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Abstract This paper is about hyperbolic properties on planar graphs. First, we study
the relations among various kinds of strong isoperimetric inequalities on planar graphs
and their duals. In particular, we show that a planar graph satisfies a strong isoperimet-
ric inequality if and only if its dual has the same property, if the graph satisfies some
minor regularity conditions and we choose an appropriate notion of strong isoperi-
metric inequalities. Second, we consider planar graphs where negative combinatorial
curvatures dominate, and use the outcomes of the first part to strengthen the results of
Higuchi, Żuk, and, especially, Woess. Finally, we study the relations between Gromov
hyperbolicity and strong isoperimetric inequalities on planar graphs, and give a proof
that a planar graph satisfying a proper kind of a strong isoperimetric inequality must
be Gromov hyperbolic if face degrees of the graph are bounded. We also provide some
examples to support our results.
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1 Introduction

The main topic of this paper is strong isoperimetric inequalities on planar graphs, as
one can guess from the title. In fact, we have studied the relations of three kinds of
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strong isoperimetric inequalities on planar graphs and their dual graphs, and as an
application we have strengthened the results of [22,37,39]. We believe that some of
our works can be considered a ‘similar effort’ for showing that a planar graph satisfies
a strong isoperimetric inequality if and only of its dual has the same property, as
suggested in [37].

To describe our results precisely, let G be a connected simple planar graph embed-
ded into R

2 locally finitely such that its dual graph G∗ is also simple. See Sect. 2 for
details of the terminologies. We denote by V (G), E(G), and F(G) the vertex set, the
edge set, and the face set, respectively, of G. For each v ∈ V (G), deg(v) is the number
of edges with one end at v. Similarly for each f ∈ F(G), deg( f ) is the number of
edges surrounding f . In this paper we assume that 3 ≤ deg(v), deg( f ) < ∞ for every
v ∈ V (G) and f ∈ F(G), unless otherwise stated.

Next suppose S is a finite subgraph of G, and we consider three types of boundaries
of S. The first one is ∂S, the set of edges in E(G) such that each element of ∂S has
one end on V (S) and the other end on V (G) \ V (S). The second one is ∂vS ⊂ V (S),
each of whose element is an end vertex of some edges in ∂S. The last boundary ∂e S is
the set of edges surrounding S; i.e., e ∈ ∂e S if and only if e ∈ E(S) and e belongs to
E( f ) for some f ∈ F(G) \ F(S). Now we define three different strong isoperimetric
constants by

ı(G) := inf
S

|∂S|
Vol(S)

, j (G) := inf
S

|∂vS|
|V (S)| , κ(G) := inf

S

|∂e S|
|F(S)| ,

where | · | denotes the cardinality, Vol(S) = ∑
v∈V (S) deg(v), and S runs over all the

nonempty finite subgraphs of G.
The above constants ı(G), j (G), κ(G) characterize some properties of the edge

set, the vertex set, and the face set, respectively, of G, and are discrete analogues of
Cheeger’s constant [9]. The condition ı(G) > 0 is of particular interest in spectral
theory on graphs, since this condition is equivalent to the positivity of the smallest
eigenvalue of the negative Laplacian [14,15], implying the simple random walk on
G is transient. For more about this subject, see for instance [6,16,17,25,29,33,38]
and the references therein. The constant κ(G) is essentially dealt with in the geomet-
ric(combinatorial) group theory [18,20], and it was also investigated in [23,28]. The
constant j (G) appears in the geometric group theory as well [12,18,20], and early
versions of spectral theory on graphs [14,34]. Note that j (G) is quantitatively equiv-
alent to ı(G) if vertex degrees of G are bounded, and to κ(G) if face degrees of G are
bounded (cf. Theorem 1 below).

We will call a simple planar graph proper if every face of the graph is a topological
closed disk. Now we are ready to describe our main result.

Theorem 1 Suppose G is a proper planar graph as described above, and G∗ is its
dual graph. Then

(a) ı(G) > 0 if and only if κ(G∗) > 0, and κ(G) > 0 if and only if ı(G∗) > 0;
(b) j (G) > 0 if and only if j (G∗) > 0;
(c) if j (G) > 0, then ı(G) > 0, ı(G∗) > 0, κ(G) > 0, and κ(G∗) > 0.
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(a) the graph (b) attaching eight copies of to
a vertex of degree 8

Fig. 1 Constructing the graph G from �

Of course the main part of the above theorem is (b). We believe that the part (a)
is well known to experts, but we have decided to contain a proof of it for the sake of
completeness. Moreover, it is not long. For (c), one can easily deduce it from (a) and
(b) as explained in Sect. 4. The reason why we state our results as above, instead of
emphasizing (b) alone, is because this way could help one seeing the whole picture
easily.

In Theorem 1 we did not require any upper bound for vertex degrees or face degrees
of G, which makes the theorem useful. All the statements in Theorem 1 become trivial
if both vertex and face degrees of G are bounded, since in this case G is roughly
isometric(quasi-isometric) to its dual G∗, hence (b) follows from Theorem (7.34) of
[34]. (For rough isometries, see Sect. 6.)

In the course of proving Theorem 1(b) we obtained the following result as a byprod-
uct, which might be interesting by itself (compare it with [37, Reduction Lemma 2]).

Theorem 2 Suppose G is a proper planar graph such that |V (S)| ≤ C |∂vS| for every
polygon S ⊂ G, where C is a constant not depending on S. If either G is normal or
face degrees of G are bounded, then j (G) > 0.

We call a planar graph normal if it is proper and the intersection of every two
different faces is exactly one of the following: the empty set, a vertex, or an edge. We
chose the terminology ‘normal’ since we adopted the first two properties of normal
tilings defined in [21]. For polygons, they are basically finite unions of faces in F(G)
with simply connected interiors; for the precise definition, see Sect. 2.

One cannot omit the properness condition in Theorem 1, because without it the
statement (b) is no longer true. For example, let � be a triangulation of the plane
such that deg v ≥ 7 for every v ∈ V (�). Then it is well known that j (�) > 0 and
j (�∗) > 0. (Also see Corollary 4 below for this fact.) Furthermore, let us assume
that there exists a sequence of vertices vk ∈ V (�) such that nk := deg vk → ∞ as
k → ∞. The essential property of � is that face degrees of � are bounded since it is
a triangulation of the plane, while vertex degrees are not bounded. Now for each k,
we attach nk copies of the graph � in Fig. 1a to vk so that a degree 3 vertex of each
copy is identified with vk and each face f ∈ F(�) with V ( f ) 	 vk contains exactly
one copy of � in it (Fig. 1b). Let G denote this new graph, which is definitely not
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proper but satisfies all the other properties we require; that is, 3 ≤ deg v, deg f < ∞
for every v ∈ V (G) and f ∈ F(G), and both G and G∗ are simple.

It is not difficult to see j (G) = 0 since if we denote by Sk the union of nk copies
of � sharing the vertex vk , then we have ∂v(Sk) = {vk} and |V (Sk)| = 4nk + 1. To
see that j (G∗) > 0, first note that G∗ and �∗ are roughly isometric. Moreover, face
degrees of G and �, or vertex degrees of G∗ and �∗, are both bounded and we chose
� so that j (�∗) > 0. Thus the inequality j (G∗) > 0 follows from Theorem (7.34) of
[34].

To obtain an application of Theorem 1, let us introduce so-called combinatorial
curvatures defined on planar graphs. Suppose G is a proper planar graph as before.
For each e ∈ E(G), v ∈ V (G), and f ∈ F(G) we define edge curvature φ, vertex
curvature ψ , and face curvature χ by

φ(e) =
∑

w∈V (e)

1

deg(w)
+

∑

g:e∈E(g)

1

deg(g)
− 1,

ψ(v) = 1 − deg(v)

2
+

∑

g:v∈V (g)

1

deg(g)
, and

χ( f ) = 1 − deg( f )

2
+

∑

w∈V ( f )

1

deg(w)
.

In the above w and g stand for a vertex and a face, respectively. Remark that the
notations φ,ψ, and χ are those used in [37], but we have changed the signs. Other
than the above combinatorial curvatures for planar graphs, there is another one called
corner curvature [26,27].

Recently combinatorial curvatures have been extensively studied by various
researchers [2,3,6,11,13,22,25–27,35,37,39], but this concept was introduced more
than seven decades ago. In [30, Chap.XII], Nevanlinna introduced a characteristic
number called excess, which is essentially equal to the vertex curvature. Moreover,
there might be older literature in this line than [30], since in [30] Nevanlinna men-
tioned a work of Teichmüller [36] related to excess. In fact, excess was defined for a
special type of bipartite regular planar graphs, called Speiser graphs, which capture the
combinatorial properties of meromorphic functions defined on some simply connected
Riemann surfaces and ramified only over finitely many points in the extended complex
plane C. For more about Speiser graphs and excess, see for example [5,30,32].

For finite subsets E ⊂ E(G), let φ(E) = (1/|E |)∑e∈E φ(e) and define the upper
average of φ on G by

φ(G) = lim sup
|E(S)|→∞

φ(E(S)),

where limit superior is taken over all simply connected finite subgraphs S of G. Sim-
ilarly, for finite subsets V ⊂ V (G) and F ⊂ F(G), let ψ(V ) = (1/|V |)∑v∈V ψ(v)

and χ(F) = (1/|F |)∑ f ∈F χ( f ), and define the upper averages of ψ and χ on G,
respectively, by
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ψ(G) = lim sup
|V (S)|→∞

ψ(V (S)), χ(G) = lim sup
|F(S)|→∞

χ(F(S)),

where the limit superiors are also taken over all simply connected finite subgraphs S
of G. Our second main result is the following.

Theorem 3 Suppose G is a proper planar graph.

(a) If φ(G) < 0 or χ(G) < 0, then j (G) > 0.
(b) If ψ(G) < 0, and if either G is normal or the vertex degrees of G are bounded,

then j (G) > 0.
(c) It is possible to have ψ(G) < 0 and j (G) = κ(G) = 0.

The most surprising part in Theorem 3 might be (c), because it is very tempting to
believe that ψ(G) < 0 if and only if χ(G∗) < 0. However, (a) and (c) of Theorem 3,
when combined with Theorem 1(b), show that it cannot be true. This discrepancy
comes from the fact that the definition of χ(G∗) requires some subgraphs of G∗
whose corresponding subgraphs of G are disconnected. This will be explained in the
subsequent sections in detail. For Theorem 3(a) and the second part (the case when
vertex degrees are bounded) of Theorem 3(b), their credits should be addressed to
Woess [37]. In fact, Woess showed that ı(G) > 0 if one of the following conditions
holds: φ(G) < 0, or ψ(G) < 0, or χ(G) < 0. Note that this result is already enough
for the second part of Theorem 3(b), because ı(G) is quantitatively equivalent to j (G)
when vertex degrees of G are bounded. Also one can check that Woess’s arguments
are enough to show (a) only with some minor modifications. This will be explained
in Sect. 5.

It was observed independently in [22,39] that the condition ψ(v) < 0 actually
implies ψ(v) ≤ −ε0 for some positive constant ε0. Higuchi also showed in [22] that
one can choose ε0 = 1/1806. Thus we obtain the following immediate corollary of
Theorems 1 and 3.

Corollary 4 Suppose G is a proper planar graph. If ψ(v) < 0 for all v ∈ V (G), or
χ( f ) < 0 for all f ∈ F(G), then j (G) > 0. Consequently, in either case we have
ı(G) > 0, κ(G) > 0, ı(G∗) > 0, j (G∗) > 0, and κ(G∗) > 0.

Compare this corollary with [22, Theorem B and Corollary 2.3] and [39, Proposi-
tion 4]. Another corollary of Theorem 3 is the following.

Corollary 5 Suppose G is a graph satisfying the assumptions in (a) or (b) of
Theorem 3. Then G contains a tree T such that j (T ) > 0.

Proof This corollary is an immediate consequence of Theorem 3 above, and
Theorem 1.1 of [4]. For a given locally finite graph � and its subgraph S ⊂ �,
let ∂̃vS be the set of all vertices in V (�) \ V (S) that have a neighbor in S. Define

j̃ (�) := inf
S

|∂̃vS|
|V (S)| ,

where S runs over all the nonempty finite subgraphs of � as before. Then Benjamini
and Schramm showed in [4] that every graph G with j̃ (G) > 0 contains a tree T with
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j̃ (T ) > 0. But one can check that j (�) = j̃ (�)/(1 + j̃ (�)) for every planar graph �,
so we have the corollary. The details are left to the readers. 
�

Our last topic is about the relation between strong isoperimetric inequalities and
Gromov hyperbolicity on planar graphs. For the definition of Gromov hyperbolic
spaces, see Sect. 6.

Theorem 6 Suppose G is a planar graph whose face degrees are bounded.

(a) If κ(G) > 0, then G is hyperbolic in the sense of Gromov.
(b) The converse of (a) is not true. That is, G could be Gromov hyperbolic (and

normal), but κ(G) = 0.
(c) The right isoperimetric constant for Gromov hyperbolicity is κ(G). That is, it is

possible that G is (normal and) not Gromov hyperbolic, but ı(G) > 0.

Theorem 6(a) is widely believed and even considered trivial to some experts, but
surprisingly we could not find its proof in the literature. Of course, however, it deserves
to be written somewhere since it can save some works like [3, Corollary 5] or [39,
Corollary 1]. Also note that the condition κ(G) > 0 is equivalent to j (G) > 0 in the
above theorem, since face degrees of G are bounded.

2 Planar Graphs

Let G = (
V (G), E(G)

)
be a graph, where V (G) is the vertex set and E(G) is the

(undirected) edge set of G. Every edge e ∈ E(G) is associated with two vertices
v,w ∈ V (G), saying that e is incident to v and w, or e connects v and w. In this case
we write e = [v,w], and the vertices v and w are called the endpoints of e. Also we
say that v and w are neighbors of each other. A graph G is called simple if there is no
self-loop nor multiple edges; that is, for every edge [v,w] ∈ E(G) we have v �= w,
and for every two vertices v,w ∈ V (G) there is at most one edge connecting these
two vertices. A graph G is called connected if it is connected as a one-dimensional
simplicial complex, and planar if there is a continuous injective map h : G → R

2. The
image h(G) is called an embedded graph, but we will not distinguish G from h(G)
when the embedding is fixed, and the embedded graph will be denoted by G instead
of h(G). We say that G is embedded into R

2 locally finitely if every compact set in R
2

intersects only finite number of vertices and edges of G. From now on, G will always
be a connected simple planar graph embedded into R

2 locally finitely.
The closure of each component of R

2 \ G is called a face of G, and we denote by
F(G) the face set of G. The dual graph G∗ of G is the planar graph such that the vertex
set of G∗ is just V (G∗) = F(G), and for the edge set we have [ f1, f2] ∈ E(G∗) if
and only if f1 and f2 share an edge in G. The degree of a vertex v ∈ V (G), denoted
by deg v, is the number of neighbors of v, and the degree of a face f ∈ F(G), denoted
by deg f , is the number of edges in E(G) surrounding f . In this paper, one essential
assumption about G is that G∗ is simple, and that 3 ≤ deg v, deg f < ∞ for every
v ∈ V (G) and f ∈ F(G). Under this assumption, deg f is just the degree of f as a
vertex in G∗.
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(a) a subgraph (solid polygonal line) that is
not simply connected

(b) a face graph with simply connected in-
terior but not being a polygon

Fig. 2 A face graph S (right) and its dual part S∗ (left)

A graph S is called a subgraph of G, denoted by S ⊂ G, if V (S) ⊂ V (G) and
E(S) ⊂ E(G). A subgraph will be always assumed to be an induced subgraph; that
is, if v,w ∈ V (S) and [v,w] ∈ E(G), then [v,w] ∈ E(S). A subgraph is called
finite if |V (S)| is finite, and a finite subgraph S ⊂ G is called simply connected if it is
connected as a one-dimensional simplicial complex and G\S has only one component.
Here we remark that our definition of simply connectedness might be different from
the one in some other literature, since a subgraph S ⊂ G could be simply connected
as a subset of R

2, but not as a subgraph of G (Fig. 2a). However, this usually makes
no difference when studying strong isoperimetric inequalities, because in the proof
we can always add to S all the finite components of G \ S (cf. proofs of Lemma 8,
Theorem 2, etc.).

For S ⊂ G, we define F(S) as the subset of F(G) such that f ∈ F(S) if and only
if f ∈ F(G) and it is the closure of a component of R

2 \ S. This notation is a little bit
confusing, since F(S) in fact means the intersection of F(G) and the face set of S. By
abuse of the notation, we will treat a face f ∈ F(G) as a subgraph of G consisting of all
the edges and vertices on the topological boundary of f . Thus we have |E( f )| = deg f .
Edges are also treated as subgraphs in a similar way. A subgraph S ⊂ G is called a
face graph if it is a union of faces; i.e., V (S) = ⋃

f ∈F(S) V ( f ). A finite subgraph is
called a polygon if it is a simply connected face graph and the interior of S,

D(S) :=
( ⋃

f ∈F(S)

f

)◦
, (2.1)

is simply connected as a subset of R
2, where (·)◦ denotes the interior of the considered

set with respect to the Euclidean topology. Note that even though a face graph has
simply connected interior, the graph itself may not be simply connected (Fig. 2b).
Thus in the definition we require a polygon to be simply connected.

Now suppose S ⊂ G is a face subgraph, and define S∗ as the subgraph of G∗ such
that V (S∗) = F(S) (Fig. 2). Then it is easy to check that for a given face graph S ⊂ G,
the interior D(S) is connected if and only if S∗ is connected, and such S is a polygon
if and only if S∗ is simply connected. In particular this suggests that even though S is
connected, S∗ may not be connected. For example, suppose f1, f2 are faces of G such
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that f1 ∩ f2 is a vertex. Then the face graph S ⊂ G with F(S) = { f1, f2} is simply
connected, but S∗ is definitely disconnected. Thus if we define

χ1(G) = lim sup
|F(S)|→∞

χ(F(S)), (2.2)

where at this time the limit superior is taken over all the polygons S ⊂ G, then we
have ψ(G∗) = χ1(G) ≤ χ(G). Therefore the condition χ(G) < 0 is stronger than
the condition ψ(G∗) < 0, and this observation has delivered us to Theorem 3.

For a face subgraph of S ⊂ G, there is a bijection between ∂S∗ and ∂e S. However,
there is no set defined in S which corresponds to ∂vS∗. Thus if S is a subgraph of G,
which may or may not be a face graph, let us define the face boundary of S by

∂ f S := { f ∈ F(S) : E( f ) ∩ ∂e S �= ∅}.

That is, ∂ f S is the set of faces in F(S), each of which shares an edge with a face in
F(G) \ F(S).

We finish this section with the following lemma. Recall that a planar graph G is
called proper if every face of G is a topological closed disk, and normal if it is proper
and any two different faces of G share at most a vertex or an edge.

Lemma 7 Suppose G is a proper planar graph. Then for every finite and connected
subgraph S ⊂ G with |V (S)| ≥ 2, we have |∂vS| ≥ 2. Moreover, if G is normal and
S ⊂ G has the property |V (S)| ≥ 3, then |∂vS| ≥ 3.

Proof Suppose S ⊂ G is a finite and connected subgraph of G. Then we cannot have
∂vS = ∅ since G is connected. If |∂vS| = 1, there must be a unique face f ∈ F(G)
surrounding S; i.e., there is only one face f ∈ F(G)\F(S) such that E( f )∩E(S) �= ∅.
Then f cannot be a topological closed disk because S contains an edge, contradicting
the properness condition of G.

Now suppose G is normal, S ⊂ G, ∂vS = {v1, v2}, and |V (S)| ≥ 3. In this
case there are exactly two faces, say f1 and f2, whose union surrounds S. Then we
must have v1, v2 ∈ V ( f1) ∩ V ( f2), so the normality condition of G implies that
f1 ∩ f2 = [v1, v2]. This means that S is just an edge because both f1 and f2 are
topological closed disks, which is definitely a contradiction since |V (S)| ≥ 3. 
�

3 Proof of Theorem 1(a)

First, let us derive a useful formula which will be used frequently. Let S be a finite
simply connected subgraph of G. Then every vertex v ∈ V (S) \ ∂vS corresponds
to at least three edges in E(S) and each vertex v ∈ ∂vS corresponds to at least one
edge in E(S), while every edge in E(S) corresponds to exactly two vertices in V (S).
Therefore we have

2|E(S)| ≥ 3(|V (S)| − |∂vS|)+ |∂vS| = 3|V (S)| − 2|∂vS|.
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Thus by Euler’s formula we obtain

|E(S)| + 1 = |V (S)| + |F(S)| ≤ 2

3
· |E(S)| + 2

3
· |∂vS| + |F(S)|,

or
|E(S)| ≤ 2|∂vS| + 3|F(S)| − 3. (3.1)

Lemma 8 For a given planar graph G, the following two conditions are equivalent:

(a) for every finite S ⊂ G, there is a constant C1 such that |F(S)| ≤ C1|∂e S|;
(b) for every finite S ⊂ G, there is a constant C2 such that

∑
f ∈F(S) deg( f ) ≤

C2|∂e S|.
Furthermore, the constants Ci are quantitative to each other.

Proof We only need to show the implication (a) → (b), since the other direction is
trivial. In this case, we can assume without loss of generality that S is a polygon, since
otherwise we can add to S all the finite components of G \ S and cut from S all the
edges not surrounding a face in F(S). Note that these operations make either the set
∂e S smaller, or the set F(S) bigger, or both. If D(S) consists of several components,
we can consider them separately.

Then since S is a polygon we have |∂vS| ≤ |∂e S| and

2|E(S)| =
∑

f ∈F(S)

deg( f )+ |∂e S|. (3.2)

Now Eqs. (3.1) and (3.2) imply that

∑

f ∈F(S)

deg( f ) = 2|E(S)| − |∂e S| ≤ 4|∂vS| + 6|F(S)| − |∂e S| ≤ 3|∂e S| + 6|F(S)|,
(3.3)

and we obtain the implication (a) → (b) with C2 = 6C1 + 3. In fact one can check,
by modifying (3.1), that a better estimate C2 ≤ 6C1 + 1 holds since S is a polygon
hence every vertex in ∂vS corresponds at least two edges in E(S). This completes the
proof. 
�

Note that the condition (a) of the previous lemma is equivalent to the condition
κ(G) > 0 and, considering the duality property, one can check that (b) is equivalent to
ı(G∗) > 0. Thus Lemma 8 implies the equivalence between ı(G∗) > 0 and κ(G) > 0.
The equivalence between ı(G) > 0 and κ(G∗) > 0 comes from the duality. This
completes the proof of Theorem 1(a).

4 Partitioning a Finite Subgraph

In this section we will prove Theorem 2 and the rest of Theorem 1. Our main strat-
egy is partitioning a given finite subgraph into ‘nice’ subgraphs, and passing strong
isoperimetric inequalities of ‘nice’ subgraphs to the given one.
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In the lemma below, the notation S1 ∪ S2, where S1, S2 are subgraphs of G, means
the subgraph S ⊂ G with V (S) = V (S1) ∪ V (S2) and E(S) = E(S1) ∪ E(S2). A
priori, therefore, S1 ∪ S2 does not have to be an induced subgraph, but we will only
consider the case when it is induced. The graph S1 ∩ S2 is defined similarly.

Lemma 9 Suppose S is a finite subgraph of G. If S = S1 ∪ S2 ∪ · · · ∪ Sn, where
S1, S2, . . . , Sn are subgraphs of G such that

(a) |V (Si )| ≤ C |∂vSi | for each i = 1, 2, . . . , n,
(b) S1 ∪ S2 ∪ · · · ∪ Si is an induced subgraph for each i = 1, 2, . . . , n,
(c) |V (

(S1 ∪ S2 ∪ · · · ∪ Si−1) ∩ Si
)| = 1 for each i = 2, 3, . . . , n, and

(d) |∂vS| ≥ n/τ for some τ > 0,

then we have |V (S)| ≤ (1 + 2τ)C |∂vS|.
Proof From (b) and (c), it is easy to see that

|∂v(S1 ∪ · · · ∪ Si )| ≥ |∂v(S1 ∪ · · · ∪ Si−1)| + |∂vSi | − 2. (4.1)

Therefore,

|V (S)| = |V (S1 ∪ · · · ∪ Sn)| ≤ |V (S1)| + |V (S2)| + · · · + |V (Sn)|
≤ C(|∂vS1| + |∂vS2| + · · · + |∂vSn|)
≤ C(|∂v(S1 ∪ S2)| + |∂vS3| + · · · + |∂vSn| + 2)

≤ · · · ≤ C(|∂v(S1 ∪ · · · ∪ Sn)| + 2n − 2) ≤ (1 + 2τ)C |∂vS|,

as desired. 
�
Suppose S is a finite simply connected subgraph of G. If T ⊂ S is a polygon such

that no T ′ with T � T ′ ⊂ S is a polygon, we call T a leaf of S. If T ⊂ S is finite
tree such that E(T ) ∩ E( f ) = ∅ for every f ∈ F(S), and no T ′ with T � T ′ ⊂ S is
a tree satisfying the same property, we call such T a branch of S. If T ⊂ S is either a
leaf or a branch, we call T a part of S (see Fig. 3).

Proof of Theorem 2 (the normal case) Let G be a normal planar graph satisfying the
assumptions in Theorem 2, and suppose a finite subgraph S ⊂ G is given. To prove
Theorem 2, we may assume that S is simply connected. Otherwise we can add to S
all the finite components of G \ S and consider each component of S separately.

Choose an edge e1 ∈ E(S), and note that there exists a unique leaf or branch S1
of S such that e ∈ E(S1), depending on whether e ∈ E( f ) for some f ∈ F(S) or
not, respectively. If S1 �= S, choose e2 ∈ E(S) \ E(S1) with only one end in V (S1),
and let S2 be the part of S such that e2 ∈ E(S2). Then because S1 and S2 are maximal
polygons or trees of the simply connected subgraph S, one can see that S1 ∩ S2 is a
single vertex that is an end of e2, and S1∪S2 is an induced subgraph of S. If S1∪S2 �= S,
choose e3 ∈ E(S) \ E(S1 ∪ S2) with only one end in V (S1 ∪ S2), and repeat the same
process. This process cannot run forever, since S is a finite graph. Thus we just have
enumerated the parts S1, S2, . . . , Sn of S so that S = S1 ∪ S2 ∪ · · · ∪ Sn and they
satisfy the conditions (b) and (c) of Lemma 9.
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Fig. 3 A subgraph composed of ten parts (seven leaves and three branches) is shown on the left, and it is
divided into leaves and branches on the right. The largest part in the center of each figure should be called
a trunk, but we accidently call it a leaf

Each Si is either a branch or a leaf, i.e., a finite tree or a polygon. If Si is a leaf, the
inequality |V (Si )| ≤ C |∂vSi | holds by our assumption. If Si is a branch, then since
F(Si ) = ∅ and |V (Si )| = |E(Si )| + 1, we have |V (Si )| ≤ 2|∂vSi | by (3.1). Thus the
condition (a) of Lemma 9 is also satisfied for the sequence S1, . . . , Sn .

It remains to show that |∂vS| ≥ n/3. To see this, let k be the number of Si such that
|∂vSi | = 2 and ∂vS ∩ V (Si ) �= ∅. If k ≥ n/3, there is nothing more to prove since
such Si must be an edge by Lemma 7, hence such Si ’s are disjoint by our definition
of a branch. Now suppose that k < n/3. Then a part Si satisfying |∂vSi | = 2 and
∂vS ∩ V (Si ) = ∅ must be an edge whose both ends are connected to leaves. Thus
the number of such Si ’s cannot exceed (n − k)/2. This means that there are at least
(n−k)/2 parts with |∂vSi | ≥ 3. Since such Si makes the left hand side of (4.1) increase
at least by one, we conclude that

|∂vS| = |∂v(S1 ∪ · · · ∪ Sn)| ≥ n − k

2
≥ n

3

since k < n/3. This completes the proof. 
�

The approach used in the previous proof, that is, partitioning S into parts and using
Lemma 9, has some problems when G is not normal. Let � be the graph of Fig. 1a
given in the introduction, and for each i = 1, 2, . . . , n, let Si be a copy of�. We next
connect them back to back as in Fig. 4 and obtain a new graph S := S1 ∪ S2 ∪· · ·∪ Sn .
Also suppose S is enclosed by the union of two faces with huge face degrees. Then
even though each Si satisfies the inequality |V (Si )| ≤ 3|∂vSi |, we cannot pass this
inequality to S; i.e., we have |∂vS|/|V (S)| → 0 as n → ∞. As we saw in the previous
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S1 S2 S3 Sn

Fig. 4 A problem when partitioning into polygons

proof, however, this problem cannot occur when G is normal. The next lemma says
that it cannot happen either if j (G∗) > 0.

Lemma 10 Suppose j (G∗) > 0, and let S be a finite simply connected subgraph of
G satisfying the following two properties:

(a) every branch of S is a path; i.e., a finite union of consecutive edges without self-
intersections;

(b) P ∩ P ′ ∩ P ′′ = ∅ for every three distinct parts P, P ′, P ′′ of S.

Then there is an absolute constant C such that |V (S)| ≤ C |∂vS|.
Note that the subgraph S in Lemma 10 has the following property: for any vertex

v ∈ V (S) and every sufficiently small neighborhood U 	 v in R
2, U \ (S ∪ D(S))

has at most two components.

Proof Let {v1, v2, . . . , vm} be an enumeration of ∂vS along the boundary of S. In other
words, when walking along the topological boundary of S ∪ D(S) either clockwise or
counterclockwise, we enumerate the vertices in ∂vS in the order we encounter them,
allowing some multiple counts. However, any vertex in ∂vS will not be counted more
than twice by the assumptions (a) and (b). Consequently we have 2|∂vS| ≥ m.

Note that S is a simply connected graph with no outbound edge in E(G) \ E(S)
between vi and vi+1, where i is in mod m. Thus for each i ∈ {1, 2, . . . ,m}, there is the
face fi attached to S between vi and vi+1. To be precise, fi is the face in F(G)\ F(S)
such that E( fi ) contains all the edges in ∂e S between vi and vi+1 (Fig. 5).

Let T be the subgraph of G such that V (T ) = V (S)∪⋃m
i=1 V ( fi ). Definitely T is

a face graph with ∂ f T ⊂ { f1, f2, . . . , fm}, hence our assumption j (G∗) > 0 implies
that |V (T ∗)| ≤ C1|∂vT ∗| for C1 = j (G∗)−1, or

|F(T )| ≤ C1|∂ f T | ≤ C1 · m ≤ 2C1|∂vS|.

Thus by (3.1) we have

|V (S)| = |E(S)| − |F(S)| + 1 ≤ 2|∂vS| + 2|F(S)|
≤ 2|∂vS| + 2|F(T )| ≤ (2 + 4C1)|∂vS|,

as desired. 
�

123



Discrete Comput Geom (2014) 51:859–884 871

1

2 = 4

This section might not belong to T

f1 = f2

f5 = f7

5

3

This face does not
belong to f T

Fig. 5 A sketch of a subgraph satisfying the assumptions in Lemma 10; this graph consists of 6 polygons
and 5 edges, and dotted lines indicate the faces attached to S; the section that does not belong to T would
be some union of faces in F(G) \ F(T )

Corollary 11 Suppose G is a proper planar graph with bounded face degrees such
that |V (T )| ≤ C |∂vT | for every polygon T ⊂ G. If S is a simply connected subgraph
of G satisfying the conditions (a) and (b) in Lemma 10, then |V (S)| ≤ C1|∂vS| for
some constant C1 not depending on S.

Proof We follow the proof of Theorem 2, the normal case, and enumerate the parts
S1, S2, . . . , Sn of S so that they satisfy the conditions (a), (b), and (c) of Lemma 9.
Then as in Lemma 10, we enumerate ∂vS by v1, v2, . . . , vm , where some vertices are
counted twice, and let f1, f2, . . . , fm be the faces attached to S between vi and vi+1,
where i is in mod m.

By the definition of a part, we have ∂e S ∩ E(Si ) �= ∅ for each i = 1, 2, . . . , n, so
we must have |∂e S| ≥ n. On the other hand, face degrees of G are bounded above, say
by M , so the number of edges in E( fi ) ∩ ∂e S cannot exceed M . Thus the inequality
m M ≥ |∂e S| holds. Since m ≤ 2|∂vS|, we have |∂vS| ≥ n/(2M). The corollary
follows from Lemma 9. 
�

The problem in Fig. 4 is caused by the fact that face degrees of G are not bounded,
and we have seen so far that this phenomenon does not occur under the assumptions
of either Theorem 1 or Theorem 2. However, there is still a problem in partitioning a
subgraph into leaves and branches, since we still have to worry about the unbound-
edness of vertex degrees. For example the proof in Lemma 10 does not work for a
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Fig. 6 A sketch of a simply connected graph S (left) and the tree T obtained from S (right); on the tree
T , the symbols filled circles, open circles and multiplication signs indicate the vertices in V1, V2, and V3,
respectively

general subgraph S ⊂ G since when one walks along the topological boundary of
S ∪ D(S), there may be a vertex in ∂vS which appears too many times. So to overcome
this obstacle, one may need a different kind of partition.

Lemma 12 Suppose G is a proper planar graph and S is a finite simply connected
subgraph of G. Then there exists a partition S1 ∪ S2 ∪ · · · ∪ Sn = S which satisfies
the conditions (b), (c), and (d) of Lemma 9. Furthermore, we can make the partition
so that each Si satisfies the conditions (a) and (b) of Lemma 10.

Proof Suppose S ⊂ G is given, and let V1 := {L1, L2, . . . , Lk} be the set of all the
leaves of S. Define V i , i = 1, 2, . . . , k, such that

V i := {v ∈ ∂vLi : there exists an edge e ∈ E(S) \ E(Li ) with one end at v}.

Then by reducing each Li to a vertex, connecting it to the vertices in V i , and keeping
the rest of S unchanged, we get a new finite tree T (Fig. 6). The reason we add to
T the vertices in V i is because we do not want to change the combinatorial pattern
of S. Formally, T is the graph with V (T ) := V1 ∪ V2 ∪ V3, where V1 is as above,
V2 := V (S) \ V (L1 ∪ L2 ∪ · · · ∪ Lk), and V3 := ⋃k

i=1 V i , and we define the edge
set E(T ) so that [v,w] ∈ E(T ) if one of the following holds: (1) v,w ∈ V2 ∪ V3 and
[v,w] ∈ E(S), or (2) v ∈ V1, w ∈ V3, and w ∈ V (v), or (3) v ∈ V3, w ∈ V1, and
v ∈ V (w). Such T must be a tree since S is simply connected.

In T , let A = {v ∈ V (T ) : degT v ≥ 3}. Here degT v denotes the number of
edges in T with one end at v. Then we consider T a simplicial complex, and let
{T1, T2, . . . , Tm} be the set of the closures of each components of T \ A (Fig. 7). Note
that each Tj is isomorphic to a finite path. Moreover for i �= j , Ti ∩ Tj is either empty
or a vertex in A, hence we can enumerate {Tj } so that T1∪T2 ∪· · ·∪Tj is connected for
j = 1, 2, . . . ,m and (T1 ∪T2 ∪· · ·∪Tj−1)∩Tj is a single vertex for j = 2, 3, . . . ,m.

For each j we assign a subgraph S j ⊂ S in an obvious way, but some modification
is needed. For S1, we define it so that

V (S1) = (
V (T1) ∩ (V2 ∪ V3)

) ∪
⋃

v∈V (T1)∩V1

V (v),
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removed from the list
S10 is a vertex, so it is

S1

S3

S4

S15

S2

S6

S5

S7

S9

S12 S13

S14

S11

S8

T3

T7

T2

T8

T11

T12 T13

T4

T1

T5

T6

T9

T10

T15

T14

Fig. 7 T is partitioned so that each Tj is a path (top), and S is partitioned associated with the partition of
T (bottom)

and for j = 2, 3, . . . ,m we define S j so that

V (S j ) = (
V (Tj ) ∩ (V2 ∪ V3)

) ∪
⋃

v∈V (Tj \(T1∪···∪Tj−1))∩V1

V (v).

In other words, S j is the graph consisting of the vertices in Tj ∩ (V2 ∪ V3) and the
leaves in Tj ∩ V1, but from S j we remove the leaf in T1 ∪ · · · ∪ Tj−1, if any. But
if a leaf is removed from S j , it must correspond to a vertex v = Li ∈ V (T ) such
that {Li } = (T1 ∪ T2 ∪ · · · ∪ Tj−1) ∩ Tj . Then since Tj contains a vertex in V i ,
(S1 ∪ · · · ∪ S j−1)∩ S j must be a single vertex. Clearly (S1 ∪ · · · ∪ S j−1)∩ S j is also
a single vertex when no leaf is removed from S j .

Some of S j could be just a vertex in V3, so we eliminate all such S j ’s from the list.
Now we have just obtained a sequence of subgraphs {Sn1, Sn2 , . . . , Sns } which satisfies
the condition (c) of Lemma 9. The condition (b) of Lemma 9 easily follows from the
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construction. Moreover, since each Tni is a path, each Sni satisfies the conditions (a)
and (b) of Lemma 10.

Now it remains to verify the condition (d) of Lemma 9. Let B := {v ∈ V (T ) :
degT v = 1}. If v ∈ B, then v /∈ V3 by the definition of V i . Thus v ∈ V1 ∪ V2.
If v ∈ V2, then v is in fact a vertex in ∂vS. If v ∈ V1, it corresponds to a leaf Li

with |V i | = 1. Then since |∂vLi | ≥ 2 by Lemma 7, we can assign v to a vertex
w ∈ ∂vS \ V3. Thus there exists an injection map from B into ∂vS, so the inequality
|B| ≤ |∂vS| holds.

Now in T , we replace each Tj by an edge and get another tree T ′. Then the number
of edges in T ′ is exactly m, and every vertex in T ′ has degree either 1 or ≥ 3. Also
the number of vertices v ∈ V (T ′) with degT ′ v = 1 is exactly |B|. Therefore by a
computation similar to (3.1) we obtain

m = |E(T ′)| ≤ 2|B| ≤ 2|∂vS|.

Since s ≤ m, we conclude that the sequence {Sn1, Sn2 , . . . , Sns } also satisfies the
condition (d) of Lemma 9. Since S = Sn1 ∪ Sn2 ∪ · · · ∪ Sns , this finishes the proof. 
�

Proof of Theorems 1 and 2 Theorem 1(a) was already proved. For (b) of Theorem 1,
the implication j (G∗) > 0 → j (G) > 0 is a consequence of Lemmas 9, 10, and
12, and the converse comes from the duality. Theorem 1(c) is an easy consequence of
Theorem 1(a) and (b). In fact, for a simply connected subgraph S ⊂ G we have

Vol(S) =
∑

v∈V (S)

deg v ≤ 3|∂S| + 6|V (S)|,

which comes from the dual property of (3.3). Thus the inequality j (G) > 0 implies
ı(G) > 0, because we always have |∂vS| ≤ |∂S|. Now the other inequalities in
Theorem 1(c) follow from Theorem 1(a) and (b), and a computation similar to the
above. We leave the details to the readers.

The normal case of Theorem 2 was already proved, and the case when face degrees
of G are bounded comes from Lemmas 9, 12, and Corollary 11. This completes the
proof of Theorems 1 and 2. 
�

5 Combinatorial Curvatures and Strong Isoperimetric Inequalities

In this section we deal with combinatorial curvatures and prove Theorem 3. But as
explained in the introduction, Theorem 3(a) was essentially proved in [37]. To see it,
and to prove Theorem 3(b), suppose S is a subgraph of a proper graph G. As before,
we can assume that S is simply connected without loss of generality.

When φ(G) < 0, Woess showed the inequality |E(S)| ≤ C |∂vS|, where C is an
absolute constant, in the proof of Theorem 1 of [37]. But since |V (S)| ≤ |E(S)|+1 ≤
2|E(S)| by Euler’s formula, the conclusion j (G) > 0 follows immediately. When
χ(G) < 0, the inequality |F(S)| ≤ C |∂vS| was obtained in the proof of Theorem 2(b)
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Fig. 8 The graph S

of [37], where C is an absolute constant. Then by (3.1) and Euler’s formula we have

|V (S)| = |E(S)| − |F(S)| + 1 ≤ 2|∂vS| + 2|F(S)| − 2 ≤ (2 + 2C)|∂vS|, (5.1)

showing that j (G) > 0.
We next consider Theorem 3(b). When vertex degrees of G are bounded,

Theorem 3(b) follows from Theorem 2(a) of [37] as explained in the introduction,
but let us prove it in a different way. Since ψ(G) = χ1(G

∗), where χ1(G) is defined
in (2.2), the assumption ψ(G) < 0 implies the inequality χ1(G

∗) < 0. Then we fol-
low the proof of Theorem 2(b) of [37] and use (5.1), and confirm that there exists
an absolute constant C such that |V (S)| ≤ C |∂vS| for every polygon S ⊂ G∗.
Thus we have j (G∗) > 0 by Theorem 2 if either G∗ is normal or face degrees of
G∗ are bounded. Since G is normal if and only if G∗ is normal, and face degrees of
G∗ are bounded if and only if vertex degrees of G are bounded, Theorem 3(b) follows
from Theorem 1(b).

For Theorem 3(c), we construct a planar graph G such thatψ(G) < 0 but j (G) = 0.
Note that such graph cannot be normal.

For n ∈ Z, let Sn be the finite graph such that

V (Sn) = {
on, on+1, bn

1 , bn
2 , v

n
1 , v

n
2 , . . . , v

n
2|n|−1, v

n
2|n|

}

with edges [on+i , bn
j ], [on+i , v

n
2k−1], [on+i , v

n
2k], and [vn

2k−1, v
n
2k], where 0 ≤ i ≤ 1,

1 ≤ j ≤ 2, and 1 ≤ k ≤ |n|. Then for each n ∈ Z, Sn and Sn+1 share the vertex
on+1, so S := ⋃∞

n=−∞ Sn is a connected planar graph. Furthermore, we can embed
it into R

2 in such a way that each vn
k is enclosed by the cycle [on, bn

1 ] ∪ [bn
1 , on+1] ∪

[on+1, bn
2 ] ∪ [bn

2 , on] (see Fig. 8).
On the unbounded faces of S, we add vertices and edges so that the resulting

graph G satisfies the following properties: G is a simple proper planar graph with
3 ≤ deg v, deg f < ∞ for every v ∈ V (G) and f ∈ F(G), deg v ≥ 7 for every added
vertex v ∈ V (G)\ V (S), deg bn

j ≥ 7 for j = 1, 2 and n ∈ Z, and deg on ≥ 14|n|+14
for all n ∈ Z. In other words, we for example triangulate both of the unbounded faces

123



876 Discrete Comput Geom (2014) 51:859–884

U2

Fig. 9 The dual graph of G; the subgraph U2 corresponds to the disconnected graph U∗
2 = [

v2
1 , v

2
2
] ∪

[
v2

3 , v
2
4
]

of S so that every added vertices and bn
j ’s are of degree at least 7 and the degrees of

on are huge enough. Note that this can be done by mathematical induction.
It is easy to see that κ(G) = j (G) = 0 since |∂vSn| = |∂e Sn| = 4 but |F(Sn)| =

3|n| + 1 and |V (Sn)| = 2|n| + 4. On the other hand, we have ψ(v) ≤ −1/6 if
v ∈ V (G) \ V (S) or v = bn

j for some j = 1, 2 and n ∈ Z. Also direct computation
shows that

ψ(vn
k ) = 1 − 3

2
+ 2

3
+ 1

4
= 5

12
for all n ∈ Z and 1 ≤ k ≤ 2|n|;

ψ(on) ≤ 1 − deg on

2
+ deg on

3
≤ −7|n| + 4

3
for all n ∈ Z.

Thus the vertex curvature function ψ assumes a positive value only at vn
k , but they are

dominated by the negative vertex curvature at on . In fact, for each on there are at most
4|n| + 2 neighboring vertices vn

k and vn−1
k , so

ψ(on)+
2|n|∑

k=1

ψ(vn
k )+

2|n−1|∑

k=1

ψ(vn−1
k ) ≤ −7|n| + 4

3
+ 5(4|n| + 2)

12
= −4|n| + 3

6
.

This means that if T is a finite connected subgraph of G with |V (T )| ≥ 3, then∑
v∈V (T ) ψ(v) ≤ −|V (T )|/6. Consequently we have ψ(G) ≤ −1/6 < 0, and this

completes the proof of Theorem 3. Note that the face graph Un ⊂ G∗ with F(Un) =
V (U∗

n ) = {vn
k : 1 ≤ k ≤ 2|n|} is a connected graph which looks similar to the one in

Fig. 4, while U∗
n is a disconnected graph in G (Fig. 9).

6 Gromov Hyperbolicity and Strong Isoperimetric Inequalities

Let X be a geodesic metric space; that is, X is a metric space such that for every a, b ∈
X there is a geodesic line segment γ from a to b such that dist(a, b) = length(γ ).
Then X is called δ-hyperbolic if every geodesic triangle � ⊂ X is δ-thin; i.e., any
side of � is contained in the δ-neighborhood of the union of the other two sides. If
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X is δ-hyperbolic for some δ ≥ 0, we just say that X is hyperbolic in the sense of
Gromov, or Gromov hyperbolic. For other equivalent definitions and general theory
about Gromov hyperbolic spaces, we refer [10,18,20]. Note that every connected
graph can be realized as a geodesic metric space, where the metric is the simplicial
metric such that every edge is of length 1.

Now suppose ϕ : [α, β] ⊂ R → X is a path; i.e., a continuous function. We say
that ϕ is t-detour if there exists a geodesic segment γ from ϕ(α) to ϕ(β) and a point
z ∈ γ such that Im(ϕ) ∩ B(z, t) = ∅. Here B(z, t) denotes the open ball with center
z and radius t . The detour growth function gX : (0,∞) → [0,∞] is defined by

gX (t) := inf{length(Imϕ) : ϕ is a t-detour map}

with the convention gX (t) = ∞ when there is no rectifiable t-detour map. Then it
is known [7] that a geodesic metric space X is Gromov hyperbolic if and only if
limt→∞ gX (t)/t = ∞, which is what we will use for a proof of Theorem 6.

Suppose X1 and X2 are metric spaces. A function f : X1 → X2 is called a rough
isometry, or quasi-isometry, if there exist constants A ≥ 1, B ≥ 0, and C ≥ 0 such
that for all x, y ∈ X1 we have

1

A
dist(x, y)− B ≤ dist

(
f (x), f (y)

) ≤ A dist(x, y)+ B,

and for every w ∈ X2 there exists x ∈ X1 such that dist( f (x), w) ≤ C . The notion
of rough isometries was introduced by Kanai [24] and Gromov [19]. We say that X1
is roughly isometric to X2 if there exists a rough isometry from X1 to X2, and it is
not difficult to see that rough isometries define an equivalence relation on the space of
metric spaces. Moreover, it is well known that if X1 is roughly isometric to X2, then
X1 is Gromov hyperbolic if and only if X2 is Gromov hyperbolic (cf. [10, p. 35] or
[8, p. 6]), and if G1 and G2 are roughly isometric graphs of bounded vertex degree,
then j (G1) > 0 if and only if j (G2) > 0 [34, Theorem (7.34)]. Note that we already
used the latter fact in the introduction.

It is well known that if G is a planar graph with j (G) > 0, then the growth rate of the
volume of combinatorial balls in G is exponential. To be precise, let us fix v ∈ V (G),
and suppose Bn is the combinatorial ball of radius n and centered at v; i.e., Bn is the
subgraph of G such thatw ∈ V (Bn) if and only if the distance between v andw is less
than or equal to n. We also let B0 = {v}. Then because ∂vBn ⊂ V (Bn) \ V (Bn−1),
we deduce from the definition of j (G) that

|V (Bn)| = |V (Bn−1)| + |V (Bn) \ V (Bn−1)| ≥ |V (Bn−1)| + |∂vBn|
≥ |V (Bn−1)| + j (G)|V (Bn)| ≥ (

1 + j (G)
)|V (Bn−1)|.

Since |V (B0)| = 1, this inequality implies that

|V (Bn)| ≥ (
1 + j (G)

)n (6.1)

for all n ∈ N.
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Fig. 10 A Sperner labeled triangulation of a triangle

One more ingredient we need for the proof of Theorem 6 is Sperner’s Lemma
applied to the two-dimensional case. Let T be a triangulation of a topological triangle
with vertices A1, A2, and A3. We also assume that a function h : V (T ) → {1, 2, 3}
satisfies the following properties: h(Ai ) = i for i = 1, 2, 3, and if v ∈ V (T ) lies on
the side Ai A j , i �= j , then h(v) ∈ {i, j}. Such h is called a Sperner Labeling of T ,
and Sperner’s Lemma [8, p. 124] says that there exists a face (triangle) f ∈ F(T )
such that h(V ( f )) = {1, 2, 3}; i.e., if v,w ∈ V ( f ) and v �= w, then h(v) �= h(w)
(see Fig. 10).

Now we are ready to prove Theorem 6. For (a), the following proof is suggested
by Mario Bonk. Suppose G is a planar graph of bounded face degree such that
κ(G) > 0, or equivalently, j (G) > 0. We assume without loss of generality
that G is a triangulation graph of the plane, since otherwise we can add bounded
number of vertices and edges on every face of G to obtain a triangulation graph G ′.
This is possible because face degrees of G are bounded. Then obviously G ′ is roughly
isometric to G, so we have G is Gromov hyperbolic if and only if G ′ is Gromov
hyperbolic. Moreover, in this case (G ′)∗ is also roughly isometric to G∗, so Theo-
rem 1(b) and Theorem (7.34) of [34] imply that j (G ′) > 0 since vertex degrees of
(G ′)∗ and G∗ are bounded. (Alternatively, it is not difficult to show that κ(G ′) > 0
directly.)

Let ϕ be a t-detour map from a ∈ G to b ∈ G. By the definition there exist a
geodesic segment γ from a to b, and a point z ∈ γ such that ϕ ∩ B(z, t) = ∅, where
we denoted Im(ϕ) by ϕ for simplicity. Furthermore by shrinking γ and ϕ if necessary,
we can assume that γ meets ϕ only at a and b. Thus we can treat γ ∪ϕ as a topological
triangle with vertices a, b, and z (see Fig. 11).
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Here is the triangle with
the vertices 1, 2, and 3.

z ba

z ba

t
4

0
b

t

a

A1

A2 A3

Fig. 11 A detour map ϕ

Let � be the subgraph of G whose vertices are those on γ , ϕ, and the bounded
component of G \ (γ ∪ ϕ). Then since G is a triangulation graph, � becomes a
triangulation of the 2-dimensional simplex � with ∂� = γ∪ϕ. Let γ0 = γ∩B(z, t/4),
γa be the component of γ \ γ0 containing a, and γb be the component of γ \ γ0
containing b.
Define

A1 := {v ∈ V (�) : dist(v, γ0) ≤ t/4 and dist(v, γ0) ≤ dist(v, γa ∪ γb)},
A2 := {v ∈ V (�) \ A1 : dist(v, γa) < dist(v, γb)},
A3 := {v ∈ V (�) \ A1 : dist(v, γb) ≤ dist(v, γa)}.
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It is clear that ϕ ∩ A1 = ∅. Otherwise there exists v ∈ ϕ and w ∈ γ0 such that
dist(v,w) ≤ t/4, so we must have dist(v, z) ≤ dist(v,w)+ dist(w, z) ≤ t/2, contra-
dicting the assumption ϕ ∩ B(z, t) = ∅. Moreover if v ∈ γ lies between a and z, that
is, if v lies on the side opposite the vertex b of γ ∪ ϕ, then v is definitely in either A1
or A2. Similarly if v ∈ γ lies between b and z, then v belongs to A1 ∪ A3. Thus if we
label every vertex v ∈ Ai by i ∈ {1, 2, 3}, it becomes a Sperner labeling. Hence there
exists a triangle in � with vertices vi ∈ Ai , i = 1, 2, 3, by Sperner’s lemma.

Let B := B(v1, t/8) and we claim that B ∩ (ϕ ∪ γ ) = ∅ for t ≥ 12. First, note
that B ∩ ϕ = ∅ since otherwise there exists v ∈ ϕ such that dist(v, z) ≤ 5t/8. If
dist(v1, γ ) ≤ t/8, then because v1 ∈ A1 we have dist(v1, γ0) ≤ t/8. But because
v2 ∈ A2 and

dist(v2, γ0) ≤ 1 + dist(v1, γ0) ≤ 1 + t/8 ≤ t/4

for t ≥ 8, there exists x ∈ γa such that

dist(v2, x) = dist(v2, γa) < dist(v2, γ0) ≤ 1 + t/8.

Similarly there exists y ∈ γb such that dist(v3, y) ≤ 1 + t/8, so we have

dist(x, y) ≤ dist(x, v2)+ dist(v2, v3)+ dist(v3, y) < 3 + t/4. (6.2)

On the other hand, γ is a geodesic segment and B(z, t/4) separates γa and γb. Then
because x ∈ γa and y ∈ γb, we must have dist(x, y) ≥ t/2. This contradicts (6.2) for
t ≥ 12, so the claim follows.

Note that

|∂e�| = length(ϕ)+ length(γ ) ≤ 2 · length(ϕ).

Moreover because v1 ∈ V (�) and B ∩ (ϕ ∪ γ ) = ∅ for t ≥ 12, we must have B ⊂ �

in this case. Thus if t ≥ 12 and 8n ≤ t < 8(n + 1) for some n ∈ N, the inequality
(6.1) implies

|V (�)| ≥ |V (B)| ≥ (
1 + j (G)

)n ≥ (
1 + j (G)

)t/8−1
.

Now because |∂e�| ≥ |∂v�|, we have

length(ϕ) ≥ 1

2
|∂e�| ≥ 1

2
|∂v�| ≥ 1

2
j (G)|V (�)| ≥ 1

2
j (G)

(
1 + j (G)

)t/8−1
.

This proves that gG(t)/t → ∞ as t → ∞, where gG is the detour growth function
introduced at the beginning of this section. We conclude that G is Gromov hyperbolic
by Ref. [7].

We remark here that the above argument can be considered an alternative proof of (a
part of) Theorem 2.1 in [10, Chap. 6], where it is proved that every reasonable complete
simply connected Riemannian manifold satisfying a linear isoperimetric inequality
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a3

b3

c3

d3

f3

g3

e3

Fig. 12 Replacing e3 with triple edges and drawing a diagonal line

must be Gromov hyperbolic. In fact, one only needs to modify some terminologies in
the above proof so that they are adequate to the continuous case, and use the continuous
version of Sperner’s lemma [1, p. 378] instead of the combinatorial version. Since it
is irrelevant to our subject, we omit the details here.

To prove Theorem 6(b), let us construct a normal planar graph G1 which is Gromov
hyperbolic but j (G1) = κ(G1) = 0 . Let �1 be a triangulation of the plane such that
deg v ≥ 7 for all v ∈ V (�1). Then obviously �1 is Gromov hyperbolic. Choose a
sequence of edges en = [an, bn] ∈ E(�1) which are far away from each other, for
instance dist(an, am) ≥ 10 for n �= m, and let fn and gn be the triangular faces of �1
sharing en . Also let cn and dn be the vertices of fn and gn , respectively, which are not
lying on en .

We obtain a new graph from �1 by replacing en by n-multiple edges and drawing a
line from cn to dn (Fig. 12). We do this operation for all n ∈ N, and let G1 denote the
resulting graph. G1 is obviously normal. Moreover, G1 is Gromov hyperbolic because
it is roughly isometric to �1. It is also easy to see that j (G1) = κ(G1) = 0, since
if we let Sn be the subgraph of G1 such that V (Sn) consists of an, bn, cn, dn , and all
the added vertices in fn ∪ gn , then we have |F(Sn)| = 2n + 2 and |∂e Sn| = 4. This
completes the proof of Theorem 6(b).

The graph G constructed in Sect. 5 also satisfies the properties in Theorem 6(b)
except being normal. To explain this, first note that we could construct G so that every
face is of degree at most 4. Now if we let S be the infinite subgraph of G such that

V (S) = V (G) \ {vn
k : n ∈ Z and 1 ≤ k ≤ 2|n|},

then one can check that S is a planar graph of bounded face degree such that every vertex
has degree at least 7. Thus S is Gromov hyperbolic by Corollary 4 and Theorem 6, so
G is also Gromov hyperbolic since it is roughly isometric to S.

For the last, we prove Theorem 6(c); i.e., construct a normal planar graph G2 of
bounded face degree such that ı(G2) > 0 but not Gromov hyperbolic. The main idea
here is to construct a graph with a structure far from being hyperbolic, but the simple
random walk on it is transient.

We start with the square lattice graph �2; i.e., V (�2) = Z × Z, and �2 has an
edge between (n1,m1) and (n2,m2) if and only if |n1 − n2| + |m1 − m2| = 1. Let
O = (0, 0) be the origin, and for each n ∈ N ∪ {0} define Vn as the set of vertices of
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O−2 − 211 x

−2

−1

1

2

y

Fig. 13 The graph G2; it is drawn with �n = 2n − 1 for aesthetic reasons, but �n should increase faster

�2 whose combinatorial distance from O is equal to n. Also for each n ∈ N, let En

be the set of edges of �2 connecting a vertex in Vn−1 to another one in Vn . Then as in
Theorem 6(b) we replace each edge in En by �n-multiple edges, where the sequence
{�n} increases to infinity very fast but will be determined later. Finally we draw the
lines x = m + 1/2 and y = m + 1/2 for all m ∈ Z. We can do this operation so that
each vertical line x = m + 1/2 meets no vertical edges, and meets every horizontal
edge at most once. Of course we can draw the horizontal lines y = m + 1/2 in a
similar way, and let G2 denote the obtained graph (Fig. 13).

It is clear that G2 is not Gromov hyperbolic, since it is roughly isometric to�2. Also
one can immediately see that G2 is normal, face degrees of G2 are bounded above
by 4, and j (G2) = κ(G2) = 0. So we only need to show that ı(G2) > 0. Define
h : V (�2) → V (G2) as the natural injection which maps each integer lattice point
to itself, and suppose that S is a finite subgraph of G2. Let N be the largest natural
number such that h(VN )∩ V (S) �= ∅, and W1 be the set of vertices of S which lies in
the region {(x, y) : |x | + |y| < N + 1/10}. If no such N exists, we set W1 = ∅. We
also define W2 as the set of vertices in V (S)\ W1 lying on the intersection of two lines
x = k1 +1/2 and y = k2 +1/2 for some k1, k2 ∈ Z, and let W3 = V (S)\ (W1 ∪ W2).

The vertices in W3 must be on the ‘middle’ of some multiple edges, so each
of them has a neighbor in Vl for some l ≥ N + 1. Consequently W3 ⊂ ∂vS and
|W3| ≤ |∂vS| ≤ |∂S|. For W2, the only neighbors of a vertex v ∈ W2 are those at the
‘middle’ of some multiple edges. Then since (k1 + 1/2) + (k2 + 1/2) ≥ N + 1/10
implies k1 + k2 + 1/2 ≥ N + 1/10 for k1, k2 ∈ N, every v ∈ W2 is either in ∂vS or
has a neighbor in W3. Thus |W2| ≤ |W3| + |∂vS| ≤ 2|∂S|.
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Suppose W1 �= ∅, and let v ∈ h(VN ) ∩ V (S). Also let us assume that there are k
edges in ∂S with one end at v. Then by our construction v must have at least �N+1 − k
neighbors in W3, all of which are in ∂vS. So we must have |∂S| ≥ �N+1. On the
other hand, if we denote by Cn the number of vertices in G2 lying in the region
{(x, y) : |x | + |y| < n + 1/10}, then definitely Cn depends only on �1, . . . , �n and
n. Thus we can choose the sequence {�n} so that �n+1 ≥ Cn for all n ∈ N. This
in particular implies that |W1| ≤ CN ≤ �N+1 ≤ |∂S|, and note that the inequality
|W1| ≤ |∂S| is obviously true when W1 = ∅.

So far we have shown that |V (S)| = |W1| + |W2| + |W3| ≤ 4|∂S|, but this is
enough to conclude ı(G2) > 0 by considering the duality property of Lemma 8. This
completes the proof of Theorem 6.

7 Further Remarks

One of the main assumptions of Theorem 1(b) is that G is embedded into the plane
locally finitely, so it must be a planar graph with only one end. Recently we have
extended this result to the case when G has finitely many ends [31]. Furthermore, if
G is normal, Theorem 1(b) remains valid even when G has infinitely many ends.
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