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Abstract We investigate the homotopy type of the Alexander dual of a simplicial
complex. It is known that in general the homotopy type of K does not determine the
homotopy type of its dual K ∗. We construct for each finitely presented group G, a
simply connected simplicial complex K such that π1(K ∗) = G and study sufficient
conditions on K for K ∗ to have the homotopy type of a sphere. We extend the simpli-
cial Alexander duality to the more general context of reduced lattices and relate this
construction with Bier spheres using deleted joins of lattices. Finally we introduce an
alternative dual, in the context of reduced lattices, with the same homotopy type as
the Alexander dual but smaller and simpler to compute.
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1 Introduction

Let A be a compact and locally contractible proper subspace of Sn . The classical
Alexander duality theorem asserts that the reduced homology groups Hi (Sn − A)

are isomorphic to the reduced cohomology groups Hn−i−1(A) (see for example [9,
Thm.3.44]). The combinatorial (or simplicial) Alexander duality is a special case of
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the classical duality: if K is a finite simplicial complex and K ∗ is the Alexander dual
with respect to a ground set V ⊇ K 0, then for any i

Hi (K ) ∼= Hn−i−3(K ∗).

Here K 0 denotes the set of vertices (i.e. 0-simplices) of K and n is the size of V .
A nice and simple proof of the combinatorial Alexander duality can be found in [5].
An alternative proof of this combinatorial duality can be found in Barr’s article [3].

In these notes we relate the homotopy type of K with that of K ∗. It is known that,
even though the homology of K determines the homology of K ∗ (and vice versa), the
homotopy type of K does not determine the homotopy type of K ∗ (see for example
[8]). We show that for any finitely presented group G, one can find a simply connected
complex K such that its Alexander dual, with respect to some ground set V , has
fundamental group isomorphic to G. In the same direction, we exhibit an example of
a complex with the homotopy type of a sphere whose dual is not homotopy equivalent
to a sphere. If K simplicially collapses to the boundary of a simplex, it can be shown
that K ∗ is homotopy equivalent to a sphere. We exhibit a proof of this result using the
nerve of the dual. We also use the nerve to find an easy-to-check sufficient condition
for a complex to simplicially collapse to the boundary of a simplex.

In the last section of these notes we extend the duality to the context of reduced
lattices. A reduced lattice is a finite poset with the property that any subset which is
bounded below has an infimum. Any finite simplicial complex can be seen as a reduced
lattice by means of its face poset. We define the Alexander dual for reduced lattices
and show that the duality theorem remains valid in this context. When the poset is the
face poset of a simplicial complex, the construction coincides with the simplicial one.
We also extend the notion of deleted join of simplicial complexes to the context of
reduced lattices. Following Bier’s construction of spheres [4,7,11], we show that the
deleted join X ∗D X∗ of any reduced lattice X with its Alexander dual X∗ produces
a Bier sphere (by taking the atom crosscut complex of X ∗D X∗) and a polyhedron
homotopy equivalent to a sphere (by taking the order complex of X ∗D X∗).

At the end of these notes we propose an alternative notion of dual d(X), for any
reduced lattice X , which also satisfies the Alexander duality. In the same way that the
nerve of a simplicial complex is in general smaller than the original complex, the dual
d(X) is a smaller homotopy model of X∗ and it is simpler to compute.

2 The Homotopy Type of the Alexander Dual

Let K be finite simplicial complex and let V be a set which contains the set K 0 of
0-simplices of K . The Alexander dual of K (with respect to the fixed set V ) is the
simplicial complex

K ∗ = {σ ⊂ V, σ c /∈ K }.

Here σ c = V \ σ , the complement of σ in V . It is clear that K ∗∗ = K . Note that the
set V is implicit in the definition of the dual.
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The simplicial Alexander dual K ∗ allows us to investigate the homology of K but
in general the homotopy type of K ∗ does not determine the homotopy type of K .
Moreover, the fundamental group of K ∗ does not provide any information about the
fundamental group of K . In fact, one can prove the following.

Proposition 2.1 For any given finitely presented group G, there exists a connected
compact simplicial complex K such that π1(K ) = G and such that its Alexander dual
K ∗ with respect to any V ⊇ K 0 is simply connected.

Proof Since G is finitely presented, there exists a connected 2-dimensional finite
simplicial complex K such that π1(K ) = G. We can suppose without loss of generality
that K has more than six vertices. The dual of K , with respect to any V ⊇ K 0 contains
the whole 2-skeleton of the simplex spanned by V , since the complement of any subset
of three elements of V is not a simplex in K , by a cardinality argument. It follows that
K ∗ is simply connected. ��
Corollary 2.2 For any finitely presented group G there is a simply connected complex
whose dual, with respect to some V , has fundamental group isomorphic to G.

In the same direction, the following example shows two homotopy equivalent sim-
plicial complexes K , L such that K 0 = L0 = V and such that their duals K ∗, L∗
(with respect to V ) are not homotopy equivalent.

Example 2.3 Let M be a triangulation of the Poincaré homology 3-sphere and let S be
the boundary of a 4-simplex whose vertices are contained in the set V = M0. Similarly
as in the proof of Proposition 2.1, since any triangulation M of the homology 3-sphere
has more than 7 vertices and M and S are 3-dimensional, their duals K = M∗ and
L = S∗ (with respect to V ) are simply connected. Since K and L have the homology
of a sphere Sr , it follows that they are in fact homotopy equivalent. Moreover, K 0 =
L0 = V and their duals are respectively M and S, which are not homotopy equivalent.

In particular, the last example shows that the dual of a complex which is homotopy
equivalent to a sphere need not be homotopy equivalent to a sphere. The next lemma
shows that, when we restrict ourselves to simplicial collapses, the homotopy type of
the dual is preserved. We refer the reader to [6] for the basic notions on simplicial
collapses and expansions and simple homotopy types. As usual, we will denote an
elementary simplicial collapse by K↘e L and, in general, K ↘ L will denote a
simplicial collapse.

Lemma 2.4 (cf. Dong [8]) Let L be a subcomplex of K and let V be a set containing
K 0. Then K↘e L if and only if K ∗↗e L∗. Consequently, if K ↘ L, then K ∗ ↗ L∗.

Proof Note that if L = K\{τ, σ } with τ a free face of σ , then K ∗ = L∗\{σ c, τ c}
with σ c a free face of τ c. ��

Recall that the nerve N (K ) of a simplicial complex K is the complex whose vertices
are the maximal simplices (= facets) of K and the simplices are the subsets of facets
with non-empty intersection. It is well known that N (K ) is homotopy equivalent to K .
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Lemma 2.5 Let τ̇ be the boundary of a simplex and let V be a set such that τ 0 � V .
Then (τ̇ )∗ is homotopy equivalent to the sphere Sn−1, where n = #V − #τ 0.

Proof If n = 1, V = τ 0 ∪ {v} and (τ̇ )∗ is the disjoint union of the simplex τ and the
vertex v. Then (τ̇ )∗ is homotopy equivalent to S0.

In general, if V = τ 0 ∪ {v1, . . . , vn}, (τ̇ )∗ has n + 1 maximal simplices, namely
the simplices ηi with vertex sets τ 0 ∪{v1, . . . , v̂i , . . . , vn}, for i = 1, . . . , n, and ηn+1
whose vertex set is {v1, . . . , vn}. The intersection of all these simplices is empty but
any other intersection is non-empty. Then the nerve of (τ̇ )∗ is the boundary of the
n-simplex and therefore (τ̇ )∗ is homotopy equivalent to Sn−1. ��

Corollary 2.6 If K collapses to the boundary of a simplex, then K ∗ is homotopy
equivalent to a sphere.

We can use the nerve of the complex to find an easy-to-check sufficient condition
for a complex to collapse to the boundary of a simplex. Note that in many cases, the
nerve of a complex K is much smaller than K . Moreover, in [2] it is proved that any
complex K strong collapses to the square-nerve N 2(K ) = N (N (K )). In particular,
K ↘ N 2(K ). The strong collapses are easier to handle than the usual collapses. The
concrete definition is the following.

Definition 2.7 Let K be a complex and let v ∈ K be a vertex. We denote by K � v

the full subcomplex of K spanned by the vertices different from v (the deletion of
the vertex v). We say that there is an elementary strong collapse from K to K � v

if the link of the vertex lk(v, K ) is a simplicial cone (i.e. there is some vertex v′
which is contained in every maximal simplex of lk(v, K )). In this case we say that
v is dominated (by v′) and we denote K ↘↘e K � v. There is a strong collapse from a
complex K to a subcomplex L if there exists a sequence of elementary strong collapses
that starts in K and ends in L . In this case we write K ↘↘L .

It is easy to see that K ↘↘L implies K ↘ L . We refer the reader to [2] for a
comprehensive exposition on strong collapsibility and its relationship with simplicial
collapsibility. The following lemma shows that this kind of collapses behaves well
with respect to the nerve construction (Fig. 1).

v

w ww

Fig. 1 An elementary strong collapse
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Lemma 2.8 If K ↘↘L, then N (K ) ↘↘ N (L).

Proof We may suppose that K ↘↘e L , i.e. L = K \{v} with the vertex v dominated by
w. Consider the simplicial map f : N (L) → N (K ) defined in the vertices of N (L)

by

f (σ ) =
{

σ if σ ∈ N (K ),

vσ if σ /∈ N (K ).

It is easy to see that
⋂

σi �= ∅ if and only if
⋂

f (σi ) �= ∅. Therefore we only need
to prove that N (K ) ↘↘ f (N (L)). By [2, Lemma 3.3], it suffices to check that every
vertex γ ∈ N (K ) \ f (N (L) is dominated by a vertex of f (N (L)).

Let γ be a vertex in N (K ) \ f (N (L)). Since γ /∈ f (N (L)), then γ = vγ ′ with γ ′
not maximal in L . Therefore there exists τ ∈ L a maximal simplex with γ ′ � τ . We
will show that γ is dominated by τ in N (K ).

Let {σ0, . . . , σl} ∈ lk(γ, N (K )) (i.e.
⋂

σi ∩ γ �= ∅). We need to prove that
⋂

σi ∩
τ �= ∅. If v ∈ ⋂

σi ∩ γ , then v ∈ σi . Since w dominates v and σi is maximal in
K , we conclude that w ∈ σi and therefore w ∈ ⋂

σi ∩ τ . If v /∈ ⋂
σi ∩ γ , then⋂

σi ∩ γ ⊆ γ ′. Since γ ′ � τ , it follows that
⋂

σi ∩ τ �= ∅ ��
Note that in general the previous lemma is not true for simplicial collapses.

Corollary 2.9 Let K be a simplicial complex such that N (K ) ↘↘ σ̇ , where σ̇ is the
boundary of a simplex. Then K ↘ σ̇ , and therefore K ∗ is homotopy equivalent to a
sphere.

Proof By Lemma 2.8, N (N (K )) ↘↘ N (σ̇ ) = σ̇ and by [2, Proposition 3.4],
K ↘↘ N 2(K ). It follows that K ↘↘ σ̇ and, in particular, K ↘ σ̇ . ��

Naturality

Let K ⊆ L be a subcomplex and let V be a set containing L0. Note that, by construc-
tion, L∗ ⊆ K ∗. In [3] it is proved that the isomorphisms Hi (K ) ∼= Hn−i−3(K ∗) can
be taken to be natural with respect to inclusions. Concretely, for any pair K ⊆ L there
is a commutative diagram

Hi (K )
∼= ��

i∗
��

Hn−i−3(K ∗)

j∗
��

Hi (L)
∼= �� Hn−i−3(L∗)

where the horizontal maps are isomorphisms given by the duality and the vertical maps
are the ones induced by the inclusions.

The following example shows that even if the inclusion i : K → L is a homotopy
equivalence, the induced inclusion j : L∗ → K ∗ might not be one.
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Example 2.10 Let T be an acyclic and non contractible compact 2-complex (see
[9, Example 2.38]) and let S be a single vertex of V = T 0. Take K = T ∗ ⊂ L = S∗.
Note that the inclusion i : K → L is a homotopy equivalence since both are con-
tractible (acyclic and simply connected) but the inclusion j : S = L∗ → T = K ∗ is
not.

3 The Duality in Terms of Reduced Lattices

Definition 3.1 A finite poset X is called a reduced lattice if every lower bounded set
of X has an infimum.

Equivalently, a poset is a reduced lattice if and only if it is obtained from a finite
lattice by deleting the maximum and the minimum. Note that if X is a reduced lattice,
every upper bounded set has a supremum. For example, the face poset X (K ) of any
finite simplicial complex K is a reduced lattice.

Definition 3.2 Given a reduced lattice X , we denote by m(X) the set of its minimal
elements and by T (X) the simplicial complex whose vertex set is m(X) and whose
simplices are the subsets of m(X) which are bounded above.

Note that T (X) is in fact the atom crosscut complex of X (see [10]). A similar
construction appears also in [1, Section 9.2] under the name of L-complex. In fact, it
is easy to see that T (X) = L(Xop), the L-complex of the opposite of X .

Remark 3.3 It is clear that T (X (K )) = K for any finite simplicial complex K . More-
over, by [1, Section 9.2], for any reduced lattice X , the complex T (X) is homotopy
equivalent to the standard order complex K(X) whose simplices are the non-empty
chains of X (see also [10]).

Definition 3.4 Given a reduced lattice X and a set V such that m(X) ⊆ V , we define
its Alexander dual X∗ as the reduced lattice X (T (X)∗). Here T (X)∗ denotes the
Alexander dual of the simplicial complex T (X) with respect to the ground set V .

By Remark 3.3, the simplicial Alexander duality immediately extends to this context
as follows.

Proposition 3.5 Given a reduced lattice X and a set V such that m(X) ⊆ V , then
for any i

Hi (X) ∼= Hn−i−3(X∗),

where n = #V .

The (co)homology of a poset X is the (co)homology of its associated order complex
K(X). It is known that a finite poset is essentially a finite topological space (see
[1,2]) and therefore this result can be used to investigate the topology of finite spaces.
However we don’t adopt in this paper the finite space point of view. The topology of
the posets is formulated here in terms of the topology of their order complexes.
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a b c d e

X

a c b
*

d
X

Fig. 2 A reduced lattice and its dual

Remark 3.6 Since K = T (X (K )), this version of the duality extends the simplicial
version. Note also that in general X∗∗ �= X , unless X = X (K ) for some simplicial
complex K . In fact, X∗∗ = X (T (X)).

Example 3.7 Figure 2 shows a reduced lattice X , which is not the face poset of a
complex, and its dual X∗.

Deleted Joins of Reduced Lattices and Bier Spheres

Recall that m(X) denotes the set of minimal elements (atoms) of a reduced lattice X .
Given a set V and two reduced lattices X, Y such that m(X), m(Y ) ⊆ V , we define
the deleted join X ∗D Y as follows. Denote by X+ (resp. Y+) the poset obtained from
X (resp. from Y ) by adding a minimum 0X (resp. 0Y ). Given any x ∈ X we denote by
m(x) the set of minimal elements of X which are less than or equal to x , by convention
we set m(0X ) = m(0Y ) = ∅. We define

X ∗D Y = {
(x, y) ∈ X+ × Y+ : m(x) ∩ m(y) = ∅} − {

(0X , 0Y )
}
,

with partial order given by (x, y) ≤ (x ′, y′) in X ∗D Y if x ≤ x ′ in X+ and y ≤ y′ in
Y+.

Note that X ∗D Y is obtained from the disjoint union X
∐

Y by adding an element
x ∗ y for any pair (x, y) ∈ X × Y such that m(x) ∩ m(y) = ∅.

By construction, if K and L are subcomplexes of a simplex with vertex set V , then

X (K ∗� L) = X (K ) ∗D X (L)
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(with respect to the same vertex set V ). Here K ∗� L denotes the deleted join of the
complexes (see [11]).

Proposition 3.8 Let X and Y be reduced lattices with m(X), m(Y ) ⊆ V . Then X ∗D Y
is a reduced lattice.

Proof Let (x, y), (x ′, y′) ∈ X∗DY such that the set {(x, y), (x ′, y′)} is lower bounded.
We have to see that it has infimum (x, y) ∧ (x ′, y′). Note that if x = 0X or x ′ = 0X

then y �= 0Y and y′ �= 0Y . This implies that (x ∧ x ′, y ∧ y′) �= (0X , 0Y ). Moreover
m(x ∧ x ′) ∩ m(y ∧ y′) = ∅ since (x, y) and (x ′, y′) are in X ∗D Y . Then (x, y) ∧
(x ′, y′) = (x ∧ x ′, y ∧ y′). ��

Since X ∗D Y is a reduced lattice, we can consider its atom crosscut complex
T (X ∗D Y ). Let σ = τ ∪ ν, with τ ⊆ m(X) and ν ⊆ m(Y ). Note that

σ ∈ T (X ∗D Y ) ⇐⇒ σ is upper bounded in X ∗D Y

⇐⇒ τ ∩ ν = ∅ and τ is upper bounded in X and

ν is upper bounded in Y

⇐⇒ σ ∈ T (X) ∗� T (Y )

This proves the following

Proposition 3.9 T (X ∗D Y ) = T (X) ∗� T (Y ).

Corollary 3.10 For any reduced lattice X, T (X ∗D X∗) is a (Bier) sphere. The order
complex K(X ∗D X∗) is homotopy equivalent to a sphere.

Proof Both statements follow from the previous proposition, Remark 3.3 and the
construction of Bier spheres (see [4,7]). ��

Thus any reduced lattice X produces a sphere by taking the atom crosscut complex
T (X ∗D X∗) of the deleted join with its Alexander dual, and it produces also a complex
homotopy equivalent to a sphere by taking the order complex K(X ∗D X∗). Note that
K(X ∗D X∗) need not be a sphere, as the following example shows.

Example 3.11 Figure 3 shows a reduced lattice X with vertex set V = {1, 2, 3} whose
Alexander dual X∗ consists of a single point, and the deleted join X ∗D X∗. Note that
the order complex of the deleted join is homotopy equivalent, but not homeomorphic,
to S1.

An Alternative and Simpler Notion of Dual

Given a reduced lattice X , one can define an alternative dual d(X). The advantage of
this alternative construction is that it is in general much smaller than the Alexander
dual X∗ (even for the face posets of simplicial complexes). It is also convenient since
it can be defined and handled completely in the context of reduced lattices without
need of computing the atom crosscut complex T (X).
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XX D X* *

Fig. 3 A deleted join of a reduced lattice with its dual whose order complex is not a sphere

Definition 3.12 Given a reduced lattice X and a set V such that m(X) ⊆ V , we define
its alternative dual d(X) as the poset whose elements are the maximal subsets A ⊂ V
such that their complements V \A are not upper bounded subsets of m(X), and all
their non-empty intersections. The order is given by inclusion.

Note that d(X) is also a reduced lattice and it is not necessarily the face poset of a
simplicial complex, even if X = X (K ) for some K .

Proposition 3.13 Let X be a reduced lattice. Then T (d(X)) is homotopy equivalent
to T (X∗). In particular the alternative dual d(X) satisfies the Alexander duality

Hi (X) ∼= Hn−i−3(d(X)),

where n = #V .

Proof Consider the opposite poset d(X)op of the alternative dual of X . It is not hard
to see that its atom crosscut complex T (d(X)op) coincides with the nerve N (T (X∗))
of the atom crosscut complex of the dual X∗. Since the nerve of any complex K is
homotopy equivalent to K , then T (d(X)op) and T (X∗) are homotopy equivalent. It
follows that T (d(X)) and T (X∗) have the same homotopy type. ��

In the same way that the nerve of a simplicial complex is in general smaller than
the original complex, the alternative dual d(X) is a much smaller homotopy model of
X∗. In fact one can prove that d(X) is a strong deformation retract of X∗ when they
are viewed as finite topological spaces.

Example 3.14 The Alexander dual of a single point K = {w} with respect to a set
V of 4 points is the leftmost simplicial complex of Fig. 1 and its face posets has 13
points. The alternative dual is the opposite poset of the face poset of the nerve of K ∗
and has 7 points.
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