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Abstract In this article we give combinatorial criteria to decide whether a transitive
cyclic combinatorial d-manifold can be generalized to an infinite family of such com-
plexes, together with an explicit construction in the case that such a family exists. In
addition, we substantially extend the classification of combinatorial 3-manifolds with
transitive cyclic symmetry up to 22 vertices. Finally, a combination of these results
is used to describe new infinite families of transitive cyclic combinatorial manifolds
and in particular a family of neighborly combinatorial lens spaces of infinitely many
distinct topological types.

Keywords Combinatorial 3-manifold · Transitive cyclic symmetry · Transitive
automorphism group · Fundamental group · Simplicial complexes · Difference
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1 Introduction

In combinatorial topology, the principal objects of study are combinatorial manifolds,
which are abstract simplicial complexes together with additional local constraints. In
this way, topological information is encoded purely combinatorially making the field
of topology accessible to algorithmic methods. As a consequence, one topological
manifold has a large number of combinatorially distinct presentations and attention
has to be paid to the choice of a suitable combinatorial manifold. One way to find
combinatorial manifolds which are easy to handle and easy to analyze is to reduce
a given combinatorial manifold in the number of its simplices using bistellar moves
(see [6]), another method is to construct highly symmetric combinatorial manifolds
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which can be described efficiently just by the generators of its symmetry and a system
of orbit representatives of the simplices.

Here we will focus on the latter technique. More precisely, we will look at n-vertex
combinatorial manifolds which do not change under a vertex-shift of type v �→ v + 1
mod n. Such combinatorial manifolds will be called cyclic. These objects are interest-
ing to investigate for several reasons. They account for the largest group of so-called
transitive combinatorial manifolds, i.e. combinatorial manifolds which are globally
defined by a local neighborhood of a single vertex. Cyclic combinatorial manifolds
can be described using so-called difference cycles (cf. Definition 2.1), they are es-
pecially easy to analyze and easy to work with. Because of their easy combinatorial
structure they allow theoretical proofs on a scale where non-symmetric combinatorial
manifolds need complicated computer proofs or cannot be handled at all and other
highly symmetric combinatorial manifolds fail to be easy to investigate because of
the complicated structure of their symmetry.

As a consequence, cyclic combinatorial manifolds have been used to establish up-
per and lower bounds for combinatorial properties of simplicial complexes (see [22]
for small triangulations of the d-torus and [23] for a set of several infinite families
of combinatorial manifolds due to Kühnel and Lassmann), to prove tightness of ex-
isting upper and lower bounds (see [17, Theorem 5.5] for an infinite family of tight
and minimal sphere bundles over the circle), and to provide example complexes that
are easy to describe, efficient to store and easy to work with (see [1, Theorem 4] for
the infinite family of the so-called Altshuler tori with dihedral automorphism group,
[21] for a 2-neighborly1 infinite family of the 3-dimensional Klein bottle, and [7] for
a 2-neighborly infinite family of the 3-torus). Altogether, cyclic combinatorial mani-
folds are a natural choice when looking for a combinatorial version of a topological
manifold to work with.

In addition, most of the applications mentioned not only need single cyclic com-
binatorial manifolds but infinite families of such complexes to prove their respective
results. Thus, providing construction principles for such families is of particular in-
terest. In Sect. 3, we will present a simple combinatorial criterion to decide if a cyclic
d-dimensional combinatorial manifold can be modified in its description to give rise
to an infinite number of cyclic d-dimensional combinatorial manifolds. In dimen-
sion d = 3, we explain a similar condition which detects all cyclic combinatorial
3-manifolds that can be generalized in this way.

Furthermore, in Sect. 4 we classify all cyclic combinatorial 3-manifolds with up
to 22 vertices. Thus, we significantly extend the number of triangulations where the
findings from Sect. 3 can be applied in order to obtain further insights into the world
of combinatorial 3-manifolds. The classification provides small and easy-to-handle
combinatorial manifolds of 67 distinct topological 3-manifolds which can be used as
a canonical choice to work with these particular topological manifolds on a combi-
natorial basis.

The classification itself is only the latest one in a line of other classifications dat-
ing back almost 30 years. Neighborly combinatorial 3-manifolds with dihedral au-
tomorphism group with up to 19 vertices as well as cyclic neighborly combinatorial

1A simplicial complex is called k-neighborly if every k-tuple of vertices spans a face of the complex
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3-manifolds with up to 15 vertices have already been classified by Kühnel and Lass-
mann in 1985, see [21]. In 1999, a more general classification of all transitive combi-
natorial manifolds with up to 13 vertices was presented by Lutz in [29] (which also
contains a classification of all transitive combinatorial d-manifolds up to 15 vertices
in the cases d ≤ 3 and d ≥ 9). More recently, Lutz extended the classification of tran-
sitive combinatorial 2-manifolds up to 21 vertices (cf. [30]) and the classification of
transitive combinatorial 3-manifolds up to 17 vertices (cf. [28]). These classification
results have been proved to be useful as an extended set of small example triangula-
tions with interesting properties [27], to obtain additional insights into upper bounds
on minimal triangulations of 3-manifolds [31] and as a starting point to find infinite
families of combinatorial manifolds [21].

Finally, the classification together with the results from Sect. 3 sets the ground
work for many more results of similar nature. Most of this work is still in progress
and will be presented separately in [10]. As a preview of this work we present an
infinite family of cyclic combinatorial 3-manifolds of pairwise topologically distinct
lens spaces in Sect. 5.

Remark 1.1 At this point it is important to stress that there is no canonical notion of
an infinite family of cyclic combinatorial manifolds: any infinite set of cyclic combi-
natorial manifolds defines such a family. However, in order to be useful for applica-
tions such a family should be (i) easy to describe and (ii) easy to generate, i.e. given in
precise terms of its combinatorial structure. In order to meet these requirements, we
will focus on generalizations of cyclic combinatorial manifolds via arithmetic pro-
gressions for the entries of the orbit representatives of the respective complexes and
will refer to the resulting infinite sets of cyclic combinatorial manifolds as infinite
families.

2 Preliminaries

An abstract simplicial complex, C, can be seen as a combinatorial structure consisting
of tuples 〈a0, a1, . . . , ad〉, ai ∈ Zn, 0 ≤ i ≤ d , where the n elements of Zn are referred
to as the vertices of the complex (cf. [23]). The automorphism group, Aut(C), of C

is the group of all permutations σ ∈ Sn of the vertices of C which do not change C as
a whole. If Aut(C) acts transitively on the vertices, C is called a transitive simplicial
complex. If a transitive simplicial complex is invariant under the cyclic Zn-action
v �→ v + 1 mod n, i.e. if for a complex C, possibly after a relabeling of the vertices,
Zn = 〈(0,1, . . . , n − 1)〉 is a subgroup of Aut(C) then C is called a cyclic simplicial
complex or a complex with transitive cyclic symmetry.

For cyclic simplicial complexes we have the following situation: Since the whole
complex does not change under a vertex-shift of type v �→ v + 1 mod n, two tuples
are in one orbit of the cyclic group action if and only if the differences modulo n of
its vertices are equal. Hence, we can compute a system of orbit representatives by
just looking at the differences modulo n of the vertices of all tuples of the simplicial
complex. This motivates the following definition.
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Definition 2.1 (Difference Cycle) Let ai , 0 ≤ i ≤ d , be positive integers such that
n := ∑d

i=0 ai . The simplicial complex

(a0 : . . . : ad) := Zn

〈

0, a0, . . . ,

d−1∑

i=0

ai

〉

is called difference cycle of dimension d on n vertices where G〈·〉 denotes the G-
orbit of 〈·〉. The number of elements of (a0 : . . . : ad) is referred to as the length of
the difference cycle and a difference cycle of length n is said to be of full length.

If a simplicial complex C is a union of difference cycles of dimension d on n

vertices and λ is a unit of Zn such that the complex λC (obtained by multiplying all
vertex labels by λ modulo n) equals C, then λ is called a multiplier of C.

Note that for any unit λ ∈ Z
×
n , the complex λC is combinatorially isomorphic to C.

In particular, all λ ∈ Z
×
n are multipliers of the complex

⋃
λ∈Z×

n
λC by construction.

The definition of a difference cycle above is equivalent to the one given in [23].
Difference cycles as well as other cyclic combinatorial structures have been thor-

oughly investigated under purely combinatorial aspects (see for example [25, Part V]
for a work on cyclic Steiner systems in the field of design theory, see [14, Sect. III.4]
for the highly symmetric Emch design). However, interpreting these well-known
combinatorial structures as simplicial complexes and hence geometric objects is a
relatively new development (see [19] for an interpretation of two-fold triple systems
as singular surfaces or [41, Sect. 5.4] for an interpretation of Emch’s design as the
quotient of a hyperbolic tesselation of 3-space).

A combinatorial manifold is a special kind of simplicial complex which is defined
as follows: An abstract simplicial complex M is said to be pure, if all of its tuples
are of length d + 1, where d is referred to as the dimension of M . If, in addition, any
vertex link of M , i.e. the boundary of a simplicial neighborhood of a vertex of M , is a
triangulated (d − 1)-sphere endowed with the standard piecewise linear structure, M

is called a combinatorial d-manifold. Throughout this article, we will describe cyclic
combinatorial manifolds as a set of difference cycles. In this way, many problems
dealing with cyclic combinatorial manifolds can be solved in an elegant way.

One of the principal tools to analyze combinatorial manifolds is the use of a dis-
crete Morse type theory following Kuiper, Banchoff and Kühnel [3, 4, 17, 24]. In
this theory, the discrete analogue of a Morse function is given by a mapping from the
set of vertices V of a combinatorial manifold M to the real numbers R such that no
two vertices have the same image, in this way inducing a total ordering on V . This
mapping can then be extended to a function f : M → R by linearly interpolating
the values of the vertices of a face of M for all points inside that face. f is called a
regular simplexwise linear function or rsl-function on M .

A point x ∈ M is said to be critical for an rsl-function f : M → R if

H�

(
Mx,Mx\{x},F) 	= 0

where Mx := {y ∈ M |f (y) ≤ f (x)} and F is a field. Here, H� denotes an appropriate
homology theory. It follows that no point of M can be critical except possibly the
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vertices. More precisely we call a vertex v critical of index i and multiplicity m if
βi(Mv,Mv\{v},F) = m.

A result of Kuiper [24] states that the number of critical points of an rsl-function of
M counted by multiplicity is an upper bound for the sum of the Betti numbers of M ,
hence extending the famous Morse relations from the smooth theory to the discrete
setting.

The pre-image of a point under an rsl-function which does not meet any vertex of
the surrounding combinatorial manifold is called a slicing. By construction, a slicing
is an embedded co-dimension 1 submanifold which contains information about the
topology of the surrounding manifold (see Figs. 1, 2 and 4 for slicings in the case
d = 3, and [42] for further details about slicings).

3 Infinite Families of Transitive Cyclic Combinatorial Manifolds

For cyclic combinatorial manifolds, one straightforward generalization of a given
complex to an infinite family of cyclic combinatorial manifolds with increasing num-
ber of vertices can be constructed by finding a slicing of a cyclic combinatorial man-
ifold which exhibits the symmetry of the surrounding manifold in a cyclic pattern,
extending this pattern and then re-constructing a larger version of the original com-
binatorial manifold (cf. [41, Sect. 4.5]).

However, in this article we want to focus on when a combinatorial d-manifold
given by a set of difference cycles can be generalized using arithmetic progressions
for the entries of its difference cycles (cf. Remark 1.1). More precisely, for a com-
binatorial manifold M = {d1, . . . , dm} with n vertices represented by m difference
cycles di = (a0

i : . . . : ad
i ), 1 ≤ i ≤ m, we define complexes Mk = {d1,k, . . . , dm,k},

k > −min1≤i≤m{ad
i }, with n + k vertices and difference cycles di,k =

(a0
i : . . . : ad−1

i : ad
i + k), 1 ≤ i ≤ m, and ask for a purely combinatorial condition

on M to check whether (and for which range of k) the complexes Mk are combinato-
rial manifolds (see Theorem 3.5 below). We will start with discussing the case d = 3,
where the “generalizability” of a cyclic combinatorial manifold is even equivalent to
the following combinatorial criterion.

Theorem 3.1 Let M = {d1, . . . , dm} be a combinatorial 3-manifold with n vertices,
represented by m difference cycles di = (a0

i : a1
i : a2

i : a3
i ), 1 ≤ i ≤ m. Then the com-

plex Mk is a combinatorial manifold for all k ≥ 0 if and only if a3
i > n

2 for all
1 ≤ i ≤ m.

In order to prove Theorem 3.1 let us first take a look at a few lemmas.

Lemma 3.2 Let (a0 : . . . : ad) be a difference cycle of dimension d on n vertices and
1 ≤ k ≤ d + 1 the smallest integer such that k | (d + 1) and ai = ai+k , 0 ≤ i ≤ d − k.
Then (a0 : . . . : ad) has length nk

d+1 .

Proof Since
∑d

i=0 ai = n and ai = ai+k , 0 ≤ i ≤ d − k, we have
∑d

i=0 ai =
d+1

k

∑k−1
i=0 ai and hence

∑k−1
i=0 ai = nk

d+1 . Keeping this in mind we have (all entries
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are computed modulo n)

〈

0 + nk

d + 1
, a0 + nk

d + 1
, . . . ,

(d−1∑

i=0

ai

)

+ nk

d + 1

〉

=
〈k−1∑

i=0

ai,

k∑

i=0

ai, . . . ,

d−1∑

i=0

ai,0, a0, . . . ,

k−2∑

i=0

ai

〉

=
〈

0, a0, . . . ,

d−1∑

i=0

ai

〉

.

Hence, for the length � of (a0 : . . . : ad) we have � ≤ nk
d+1 and since k is minimal with

k | (d + 1) and ai = ai+k , the upper bound is attained. �

Lemma 3.3 Let Mk , k ≥ 0, be an infinite family of cyclic combinatorial 3-manifolds
with n+k vertices represented by the union of m difference cycles of full length. Then
we have for the f -vectors of the vertex links

f
(
lkM0(0)

) = f
(
lkMk

(0)
) = (2m + 2,6m,4m)

for all k ≥ 0. In particular, the number of vertices of lkMk
(0) does not depend on the

value of k.

Proof Since Mk is the union of m difference cycles of full length, we have for the
number of tetrahedra f3(Mk) = m(n + k) for all k ≥ 0. Furthermore, as Mk is cyclic,
all vertices are contained in the same number of tetrahedra which have four vertices.
By the fact that any facet of lkMk

(0) corresponds to a facet in Mk containing 0 it fol-
lows that for the number of triangles of the link f2(lkMk

(0)) = 4m(n+k)
n+k

= 4m holds,
which is independent of k. Since for all k ≥ 0 the link lkMk

(0) is a combinatorial
2-sphere, all edges of lkMk

(0) lie in exactly two triangles, hence f1(lkMk
(0)) = 6m.

Finally, the Euler characteristic of the 2-sphere is 2, and by the Euler–Poincaré for-
mula we have f0(lkMk

(0)) = 2m + 2. �

Let us now come to the proof of Theorem 3.1.

Proof Let M = {d1, . . . , dm} be a combinatorial 3-manifold with n vertices, rep-
resented by m difference cycles di = (a0

i : a1
i : a2

i : a3
i ), 1 ≤ i ≤ m, such that

a3
i > n

2 > a0
i + a1

i + a2
i for all 1 ≤ i ≤ m. For the link of vertex 0 in M we then

have (all entries are computed modulo n)

lkM(0) =
m⋃

i=1

{〈
a0
i , a

0
i + a1

i , a
0
i + a1

i + a2
i

〉
,
〈−a0

i , a
1
i , a

1
i + a2

i

〉
,
〈−a0

i − a1
i ,−a1

i , a
2
i

〉
,

〈−a0
i − a1

i − a2
i ,−a1

i − a2
i ,−a2

i

〉}
, (3.1)
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and for the link of vertex 0 in Mk (all entries are computed modulo n + k)

lkMk
(0) =

m⋃

i=1

{〈
a0
i , a

0
i + a1

i , a
0
i + a1

i + a2
i

〉
,
〈−a0

i , a
1
i , a

1
i + a2

i

〉
,
〈−a0

i − a1
i ,−a1

i , a
2
i

〉
,

〈−a0
i − a1

i − a2
i ,−a1

i − a2
i ,−a2

i

〉}
. (3.2)

Since M is a combinatorial 3-manifold, (3.1) must be a triangulated 2-sphere. Since
a3
i > n

2 > a0
i + a1

i + a2
i for all 1 ≤ i ≤ m, the vertices vj of lkM(0) can be mapped to

the vertices of lkMk
(0), k ≥ 0, as follows:

vj �→
{

vj if vj < n
2 ,

vj + k if vj ≥ n
2 .

Applying this relabeling to the vertices of M yields a simplicial complex on vertices
of Mk equal to (3.2) and hence a combinatorial isomorphism between lkM(0) and
lkMk

(0). Since M and Mk are cyclic, all vertex links are isomorphic. Altogether it
follows that Mk is a combinatorial manifold for all k ≥ 0.

This part of the proof can be generalized to combinatorial d-manifolds for arbi-
trary d , see Theorem 3.5.

Conversely, let M = {d1, . . . , dm} contain a difference cycle di = (a0
i : a1

i : a2
i :

a3
i ), 1 ≤ i ≤ m, such that a3

i ≤ n
2 and let k̃ := max1≤j≤m(a0

j + a1
j + a2

j − a3
j ). Since

by construction a3
j + k̃ ≥ a0

j + a1
j + a2

j and al
j > 0 for all 1 ≤ j ≤ m, 0 ≤ l ≤ 3, it

follows by Lemma 3.2 that all difference cycles of M
k̃

and M
k̃+1 have full length. By

Lemma 3.3 it now follows that the links of vertex 0 in M
k̃

and M
k̃+1 have the same

f -vector. On the other hand, since a3
i + k̃ = a0

i + a1
i + a2

i for at least one 1 ≤ i ≤ m

and a3
j + k̃ ≥ a0

j + a1
j + a2

j for all 1 ≤ j ≤ m, lkM
k̃+1

(0) has to have strictly more

vertices than the link of vertex 0 in M
k̃
: Namely, we have −∑2

r=0 ar
i = ∑2

r=0 ar
i for

at least one 1 ≤ i ≤ m in lkM
k̃
(0), and in lkM

k̃+1
(0) this vertex splits into two distinct

vertices. On the other hand, two vertices which are distinct in lkM
k̃
(0) cannot be equal

in lkM
k̃+1

(0) by a3
j + k̃ ≥ a0

j + a1
j + a2

j for all 1 ≤ j ≤ m. This is a contradiction to
Lemma 3.3. �

From now on, we will require an infinite family of cyclic combinatorial manifolds
to start with the smallest complex possible, that is, the complex M−1 must not be a
combinatorial manifold.

Corollary 3.4 Let Mk , k ≥ 0, be an infinite family of cyclic combinatorial 3-
manifolds such that M−1 is not a combinatorial manifold, then M0 has an odd num-
ber of vertices.

Proof This follows immediately from the fact that Δj := a3
j − a0

j − a1
j − a2

j > 0 for
all 1 ≤ j ≤ m in M0. If the minimum over all Δj , 1 ≤ j ≤ m, is strictly greater than 1,
the vertices of lkM0(0) are either strictly smaller than 
n

2 � or strictly greater than �n
2 .
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Following the proof of Theorem 3.1, the mapping

vj �→
{

vj if vj < n
2 ,

vj − 1 if vj ≥ n
2 + 1.

of the vertices of lkM0(0) to the vertices of lkM−1(0) yields a combinatorial isomor-
phism between the vertex links of M0 and M−1 and hence M−1 is a combinatorial
3-manifold. Hence, Δi = 1 for some 1 ≤ i ≤ m and n = 2a3

i − 1. �

So far, we have only considered one particular type of arithmetic progression
which led to infinite families of cyclic combinatorial manifolds that have members
for all integers n ≥ n0 for n0 sufficiently large. A more general but closely related
approach results in other (weaker) formulations of infinite families of cyclic com-
binatorial manifolds: Let N = {d1, . . . , dm} be a combinatorial d-manifold with n

vertices, represented by m difference cycles di = (a0
i : . . . : ad

i ), 1 ≤ i ≤ m. The sim-
plicial complexes Nk = {d1,k, . . . , dm,k}, k ≥ 0, with n + �k vertices, � ≥ 1 fixed,
given by di,k = (a0

i + �0
i k : . . . : ad

i + �d
i k), 1 ≤ i ≤ m, where for each 1 ≤ i ≤ m we

have
∑d

j=0 �
j
i = �, �

j
i ≥ 0, will be called an infinite family of cyclic combinatorial

manifolds of order � if all Nk , k ≥ 0, are combinatorial manifolds. The case � = 1
coincides with the previously described type of infinite family which from now on
will be referred to as a dense family.

There is an analogue of the “if”-part of Theorem 3.1 for infinite families of com-
binatorial d-manifolds of order � which can be formulated as follows.

Theorem 3.5 Let N = {d1, . . . , dm} be a combinatorial d-manifold with n vertices,
represented by m difference cycles di = (a0

i : . . . : ad
i ), 1 ≤ i ≤ m. Then Nk , defined

by non-negative integers � ≥ 1 and �
j
i , 1 ≤ i ≤ m, 0 ≤ j ≤ d with

∑d
j=0 �

j
i = �,

1 ≤ i ≤ m, is a combinatorial d-manifold with n + �k vertices for all k ≥ 0 if

�
j
i n

� + 1
< a

j
i , (3.3)

holds for all 1 ≤ i ≤ m, 0 ≤ j ≤ d .

Note that the case d = 3 and � = 1 in the following proof corresponds to the “if”-
part of Theorem 3.1.

Proof The proof is completely analogous to the one of the first part of Theorem 3.1.
Here, too, we look at a relabeling of the vertices of the link lkN(0) in order to trans-
form it to lkNk

(0) for arbitrary values of k ≥ 0.
First note that from Condition (3.3) we can derive
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a
j
i = n −

d∑

p=0,p 	=j

a
p
i < n −

d∑

p=0,p 	=j

�
p
i n

� + 1
= n

� + 1

(

� + 1 −
d∑

p=0,p 	=j

�
p
i

)

= (�
j
i + 1)n

� + 1
,

and hence we have

�
j
i n

� + 1
< a

j
i <

(�
j
i + 1)n

� + 1
. (3.4)

Now, consider the collection of disjoint intervals

αk
r :=

]
r(n + �k)

� + 1
,
(r + 1)(n + �k)

� + 1

[

⊂]0, n + �k[⊂ R.

By Condition (3.4), each vertex of lkNk
(0) lies in exactly one of the αk

r , 0 ≤ r ≤ �.
Now consider the relabeling

ι : vj �→ vj +
⌊

(� + 1)vj

n

⌋

k

from the vertices of lkN(0) to the vertices of lkNk
(0). By construction, if vj ∈ α0

r

then ι(vj ) ∈ αk
r and, following the proof of Theorem 3.1, ι is injective and defines a

combinatorial isomorphism between lkN(0) and lkNk
(0). �

Theorem 3.5 defines families of order � by a purely combinatorial criterion. Since
all dense families contain families of order �, the following characterization of higher
order families is interesting.

Lemma 3.6 Let Nk = (d1,k, . . . , dm,k), k ≥ 0, be an infinite family of combinatorial
d-manifolds of order �, 1 ≤ � ≤ d , with n+�k vertices given by non-negative integers
�
j
i , 1 ≤ i ≤ m, 0 ≤ j ≤ d ,

∑d
j=0 �

j
i = �.

If � is a unit in Zn then there exists a dense infinite family containing all but finitely
many members of Nk , k ≥ 0.

Proof Let � be a unit in Zn and let a
j
i,k be the j th entry of the ith difference cycle

of Nk . By multiplying Nk by � we get �Nk = {(�a0
1,k : . . . : �ad

1,k), . . . , (�a
0
m,k : . . . :

�ad
m,k)} which is isomorphic to Nk since if � is a unit in Zn then � is a unit in Zn+�k ,

for all k ≥ 0. Hence, we have

�a
j
i,k = �

(
a

j
i + �

j
i k

)

= �a
j
i + ��

j
i k

= �a
j
i + �

j
i

(
�k − (n + �k)

)

= �a
j
i − �

j
i n
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which is independent of k. Now let b
j
i := Σ

j

r=0�a
r
i − �r

i n and for each 1 ≤ i ≤ m let
πi be a permutation such that

b
πi(0)
i ≤ b

πi(1)
i ≤ · · · ≤ b

πi(d)
i .

It follows that for k > b
πi(d)
i − b

πi(0)
i − n the difference cycle (ã0

i : ã1
i : . . . : ãd−1

i :
ãd
i + �k) with ã

j
i := b

πi(j+1)
i − b

πi(j)
i , 0 ≤ j ≤ d − 1, and ãd

i = n − Σd−1
j=0 ã

j
i is

isomorphic to (a0
i,k : . . . : ad

i,k) for all 1 ≤ i ≤ m. Note that in particular this means

that ã
j
i > 0 for all 1 ≤ i ≤ m and 0 ≤ j ≤ d − 1. We write

Ñ�k = {(
ã0
i : ã1

i : . . . : ãd−1
i : ãd

i + �k
) |1 ≤ i ≤ m

}

which by construction is isomorphic to Nk and we conclude the proof by the obser-
vation that in Ñ�k only the d th entries depend on k and thus for k0 sufficiently large
Ñ�k0 satisfies the preconditions of Theorem 3.5. Hence Ñ�k0 extends to an infinite
dense family containing isomorphic copies of Nk for each k > k0. �

Corollary 3.7 Let Nk , k ≥ 0, be an infinite family of cyclic combinatorial d-
manifolds of order 2 such that no dense family contains an infinite number of mem-
bers of Nk . Then the number of vertices of N0 has to be even.

Proof If no dense family contains an infinite number of members of Nk , then in
particular for all fixed dense families an infinite number of members of Nk is not
contained in this family. The statement now follows from Lemma 3.6 since 2 is a unit
in Zn for all n ≡ 1(2). �

Remark 3.1 Theorem 3.5 gives us an easy-to-check combinatorial criterion for arbi-
trarily dimensional simplicial complexes to be combinatorial d-manifolds. This is of
great use in dimension d ≥ 5: Checking the manifold property of a d-dimensional
simplicial complex involves the recognition of a (d − 1)-dimensional sphere. While
this is easy for d ≤ 3 and there are deterministic algorithms for the case d = 4 [39],
heuristic methods have to be used in dimensions d ≥ 5.

4 Classification of Cyclic 3-Manifolds

There is a number of classifications containing cyclic combinatorial manifolds de-
scribed in the literature due to Kühnel and Lassmann [21] and Lutz in [28–30]. These
classifications contain 336 cyclic combinatorial 3-manifolds of 13 distinct topologi-
cal types (cf. Tables 1 and 10 for the number of cyclic combinatorial 3-manifolds and
the number of distinct topological types up to 17 vertices).

The main motivation to extend this classification was to substantially extend the
set of example triangulations where the results from Sect. 3 can be applied in order
to get new results. Moreover, a larger set of examples gives us a better chance to
understand which topological properties are compatible with a cyclic symmetry and
which ones are not.
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Table 1 The classification of cyclic combinatorial 3-manifolds with up to 22 vertices

n # complexes # cd∗ compl. # lm∗ compl. # cd lm∗ compl. # top. types

5 1 1 1 1 1

6 1 1 0 0 1

7 3 1 0 0 1

8 3 2 0 0 1

9 6 2 3 1 2

10 19 8 0 0 3

11 40 6 0 0 2

12 56 20 0 0 4

13 135 15 0 0 2

14 258 50 0 0 4

15 217 34 1 1 5

16 742 107 12 2 8

17 1272 89 24 2 7

18 1818 319 24 4 15

19 4797 279 63 4 6

20 7670 1008 66 9 20

21 11931 1038 198 18 22

22 30550 3090 230 23 40

acd = combinatorially distinct, lm = locally minimal

Theorem 4.1 (Classification of Cyclic Combinatorial 3-Manifolds) There are 6070
combinatorial types of (connected) combinatorial 3-manifolds with transitive cyclic
symmetry with up to 22 vertices. These complexes split up into 67 topological types.

The number of combinatorial manifolds, combinatorial types, locally minimal
combinatorial manifolds, i.e. complexes which cannot be reduced by bistellar moves
without inserting new vertices, and topological types can be found in Table 1. A list
of all topological types of 3-manifolds in the classification together with a particular
combinatorial manifold of each type sorted by their model geometries is shown in Ta-
ble 2 to 9. An overview over all topological types of cyclic combinatorial 3-manifolds
sorted by vertex number is listed in Table 10.

The calculations were done with the help of the GAP-package simpcomp [11–
13] as well as GAP [15]. In addition, the 3-manifold software packages regina
by Burton et al. [9], SnapPy by Weeks [47] and the Three-manifold Rec-
ognizer developed by the research group of Matveev [32] were used for topolog-
ical type recognition. All cyclic manifolds are available within simpcomp by call-
ing the function SCCyclic3Mfld(n,k) where n is the number of vertices and
k is the number of a specific cyclic combinatorial 3-manifold. The total number of
cyclic n-vertex combinatorial 3-manifolds can be obtained using the function SCN-
rCyclic3Mfld(n).
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4.1 Discussion of the Proof

The proof of Theorem 4.1 was mainly done by computer. In the following, we will
discuss the methods and software involved in the proof.

The complexes were found using the classification algorithm for transitive com-
binatorial manifolds due to Kühnel and Lassmann [21] which is integrated into the
software package simpcomp as of Version 1.3. The topological distinctions of most
of the spherical and flat manifolds, as well as the connected sums of S2 × S1 and
S2
� S1 were done via analysis of the fundamental group of the complexes:

• The manifolds of type (S2 × S1)#k and (S2
� S1)#k were identified by calculating

the fundamental group—the free group on k generators—and applying Kneser’s
conjecture, proved by Stallings in 1959 (see [43]) together with [16, Theorem 5.2].

• By the elliptization conjecture (stated by Thurston in [45, Chap. 3], recently proved
by Perelman, see [35–37]), the topological type of a spherical 3-manifold distinct
from a lens space is already determined by the isomorphism type of its (finite)
fundamental group. This allows an identification of all such 3-manifolds using the
finite group recognition algorithm of GAP.

• The fundamental group distinguishes all flat 3-manifolds by a theorem of Bieber-
bach (see [5] and [33, p. 4]). On the other hand, all other 3-manifolds with a funda-
mental group containing Z

3 are known to be the connected sum of a flat 3-manifold
with some other 3-manifold (cf. [26]). Hence, all 3-manifolds with the fundamen-
tal group of a flat manifold have to be prime (as all flat manifolds are prime and
the fundamental group of a 3-manifold M determines the length of a prime de-
composition of M , cf. [43] and [16, Theorem 5.2]) and thus are flat. Altogether,
the topological type of a 3-manifold with the fundamental group of a flat manifold
is in fact flat and the manifold is determined by its fundamental group. Hence, it
can be identified by determining its fundamental group using simpcomp and GAP.

For more information about the spherical case in the classification of 3-manifolds
see [34, 44], for more about flat 3-manifolds see [5, 20, 33].

In the following we will show that only lens spaces of type L(3,1), L(5,1),
L(7,1), L(8,3) and L(15,4) can be represented as a transitive cyclic combinatorial
manifold with at most 22 vertices.

First, let us show that the cyclic combinatorial manifold C with 18 vertices given
by

C := {
(1 : 1 : 1 : 15), (1 : 2 : 5 : 10), (1 : 5 : 2 : 10), (1 : 5 : 10 : 2), (2 : 5 : 2 : 9),

(2 : 6 : 4 : 6), (2 : 7 : 2 : 7), (4 : 4 : 4 : 6)
}

is homeomorphic to the lens space L(5,1).
Figure 1 shows the slicing of C between the odd labeled vertices and the even la-

beled vertices. Here, the slicing is a torus. Also, both the span of the odd and the span
of the even labeled vertices is a solid torus and hence C is a manifold of Heegaard
genus at most 1. For the 1-homology of the two tori T− := ∂(span(0,2, . . . ,16)) and
T+ := ∂(span(1,3, . . . ,17)) we choose a basis as follows (here and in the following
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Fig. 1 Slicing of C between the odd labeled and the even labeled vertices together with the boundary of
the two solid tori spanned by the even and by the odd vertices
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[v0, v1, . . . , vr ] denotes a path of edges in a simplicial complex starting at vertex v0
and ending at vertex vr ):

α− := [0,10,4,14,8,0],
β− := [0,12,6,0]

and

α+ := [1,11,5,15,9,1],
β+ := [1,13,7,1]

such that H1(T±) = 〈α±, β±〉, H1(span(0,2, . . . ,16)) = 〈β−〉 and H1(span(1,3,

. . . ,17)) = 〈β+〉.
Now, we want to express α− in terms of α+ and β+. With the help of the slicing

(the thick line in Fig. 1 denotes a path homologous to α− in the slicing) we see that
α− can be transported to the path

[17,15,7,5,3,13,11,3,1,17,9,7,17]
which entirely lies in T+. This path is homologous to −5 times β+ plus 4 times α+
and hence the topological type of C must be L(−5,4) ∼= L(5,1).

The proof that the cyclic combinatorial manifold D with 22 vertices defined by

D := {
(1 : 1 : 1 : 19), (1 : 2 : 5 : 14), (1 : 7 : 12 : 2), (2 : 5 : 2 : 13), (2 : 7 : 2 : 11),

(2 : 8 : 4 : 8), (2 : 9 : 2 : 9), (2 : 12 : 3 : 5), (4 : 6 : 4 : 8), (4 : 6 : 6 : 6)
}

is homeomorphic to the lens space L(7,1) is completely analogous to the above.
For the identification of the exact topological type of the lens spaces

L0 := {
(1 : 1 : 1 : 11), (1 : 2 : 4 : 7), (1 : 4 : 2 : 7), (1 : 4 : 7 : 2), (2 : 4 : 4 : 4),

(2 : 5 : 2 : 5)
}

L1 := {
(1 : 1 : 1 : 15), (1 : 2 : 4 : 11), (1 : 4 : 2 : 11), (1 : 4 : 11 : 2),

(2 : 4 : 8 : 4), (2 : 5 : 2 : 9), (2 : 7 : 2 : 7), (4 : 4 : 4 : 6)
}

L2 := {
(1 : 1 : 1 : 19), (1 : 2 : 4 : 15), (1 : 4 : 2 : 15), (1 : 4 : 15 : 2), (2 : 4 : 12 : 4),

(2 : 5 : 2 : 13), (2 : 7 : 2 : 11), (2 : 9 : 2 : 9), (4 : 4 : 4 : 10), (4 : 6 : 4 : 8)
}

with 14, 18, and 22 vertices see Theorem 5.3. Using the 3-manifold software
regina [9], we checked that all other lens spaces in the classification are of one
of the above types.

Finally, there are 74 homeomorphic cyclic triangulations of a homology 3-sphere
with the lexicographically minimal complex being

HS := {
(1 : 1 : 1 : 19), (1 : 2 : 4 : 15), (1 : 4 : 8 : 9), (1 : 4 : 15 : 2), (1 : 6 : 6 : 9),

(2 : 4 : 10 : 6), (2 : 5 : 6 : 9), (2 : 9 : 2 : 9), (2 : 9 : 5 : 6), (4 : 4 : 4 : 10)
}
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Fig. 2 Slicing of HS between the odd and the even labeled vertices splitting the complex into two isomor-
phic knot exteriors of the trefoil knot

(cf. Table 9). In order to describe its topological type observe that the slicing between
the even and the odd labeled vertices of HS (cf. Fig. 2) is a torus decomposing HS into
two complexes HS+ (containing the even labeled vertices) and HS− (containing the
odd labeled vertices) which both are homeomorphic to the knot exterior of the trefoil
knot. The recognition step of this result is due to the 3-manifold software SnapPy
by Weeks [47] which is well suited to deal with knot complements.

Such a manifold is determined by how the canonical meridian m+ and longitude
�+ of HS+ are glued to the boundary of HS−. Following the conventions of [40] a
gluing is given by integers a, b, c, and d with ad − bc = −1 and �+ is glued to
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a · �− + c · m− and m+ is glued to b · �− + d · m− where c = ±1 whenever the
resulting manifold is a homology sphere. The canonical meridians of both HS+ and
HS− were computed using simpcomp and are given by the thick lines in Fig. 2. It
follows that m+ is glued to −m−, thus b = 0, d = −1, and as a result a = 1. This
determines the topological type of HS.

Alternatively, using Matveev’s Three-manifold Recognizer [32] HS is
identified as the graph manifold

SFS
[
D : (2,1)(3,1)

] ∪m SFS
[
D : (2,1)(3,1)

]
,m =

(−10 11
−9 10

)

,

here given in the notation used by regina.
All complexes with fewer than 18 vertices have already been described in liter-

ature. See the indicated sources in Tables 2, 3, 4 and 8. The remaining topological
types of cyclic 3-manifolds were identified using regina, the (orientable) graph
manifolds were additionally checked using the Three-manifold Recognizer.
The notation for the Seifert fibered spaces as well as the graph manifolds is following
the one regina is using which in turn is based on work by Burton [8] and Orlik
[34, pg. 88] (note that the Three-manifold Recognizer is using a slightly
different notation). To make sure that none of the Seifert fibered spaces or graph
manifolds equal any other topological type of combinatorial 3-manifold previously
described in the classification, we additionally computed the Turaev–Viro invariant
of the manifolds [46] whenever necessary. See the documentation of regina or one
of the indicated sources for more information.

It is interesting to see that some of the homological types of the complexes do not
occur for certain integers. Especially, if n is a prime number, the number of topolog-
ically distinct complexes seems to be limited. In particular, we believe the following
to be true.

Conjecture 4.2 Let M be a combinatorial 3-manifold with transitive cyclic symme-
try homeomorphic to S2 × S1. Then M has an even number of vertices.

5 Further Results

A direct consequence from the extension of the classification of transitive cyclic com-
binatorial manifolds together with Theorem 3.1 is the following result.

Corollary 5.1 There are exactly 396 combinatorially distinct dense infinite families
of combinatorial 3-manifolds starting with a triangulation with fewer than 23 ver-
tices.

The results from Sect. 3 allow us to formulate a number of further results similar
to Corollary 5.1 using the data of the classification. However, these infinite fami-
lies typically only contain a few distinct topological types of 3-manifolds: Most of
the infinite families have members of type S2 × S1 or S2

� S1, family number 17
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(SCSeriesK(17,k) in simpcomp) has members of type T
3 and B2, and fami-

lies number 30, 42, and 356 (SCSeriesK(30,k), SCSeriesK(42,k) and SC-
SeriesK(356,k) in simpcomp) contain combinatorial 3-manifolds of three fur-
ther topological types. This observation is emphasized by the following upper bound
on the Betti numbers of the members of a dense infinite family of combinatorial 3-
manifolds.

Proposition 5.2 Let Mk = {d1,k, . . . , dm,k} with di,k = (a0
i : a1

i : a2
i : a3

i + k) be a
dense infinite family of transitive cyclic combinatorial 3-manifolds with n + k ver-
tices. Then there exists a constant c such that

d∑

i=0

βi(M0) + c ≥
d∑

i=0

βi(Mk)

for all k ≥ 0.

Proof By Kuiper’s discrete Morse relations (see Sect. 2 or [24]) we know that the
number of critical points of any rsl-function on Mk is an upper bound for the sum of
the Betti numbers of Mk . We will prove Proposition 5.2 by giving an upper bound
on the number of critical points of the rsl-function fk on Mk induced by the natural
ordering of the vertices Vk := {0,1, . . . , n + k − 1} of Mk .

In this setting, the relevant slicings Si of Mk with respect to fk are given by the
partitions Pi = ({0,1, . . . , i − 1}, {i, . . . , n + k − 1}) of Vk . Now, observe that the
set of tetrahedra having both vertices in {0,1, . . . , i − 1} and {i, . . . , n + k − 1} must
be isomorphic to the set of tetrahedra having vertices in both {0,1, . . . , i} and {i +
1, . . . , n+ k −1} for all μ < i < n+ k −1−μ where μ := max1≤i≤m(a0

i +a1
i +a2

i ).
This follows from the cyclic symmetry and the fact that by construction all tetrahedra
of Mk for all k ≥ 0 have their vertices within an interval (modulo (n + k)) of length
less or equal μ. As a consequence, we have Si = Si+1 and since a vertex of a combi-
natorial manifold can only be critical if the topological type of the associated slicing
changes when the vertex is passed, none of the vertices μ < i < n + k − 1 − μ can
be critical.

Moreover, note that whenever μ < n + k − 1 − μ the combinatorial types of the
remaining slicings Si , 1 ≤ i ≤ μ + 1 and n + k − 1 − μ ≤ i ≤ n + k − 1 in Mk are
independent of k and hence the number of critical points of fk is the same for all
k. Now since μ < n

2 we have μ < n + k − 1 − μ whenever k ≥ 1 and the number
of critical points of fk for any k is bounded above by the maximum of the number
of critical points of M0 and M1. Hence, for c being the maximum of the number of
critical points of M0 and M1 the statement follows. �

In order to find infinite families which are richer from the topological point of
view, we want to use the classification of transitive cyclic combinatorial 3-manifolds
described in Sect. 4 to search for manifolds that look like the start of an infinite family
of 2-neighborly combinatorial 3-manifolds (which thus have to contain an increasing
number of difference cycles) containing infinitely many members of pairwise distinct
topological types.
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This is motivated by the situation in dimension 2 where several of such infinite
families exist. There is a family of neighborly orientable surfaces of genus 1

6

(12s+4
2

)

with 12s + 7 vertices (cf. [38, Fig. 2.15] and [18, Example 2.7]) starting with the
7-vertex Möbius torus. In addition, many further families of transitive combinatorial
2-manifolds with similar properties can be found in [30] by Lutz.

Note that there are infinite 2-neighborly families of combinatorial 3-manifolds
described in the literature. However, these families have members of only a constant
number of distinct topological types per family (see the boundary of the cyclic 4-
polytopes for a family of neighborly S3, [21] and [41, Sect. 4.2] for families of sphere
bundles over the circle, and [7] and [23] for neighborly 3-dimensional tori).

A detailed analysis of the data provided by the classification led to a general con-
struction principle for infinite families of Seifert Fibered Spaces and in particular
Brieskorn homology spheres with transitive cyclic symmetry and an infinite number
of distinct topological types per family. However, for the remainder of this article we
will focus on an infinite family of topologically distinct lens spaces which was con-
jectured following a different approach and refer the reader to [10] where the former
type of infinite family is described in detail.

Theorem 5.3 The complex

Lk := {
(1 : 1 : 1 : 11 + 4k), (1 : 2 : 4 : 7 + 4k), (1 : 4 : 2 : 7 + 4k), (1 : 4 : 7 + 4k : 2)

}

k⋃

i=0

{
(2 : 5 + 2i : 2 : 5 + 4k − 2i), (4 : 2 + 2i : 4 : 4 + 4k − 2i)

}
(5.1)

is a combinatorial 3-manifold with n = 14 + 4k, k ≥ 0, vertices. It is homeomorphic
to the lens space L(k2 + 4k + 3, k + 2).

Proof Obviously, Lk has n = 14 + 4k vertices. By looking at Fig. 3 we can verify
that the link lkLk

(0) of the vertex 0 in Lk is a triangulated 2-sphere. Hence, as Lk

has transitive symmetry, it follows immediately that Lk is in fact a combinatorial 3-
manifold for all k ≥ 0. Furthermore, we can see that lkLk

(0) has 13 + 4k vertices and
thus Lk is 2-neighborly.

To determine the exact topological type of Lk we will proceed as follows:

1. for all k ≥ 0, determine a Heegaard splitting of Lk of genus 1 which will be given
by a decomposition of Lk into two disjoint solid tori T −

k and T +
k and a center

piece of type Cartesian product of a torus with an interval,
2. draw the middle torus Sk of the center piece as a slicing (see Fig. 4),
3. choose a basis {α−

k , β−
k } for the 1-homology of the boundary of the solid torus T −

k

such that H1(T
−
k ) = 〈β−

k 〉,
4. do the same for the solid torus T +

k , that is, choose {α+
k , β+

k } such that H1(∂T +
k ) =

〈α+
k , β+

k 〉 and H1(T
+
k ) = 〈β+

k 〉,
5. with the help of the slicing Sk , determine the class of α−

k in H1(∂T +
k )—by con-

struction this will be a torus knot which will determine the topological type of
Lk .
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Fig. 3 Link of vertex 0 of Lk—a triangulated 2-sphere with 13 + 4k vertices

1. For all k ≥ 0, the span of the even labeled vertices T −
k := span({0,2, . . . , n−1})

as well as the span of the odd labeled vertices T +
k := span({1,3, . . . , n}) (which is

combinatorially isomorphic to T −
k by the cyclic symmetry) form a solid torus.

To see this note that T −
k together with T +

k are exactly the difference cycles

T −
k ∪ T +

k =
k⋃

i=0

{
(4 : 2 + 2i : 4 : 4 + 4k − 2i)

} ⊂ Lk.

Since the gcd of 4, 2 + 2i and 4 + 4k − 2i, 0 ≤ i ≤ k, is 2 for all k ≥ 0, T −
k and T +

k

are disjoint but connected and we have

T −
k

∼= T +
k

∼=
k⋃

i=0

{
(2 : 1 + i : 2 : 2 + 2k − i)

} =: Tk.

For k = 0 we have T0 = {(1 : 1 : 1 : 4)} ∼= B2 × S1. If k ≥ 1, Tk consists of k + 1
difference cycles, which we will denote by δi := (2 : 1 + i : 2 : 2 + 2k − i), 0 ≤ i ≤ k.
δi shares two triangles per tetrahedron with δ2+i , 0 ≤ i ≤ k − 2, δk−1 shares two
triangles per tetrahedron with δk , k ≥ 1, δ1 shares two triangles per tetrahedron with
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Fig. 4 Slicing of Lk between the odd labeled and the even labeled vertices—a torus

itself and δ0 shares two triangles per tetrahedron with ∂Tk and hence contains the
complete boundary of Tk . Altogether, we have the following collapsing scheme of Tk :

Thus, Tk collapses onto δ1 = (2 : 2 : 2 : 1 + 2k) and since δ1 contains an odd number
of vertices we have δ1 ∼= (1 : 1 : 1 : 4 + 2k) ∼= B2 × S1.

Finally T −
k and T +

k span all the vertices of Lk and contain all tetrahedra with only
even or only odd vertex labels. As a consequence the center piece between the two
solid tori is of type Cartesian product of a torus with an interval, T −

k and T +
k define a

Heegaard splitting of Lk of genus 1 and Lk is homeomorphic to the 3-sphere, S2 ×S1

or a lens space L(p,q).
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Fig. 5 Fundamental domain of the boundary of T −
k

together with the basis {α−
k

,β−
k

} of H1(∂T −
k

) for
selected values of k and in greater generality

2. As follows from the above, the slicing Sk between the odd labeled and the even
labeled vertices is a torus and is shown in Fig. 4. It is interesting to see that apart from
T −

k and T +
k the difference cycles (1 : 2 : 4 : 7+4k) and (1 : 4 : 2 : 7+4k) are the only

ones which do not contain two odd and two even labels per tetrahedron and thus are
the only ones which are not sliced by Sk in a quadrilateral. Hence, Sk consists of only
28 + 8k triangles but (2 + k)(14 + 4k) + 7 + 2k = 4k2 + 24k + 35 quadrilaterals. Its
complete f -vector is

f (Sk) = (
4k2 + 28k + 49,8k2 + 60k + 112, (8k + 28)Δ,

(
4k2 + 24k + 35

)
�

)
.

3. and 4. In order to find a suitable basis of H1(∂T −
k ) as indicated above, let us

first take a look at ∂T −
k itself which is shown in Fig. 5. We choose the basis {α−

k , β−
k }

of H1(∂T −
k ) to be

α−
k = [0,4,8, . . . , n − 6,0],

β−
k = [0,6,12,18,22,26, . . . , n − 4,0]

or in the case that n < 26 as indicated in Fig. 5. By construction, α−
k is contractible

in T −
k and H1(T

−
k ) = 〈β−

k 〉.
For {α+

k , β+
k } we choose analogously

α+
k = [1,5,9, . . . , n − 5,1],

β+
k = [1,7,13,19,23,27, . . . , n − 3,1]

and hence H1(T
+
k ) = 〈β+

k 〉.
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5. To finish the proof we will express α−
k in terms of α+

k and β+
k . This is done by a

map φ : H1(∂T −
k ) → H1(∂T +

k ) which lifts any path in Lk passing only even labeled
vertices (a path in ∂T −

k ) to a homologically equivalent path passing only odd labeled
vertices (a path in ∂T +

k ). The image of a path under φ can be determined with the
help of the slicing Sk . In the case of α−

k it is the thick line in Fig. 4 and results in the
following path:

φ(α−
k ) = [n − 7, n − 9, n − 11, . . . ,9,7,1, n − 1, n − 3,

n − 3, n − 5, n − 7, . . . ,13,11,5,3,1,

1, n − 1, n − 3 . . . ,17,15,9,7,5,

. . .

n − 13, n − 15, n − 17, . . . ,3,1, n − 5, n − 7]. (5.2)

By taking a closer look to Fig. 5 we see that all edges of a path of type 〈s, s − 2〉
in both ∂T −

k and ∂T +
k go from the left upper corner of a square of the grid to the

lower right corner (↘) whereas an edge of type 〈s, s − 6〉 is simply going down in
the grid (↓). As φ(α−

k ) has (k + 2)(2k + 2) + 2k + 1 segments of type ↘ and k + 3
segments of type ↓, φ(α−

k ) results in the vector (2k2 + 8k + 5,2k2 + 9k + 8) on the
integer grid with basis (→,↓) (cf. Fig. 5 where ∂T +

k is obtained from ∂T −
k by the

shift v �→ (v + 1) mod n of all vertex labels).
On the other hand, we know that α+

k corresponds to the vector (k + 2,−1) and
β+

k to (k − 1,−3) on the grid for ∂T +
k with basis (→,↓). Thus, to express φ(α−

k ) in
terms of α+

k and β+
k we have to solve the following system of equations:

I. (k + 2)q + (k − 1)p = 2k2 + 8k + 5,

II. (−1)q + (−3)p = 2k2 + 9k + 8
(5.3)

which results in the solution

q = k2 + 3k + 1; p = −k2 − 4k − 3

and hence

φ
(
α−

k

) = (
k2 + 3k + 1

)
α+

k + (−k2 − 4k − 3
)
β+

k .

Furthermore, note that L(p,q1) ∼= L(p,q2) if and only if q1 ≡ ±q±1
2 mod p from

which it follows that

Lk
∼= L

(
k2 + 4k + 3, k + 2

)
. �

The family Lk can be modified into a family of 3-spheres which only differs from
Lk in the part which is disjoint to the slicing Sk . Hence, Theorem 5.3 shows that
combinatorial surgery of infinitely many essentially different types can be applied in
a setting respecting the cyclic symmetry of the underlying combinatorial manifolds.
The following corollary, which is a direct implication of Theorem 5.3, summarizes
the findings of this section under a more general point of view.
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Corollary 5.4 There are infinitely many topologically distinct combinatorial (prime)
3-manifolds with transitive cyclic symmetry.
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