conjecture in R

d . This is a continuous version
of inequality (2) introduced above. His proof used algebraic topology but see [3] for
a treatment which relies only on the Borsuk–Ulam theorem.

Suppose we have d families T j of doubly-infinite tubes Tj in R
d of infinite length

and unit cross-section, and suppose that each tube in T j points approximately in the
direction of the j-th standard basis vector e j .2 The main substance of Guth’s argument
consists of proving that for every non-negative function M there exist functions S j ,
j = 1, . . . , d, such that

M(x) ≤
d∏

j=1

S j (x)1/d (3)

1 However, Iliopoulou [8] has recently informed us that she has established (2) when F = R for arbitrary
d and also for arbitrary F when d = 3. In neither case is the genericity hypothesis needed.
2 Guth’s set up is more relaxed than this, see also [1].
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and

∑

x

S j (x) ≤ Cd‖M‖d . (4)

The domain of the functions M and S j is the set of unit cubes in R
d , and inequality (3)

is supposed to hold for each cube. The sum in inequality (4) is over cubes x meeting
a tube Tj ∈ T j , and inequality (4) is supposed to hold for each tube in the collection
T j , for all j = 1, . . . , d. Loosely speaking, Guth’s functions S j (x) are constructed
geometrically as the directional surface areas of Z p ∩ x where Z p is the zero set of a
polynomial p of degree dominated by ‖M‖d which bisects each cube x in the domain
of M in a particularly strong way.

In considering inequality (2) one is naturally led to consider inequalities (3) and
(4) where the tubes are replaced by lines (of zero width), the unit cubes by points and
where we suppose that if x ∈ l j ∈ L j for j = 1, . . . , d then the directions of the l j

should span F
d , i.e. that x is a multijoint according to our definition above. Note that

in the case of R
d straightforward limiting arguments applied to the results of [6] and

[1] do not yield an answer to the question of the satisfiability of (3) and (4), or of the
validity of (2) in this setting. Note also that there is no obvious analogue of the notion
of directional surface area in our discrete setting.

If in (3) and (4) we replace the general nonnegative function M by a characteristic
function χJ of a set of multijoints J , and the geometric mean by the (larger) arithmetic
mean we arrive at the (easier) problem of finding S j such that

χJ (x) ≤ 1

d

d∑

j=1

S j (x) (5)

and
∑

x

S j (x) ≤ Cd |J |1/d . (6)

Theorem 1 is equivalent to this new problem: if we have such S j , for each x , choose a j
with S j (x) ≥ 1 and assign colour j to x ; conversely, if we have a colouring satisfying
the conclusion of Theorem 1, declare S j (x) = d if x has colour j and S j (x) = 0
otherwise. (See also Remark 7 at the end of the note.)

We now make some remarks on the relation between our colouring result and the
joints theorem (1). In the first place, our result implies a weak form of the joints theorem
in so far as if we have a generic family of lines {L1, . . . , Ld} our result enables us to
estimate the size of its set of multijoints J as

|J | =
∑

x∈J

1 ≤ Cd

∑

x∈J

d∑

j=1

S j (x) = Cd

d∑

j=1

∑

x∈J

S j (x)

≤ Cd

d∑

j=1

∑

l j ∈L j

∑

x∈J∩l j

S j (x) ≤ Cd

d∑

j=1

|L j ||J |1/d
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from which it follows that |J | ≤ Cd(
∑d

j=1 |L j |)d/(d−1). Secondly, our argument uses
important aspects of the arguments used to prove the joints theorem. In particular it
makes use of a fundamental lemma of Quilodrán from [10] (see Lemma 1 below) and
indeed the strategy of his original proof of the joints theorem. Quilodrán’s lemma is
proved using the polynomial method and so there is a polynomial underlying our own
colouring theorem; however, due to the iterative nature of our argument it is not clear
that one can express the quantities S j directly in terms of the zero set of a suitable
polynomial.

In this direction, one strategy for proving our theorem might be as follows: choose
a polynomial p of degree dominated by |J |1/d which vanishes at each member of J .
(One can do this simply by observing that if deg p �d |J |1/d one can choose the
coefficients of p such that it satisfies the |J | linear equations p(x) = 0, x ∈ J .) Then,
if x is a multijoint such that ∇ p(x) �= 0, it must be the case that for some j , for all
l j ∈ L j , we have l j � Z p. (Otherwise, for all j there exists an l j ∈ L j such that p
vanishes identically on l j , and thus its directional derivative ωl j · ∇ p also vanishes on
l j ; but for x ∈ ∩ j l j we have that ∇ p(x) is a linear combination of ωl j · ∇ p(x) since
the directions ωl j span F

d .) If so, choose the colour κ(x) of x to be j and observe
that if l j ∈ L j then {x ∈ l j ∩ J : κ(x) = j and ∇ p(x) �= 0} ⊆ l j ∩ Z p which has
cardinality at most deg p ≤ Cd |J |1/d . However this argument does not deal with any
critical points of p and for this reason we are forced to adopt an alternative strategy
as below.

Finally, we remark that when d = 2 there is a simple ad hoc argument leading to
the conclusion of Theorem 1. Indeed, suppose in F

2 we have a family of blue lines
and a family of red lines (with no line having both colours). If a blue line contains at
most

√
2|J |1/2 bijoints, colour all of those bijoints blue. Colour all other bijoints red.

Suppose we have a red line with as many as k = √
2|J |1/2 + 1 red bijoints on it. Then

each of these bijoints is on a (different) blue line, which must therefore contain more
than

√
2|J |1/2 bijoints (as they are not all blue). Hence there are more than

√
2|J |1/2 + (

√
2|J |1/2 − 1) + (

√
2|J |1/2 − 2) + · · · + (

√
2|J |1/2 − (k − 1))

=√
2k|J |1/2−(k−1)k/2=√

2(
√

2|J |1/2+1)|J |1/2−√
2|J |1/2(

√
2|J |1/2+1)/2

= |J | + |J |1/2

√
2

> |J |

distinct bijoints altogether, which is a contradiction. Hence each red line also contains
at most

√
2|J |1/2 red points too.

2 Proof of Theorem 1

We let m be a positive integer and J be a set of multijoints of L. We say that a colouring
κ : J → {1, . . . , d} is m-bounded if for any j = 1, . . . , d and any l j ∈ L j we have

|{x ∈ l j : κ(x) = j}| ≤ m.
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Otherwise the colouring will be called m-unbounded. So in an m-unbounded colouring
there is some line containing (m + 1) members of J with the same colour as the line.
Theorem 1 can be restated as:

Theorem 2 Let L be a generic family of collections of lines in F
d as above and let

J be a set of multijoints of L. Then there exists a constant Cd which depends only on
the dimension d and not on L or J and an integer m with m ≤ Cd |J |1/d such that J
is colourable with an m-bounded colouring.

Proof Fix a positive integer m and the set L. Let Jc be a set of multijoints of L which
is colourable with an m-bounded colouring and let x0 be a multijoint of L which does
not belong to Jc.

Our aim is to prove the following claim.

Claim 1 If m > Cd |Jc|1/d then J̃ = Jc ∪ {x0} is colourable with an m-boundeded
colouring.

This claim immediately proves the theorem: every singleton subset of J is trivially
colourable with an m-bounded colouring and the claim allows us to add points one
at a time, preserving the property of being colourable with an m-bounded colouring,
until the size of the set reaches (m/Cd)d , which by assumption will not happen before
we exhaust J .3

We now turn to the proof of the claim. To simplify notation we use J for what is
called Jc in the statement of the claim. Let us label the elements of J = {x1, . . . , xν}
and order the multijoints in J̃ according to the indices. Let K be the set of colourings
of J which are m-bounded.

We wish to define a strict partial ordering on K . To do this we construct for every
κ ∈ K a coloured rooted tree T whose vertices belong to J̃ . The tree will be rooted at
x0 (which is achromatic) and all the other vertices will be members of J and will be
assigned the colour given to them by κ . (We shall not colour the edges of the tree.)

2.1 Construction of the Tree

Let us fix a κ ∈ K and describe the construction of the tree T with an iterative process.
At the 0-th step, the tree T0 has one vertex, x0, and no edges. We will maintain an

ordering on the vertices, based primarily on the step in which a vertex gets added and
secondarily on the ordering inherited from J̃ . In accordance with that we say that x0
is the first element of the tree and give it the alternative name y1.

At the i-th step we consider Ti−1, and either construct a Ti , or else stop the procedure
and declare T := Ti−1. We consider the i-th element of the tree Ti−1, which we call
yi , and construct Ti by adding one or more children from amongst the members of J̃
not already in Ti−1 to Ti , and then connect yi to its children with edges.

If there is no i-th element in the tree Ti−1 we say that the tree is fully constructed
and we define T := Ti−1. Clearly this must happen before or when we reach step |J |.

3 As we shall see below in Sect. 2.4, our approach constructs a suitable colouring of J̃ .
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Otherwise, we proceed as follows. The children of yi will be the elements of J̃ which
are not already in the tree, and which are the reasons that we may not change the colour
of yi without the colouring becoming m-unbounded or at least in danger of becoming
so. Specifically, for each colour j different from κ(yi )

4 let L(i)
j be the subset of L j

consisting of the lines l j going through yi such that

|{x ∈ l j ∩ J : κ(x) = j}| + |{x ∈ l j ∩ Ti−1 ∩ J : κ(x) �= j}| ≥ m. (7)

(Here and later we abuse notation and use Ti−1 also to denote the vertex set of the tree
Ti−1.) If the collection L(i)

j is empty for some j �= κ(yi ) we say that the colouring is

advanceable at step i.5 Then we stop the construction, and declare T := Ti−1.
Otherwise, if the colouring is not advanceable at step i , we define for each j �= κ(yi )

the set I (i)
j which consists of all the points of J of colour j on any line from L(i)

j ,
excluding those points which are already in the tree Ti−1. We let the tree Ti be the
tree Ti−1 with the points from I (i)

j for all j �= κ(yi ) added as vertices, specifically as
children of yi . The edges of Ti are those of Ti−1 together with edges linking yi to each
of its children. Note that no child has the same colour as its parent.6

We remark that it is possible that I (i)
j may be empty for some colour j even though

L(i)
j is non-empty. This is the case if all the points of colour j in J which lie on any

line in L(i)
j are vertices of Ti−1. If all of the I (i)

j are empty we let Ti := Ti−1.
If the colouring is not advanceable at any step then eventually the tree will become

fully constructed. We call such a colouring non-advanceable.

2.2 The First Stage in the Construction

To fix ideas, let us run through the first stage of the construction. We have T0 = {y1} =
{x0} and so there is a first element of T0. For each j ∈ {1, 2, . . . , d} we have that L(1)

j
is the subset of L j consisting of the lines l j going through y1 such that

|{x ∈ l j ∩ J : κ(x) = j}| ≥ m (8)

since the second term on the left-hand side of (7) is zero. Since κ is m-bounded, (8)
means that |{x ∈ l j ∩ J : κ(x) = j}| = m. Now either L(1)

j is empty for some colour
j , or it is non-empty for all j .

4 In the case i = 1 this simply means all colours j . This understanding applies in several places below.
5 See Sect. 2.4 Claim 2(b) for the reason we use this terminology.
6 Note also that the sequence of points y1, y2, y3, . . . is dependent on the particular colouring κ we are
looking at, and two different colourings will give rise in general to two different sequences of points. We
should strictly therefore label our sequence as y1(κ), y2(κ), y3(κ), . . . in order to emphasise this point.
However we choose not to do this in order that our subsequent notation which involves expressions such
as κ(yi )—which strictly would be written κ(yi (κ)) and means the colour that the colouring κ gives to the
i’th member of the construction of the tree for the colouring κ—should not become too unwieldy.
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(1) In the first case we have that κ is advanceable at step 1, we stop the procedure
and declare T = T0. Note that in this case, if for a certain j , L(1)

j = ∅, then for
all l j ∈ L j passing through y1 we have

|{x ∈ l j ∩ J : κ(x) = j}| < m.

In this case we can simply assign the colour j to x0 and we are done. (This
observation will be important below.)

(2) Otherwise, when L(1)
j �= ∅ for all j , we have

I (1)
j = {

x ∈ J : κ(x) = j and x ∈ l j for some l j ∈ L(1)
j

}

and we note that since every line in each L(1)
j has exactly m members of J of colour

j on it, each I (1)
j has at least m members, and so T1 will be a proper extension

of T0, and in particular will have a second member ready for the construction
of T2.

The construction of the tree T depends on the colouring κ; when we wish to emphasise
this we shall use the notation T (κ) and likewise I (i)

j (κ) to highlight this dependence.

2.3 A Strict Partial Ordering

Now we turn to the definition of the strict partial ordering on K . Take κ1, κ2 ∈ K and
construct the trees T (κ1) and T (κ2). We say that κ1 is more advanced than κ2 at level
i0 if

(i) I (i)
j (κ1) = I (i)

j (κ2) for all j �= κ1(yi )
7 and for all i < i0;

(ii) I (i0)
j (κ1) ⊆ I (i0)

j (κ2) for all j �= κ1(yi0);
(iii) at least one of the inclusions in item (ii) is strict.

In other words, κ1 is more advanced than κ2 at level i0 if the coloured trees Ti0−1(κ1)

and Ti0−1(κ2) are identical, and Ti0(κ1) is a proper coloured subtree of Ti0(κ2).8 This
means in particular that yi (κ1) = yi (κ2) for all i ≤ i0.

We say that κ1 is more advanced than κ2 if there is a level i0 such that κ1 is more
advanced than κ2 at level i0. Note that there can be at most one such level because of
the requirement of a strict inclusion at level i0. It is clear that the notion of being more
advanced is a strict partial ordering on K .

7 Once again we emphasise that κ1(yi ) means κ1(yi (κ1)).
8 Note that this expresses the idea that the construction of the tree for κ1 as in the previous subsection is
closer to termination than that for κ2; hence the terminology “more advanced”.
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2.4 A Trichotomy

Now, for a general colouring κ ∈ K there are three possibilities. It may be advanceable
at step 1, it may be advanceable at some step i > 1 or it may be non-advanceable. We
will prove the following claim.

Claim 2

(a) If κ is advanceable at step 1 then we can extend κ to an m-boundeded colouring
of J̃ .

(b) If κ is advanceable at some step i > 1 then there is a colouring κ̃ ∈ K which is
more advanced than κ .

(c) If κ is non-advanceable then |T (κ) ∩ J | ≥ C−d
d md.

We will establish Claim 2 below, but for now we note that Claim 1 follows imme-
diately from it. Indeed, the hypothesis of Claim 1 is that m > Cd |J |1/d , so

|T (κ) ∩ J | ≤ |J | < C−d
d md ,

meaning that under the hypothesis of Claim 1 the third alternative cannot hold for any
κ ∈ K . So every κ ∈ K must be advanceable at some step. If κ is advanceable at step
1, part (a) of Claim 2 gives us what we want; if not, κ will be advanceable at some
step i > 1 and there will be a κ̃ ∈ K which is more advanced than κ . Once again, the
third alternative cannot hold for κ̃ , if the first alternative holds we are happy, and if the
second alternative holds we obtain a ˜̃κ which is more advanced than κ̃ . We iterate this
process. Since K is finite, a maximally advanced element of K must exist, meaning
that at some point of the iteration the second alternative cannot hold, leaving us with
only the first. In summary, if m > Cd |J |1/d , for every κ ∈ K there is some κ̃ ∈ K
which is more advanced than κ̃ and which is advanceable at step 1. Hence there exists
an m-bounded colouring of J̃ as required.

This procedure gives an algorithm for actually constructing an m-bounded colour-
ing, see Algorithm 1.

Algorithm 1 Construct an m-bounded colouring of a set J of multijoints

(0) We require m > Cd |J |1/d .
(1) Let Jc be the empty set and κ be a colouring of Jc.
(2) For each point x0 of J do the following:

(a) While κ is advanceable at some step i > 1 w.r.t. J̃ = Jc∪{x0} do the following:
(i) Let κ̃ be a colouring of Jc which is more advanced than κ , constructed as

in the proof of Claim 2(b).
(ii) Update κ to be κ̃ .

(b) Now κ is advanceable at step 1.
(c) Extend κ to J̃ by letting κ(x0) be some colour j for which L(1)

j is empty.

(d) Update Jc to be J̃ .
(3) Now κ is an m-bounded colouring of J .
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Note that we have already established case (a) of Claim 2 in the discussion of case
(1) in Sect. 2.2. In the remainder of the proof we will verify the remaining two cases
of Claim 2.

2.5 Establishing Claim 2(b)

For the second case of Claim 2, let us assume that κ is advanceable at step i0 > 1.
That means that there is a colour j0 �= κ(yi0) such that for all lines l j0 ∈ L j0 such that
yi0 ∈ l j0 we have

|{x ∈ l j0 ∩ J : κ(x) = j0}| + |{x ∈ l j0 ∩ Ti0−1 ∩ J : κ(x) �= j0}| < m. (9)

We let j1 = κ(yi0). Let us define a new colouring κ̃ which is identical to κ except
that κ̃(yi0) = j0. What we shall show is that there is some i1 < i0 such that κ̃ is more
advanced than κ at level i1.

We first need to consider the effect of changing the colour of yi0 on the construction
of the tree T (κ̃), and in particular, we need to bear in mind the possibility that yi0 might
occur earlier in the construction of T (κ̃) than of T (κ). As a rough guide, note that lines
of colours other than the old and new colours of yi0 will play exactly the same role in
both constructions, as will lines not containing yi0 . We will need to examine vertices
of the tree T (κ) of colour either the old or new colour of yi0 for possible changes in
the construction.

Specifically, we wish to verify that κ̃ is m-bounded and that κ̃ is more advanced
than κ . The m-bounded conditions for κ̃ follow immediately from the corresponding
conditions for κ except for lines of colour j0 which go through yi0 . But for those lines
we just saw that

|{x ∈ l j0 ∩ J : κ(x) = j0}| < m.

and so

|{x ∈ l j0 ∩ J : κ̃(x) = j0}| = |{x ∈ l j0 ∩ J : κ(x) = j0}| + 1 ≤ m.

Thus κ̃ belongs to K and it is meaningful to ask whether κ̃ is more advanced than κ .
Since yi0 ∈ T (κ) we can find an index i1 < i0 such that yi0 is a vertex of Ti1(κ) but
not of Ti1−1(κ). That means that either i1 = 1 or there exists a colour j2 �= j1 such
that κ(yi1) = j2 and a line l j1 ∈ L j1 such that yi0 , yi1 ∈ l j1 and

|{x ∈ l j1 ∩ J : κ(x) = j1}| + |{x ∈ l j1 ∩ Ti1−1 ∩ J : κ(x) �= j1}| ≥ m. (10)

We want to show that κ̃ is more advanced than κ at level i1. First let us verify condition
(i). If i0 = 1 then condition (i) is vacuous. Otherwise it is clear that there are two types
of steps we have to consider, and for other steps before i1 condition (i) is immediate.
The types of steps we have to consider correspond to vertices of the tree T (κ) of colour
equal to the new colour of yi0 and of colour equal to the old colour of yi0 , and more
precisely are:
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• steps i2 such that i2 < i1 and κ(yi2) �= j0 but there is a line l j0 ∈ L j0 such that
yi2 , yi0 ∈ l j0 ; and

• steps i3 such that i3 < i1 and κ(yi3) �= j1 but there is a line l̃ j1 ∈ L j1 such that
yi3 , yi0 ∈ l̃ j1 .

For the former case we note that yi0 �∈ Ti2(κ) since this vertex set is a subset of
Ti1−1(κ) which by assumption yi0 does not belong to. Therefore we see that as i0 > i2

|{x ∈ l j0 ∩ Ti0−1 ∩ J : κ(x) �= j0}| ≥ |{x ∈ l j0 ∩ Ti2−1 ∩ J : κ(x) �= j0}| + 1

since yi0 is a member of the former set but not the latter. So (9) shows that

|{x ∈ l j0 ∩ J : κ(x) = j0}| + |{x ∈ l j0 ∩ Ti2−1 ∩ J : κ(x) �= j0}| < m − 1.

Now note that

|{x ∈ l j0 ∩ J : κ̃(x) = j0}| = |{x ∈ l j0 ∩ J : κ(x) = j0}| + 1

and

|{x ∈ l j0 ∩ Ti2−1 ∩ J : κ̃(x) �= j0}| = |{x ∈ l j0 ∩ Ti2−1 ∩ J : κ(x) �= j0}|,

where the second equality follows since κ̃ and κ are identical on Ti2−1. So we obtain

|{x ∈ l j0 ∩ J : κ̃(x) = j0}| + |{x ∈ l j0 ∩ Ti2−1 ∩ J : κ̃(x) �= j0}| < m

and this shows that l j0 �∈ L(i2)
j0

(κ̃). Moreover, l j0 �∈ L(i2)
j0

(κ) since if it were in this
set then we would have yi0 ∈ Ti2(κ) which is not possible as we saw above. So yi0

is not added to the vertices of T (κ̃) at step i2, and we deduce that the iteration in the
definition of the trees proceeds identically at this step for κ and κ̃ . That is, the coloured
trees Ti2(κ̃) and Ti2(κ) are identical.

For the latter case we note that yi0 �∈ Ti3(κ) since this vertex set is a subset of
Ti1−1(κ) which by assumption yi0 does not belong to. That means that

|{x ∈ l̃ j1 ∩ J : κ(x) = j1}| + |{x ∈ l̃ j1 ∩ Ti3−1 ∩ J : κ(x) �= j1}| < m.

Now note that

|{x ∈ l̃ j1 ∩ J : κ̃(x) = j1}| = |{x ∈ l̃ j1 ∩ J : κ(x) = j1}| − 1

and

|{x ∈ l̃ j1 ∩ Ti3−1 ∩ J : κ̃(x) �= j1}| = |{x ∈ l̃ j1 ∩ Ti3−1 ∩ J : κ(x) �= j1}|,

where the second equality follows since κ̃ and κ are identical on Ti3−1. Therefore

|{x ∈ l̃ j1 ∩ J : κ̃(x) = j1}| + |{x ∈ l̃ j1 ∩ Ti3−1 ∩ J : κ̃(x) �= j1}| < m − 1,
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and this shows that l̃ j1 �∈ L(i3)
j1

(κ̃). Moreover, l̃ j1 �∈ L(i3)
j1

(κ) since if it were in this
set then we would have yi1 ∈ Ti3(κ) which is not possible as we saw above. So yi0

is not added to the vertices of T (κ̃) at step i3, and we deduce that the iteration in the
definition of the trees proceeds identically at this step for κ and κ̃ . That is, the coloured
trees Ti3(κ̃) and Ti3(κ) are identical.

Hence we conclude that the coloured trees Ti1−1(κ̃) and Ti1−1(κ) are identical.

Now we verify conditions (ii) and (iii). We note that the only possible difference
between the sets L(i1)

j (κ) and L(i1)
j (κ̃) for some colour j is that a line containing both

yi0 and yi1 could be in one of these sets and not the other. We already know that the
line joining these points is of colour j1 so for other colours we have that L(i1)

j (κ) and

L(i1)
j (κ̃) are identical and so I (i1)

j (κ) and I (i1)
j (κ̃) are identical too. For colour j1 we

have that κ(yi0) = j1 �= κ̃(yi0). This shows that yi0 is an element of I (i1)
j1

(κ) but not of

I (i1)
j1

(κ̃). Hence we conclude that the coloured tree Ti1(κ̃) is a proper coloured subtree
of Ti1(κ) and conditions (ii) and (iii) are verified.

This establishes the second case of Claim 2.

2.6 Establishing Claim 2(c)

For the last case of Claim 2, let us recall the statement of Quilodrán’s lemma, which
in [10] is proved for the case F = R. For the general case, see [2,5] or [11]. See also
[9].

Lemma 1 Let L be a collection of lines in F
d and let J be a subset of the set of joints

of L. Suppose that J has the property that for every line l ∈ L the cardinality of l ∩ J
is either 0 or at least m. Then |J | ≥ Cdmd.

Let us then assume that κ is non-advanceable. We let J̄ be the set of points in J
which are vertices of the tree T (κ). For a colour j we let L̄ j be the union of the sets

L(i)
j for those indices i such that κ(yi ) �= j . Then we let L̄ = L̄1 ∪ · · · ∪ L̄d .

We need to verify that the hypotheses of the lemma are satisfied for J̄ and L̄ . First we
note that the elements of J̄ are in fact joints of L̄ . To see this, take yi ∈ J̄ with i > 1
and assume that κ(yi ) = j . Then there is an ı̃ < i and a line l j ∈ L(ı̃)

j such that yi ∈ l j

and κ(yı̃ ) �= j (since children always have a different colour from their parents). So
yi ∈ L̄ j . Furthermore, for all colours j̃ �= j we have by non-advanceability that the

set L(i)
j̃

is non-empty and the lines in these sets all go through yi . So yi ∈ L̄ j̃ . Thus

for each j∗ ∈ {1, . . . , d}, we have yi ∈ L̄ j∗ ⊆ L j∗ . Since by hypothesis the collection
L is generic, we conclude that yi is a joint of L̄ .
Now consider a line in L̄ , say l j ∈ L(i)

j . Then by definition of L(i)
j we have

|{x ∈ l j ∩ J : κ(x) = j}| + |{x ∈ l j ∩ Ti−1 ∩ J : κ(x) �= j}| ≥ m.

Note that all the points which are elements of the first of these sets will be vertices
of Ti . Therefore the two sets occurring in this expression are subsets of l j ∩ J̄ which
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are disjoint. Hence we have |l j ∩ J̄ | ≥ m. This shows that all the hypotheses of the
lemma are satisfied and so we deduce that | J̄ | ≥ C−d

d md .

Remark 5 The reader will observe that we use the hypothesis of genericity only in
establishing Claim 2(c). We conjecture that the main result holds without this hypoth-
esis.

Remark 6 We do not claim any particular efficiency for Algorithm 1. We simply wish
to point out that our methods are constructive rather than existential.

Remark 7 It is natural to ask whether the method we have presented might be pushed
in order to obtain the full multijoints bound (2). As noted above, the main difficulty is to
replace the arithmetic mean bound

∑
j S j (x) ≥ Cd for all x ∈ J by the corresponding

geometric mean bound
∏

j S j (x)1/d ≥ Cd . In fact it would suffice to obtain weighted
arithmetic bounds

∑
j β j S j (x) ≥ Cd for all x ∈ J for suitably chosen parameters β j .

Our methods, in conjunction with a suitable multiparameter version of Quilodrán’s
lemma, would seem to be applicable to this problem. We plan to return to this matter
at a later date.
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