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Abstract The topological Tverberg theorem has been generalized in several direc-
tions by setting extra restrictions on the Tverberg partitions.

Restricted Tverberg partitions, defined by the idea that certain points cannot be in
the same part, are encoded with graphs. When two points are adjacent in the graph,
they are not in the same part. If the restrictions are too harsh, then the topological
Tverberg theorem fails. The colored Tverberg theorem corresponds to graphs con-
structed as disjoint unions of small complete graphs. Hell studied the case of paths
and cycles.

In graph theory these partitions are usually viewed as graph colorings. As explored
by Aharoni, Haxell, Meshulam and others there are fundamental connections between
several notions of graph colorings and topological combinatorics.

For ordinary graph colorings it is enough to require that the number of colors q

satisfy q > Δ, where Δ is the maximal degree of the graph. It was proven by the first
author using equivariant topology that if q > Δ2 then the topological Tverberg theo-
rem still works. It is conjectured that q > KΔ is also enough for some constant K ,
and in this paper we prove a fixed-parameter version of that conjecture.

The required topological connectivity results are proven with shellability, which
also strengthens some previous partial results where the topological connectivity was
proven with the nerve lemma.

Keywords Tverberg’s theorem · Vertex decomposable · Topological
combinatorics · Graph coloring

A. Engström (B)
Department of Mathematics and Systems Analysis, Aalto University, Helsinki, Finland
e-mail: alexander.engstrom@aalto.fi

P. Norén
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
e-mail: patrik.noren@ist.ac.at

mailto:alexander.engstrom@aalto.fi
mailto:patrik.noren@ist.ac.at


208 Discrete Comput Geom (2014) 51:207–220

1 Introduction

Tverberg’s theorem [14] asserts that for any affine map f from a simplex on
(d + 1)(q − 1) + 1 vertices to R

d there is a partition of the vertices into q parts
such that

q⋂

i=1

f (simplex spanned by part i) �= ∅.

It was generalized by Bárány, Schlosman and Szűcs [3] to continuous f , but then
the equivariant topology used in the proof requires q to be a prime. Later this was
extended to q a prime power by Özaydin [12] (unpublished) and Volovikov [16].

Extra conditions on the Tverberg partitions can be encoded by graphs, indicating
that there are many Tverberg partitions, as done by Hell [8, 9]. Part of his work was
extended by Engström [7] who proved the following theorem.

Theorem Let G be a graph with (d + 1)(q − 1) + 1 vertices and q a prime power
satisfying

q > max
v∈V (G)

(∣∣N2(v)
∣∣ + 2

∣∣N(v)
∣∣)

where N2(v) is the set of vertices on distance two from v and N(v) is the set of
vertices adjacent to v. Then for any continuous map f from a simplex with the same
vertex set as G to R

d there is a q-coloring of G such that
q⋂

i=1

f (simplex spanned by color i) �= ∅.

The equivariant topology used to prove that theorem builds on that certain spaces
are topologically sufficiently connected. That was proven by topological methods as
the nerve lemma. But the question was raised, if, as was done for the chessboard com-
plexes by Ziegler [17], this could be proven by vertex decomposability and shellabil-
ity. We prove that this is possible in Corollary 2.14.

With the previous known versions of Tverberg’s theorem the following natural
conjecture was made in [7].

Conjecture There is a constant K such that the following holds: Let G be a graph
on (d +1)(q −1)+1 vertices and maximal degree Δ, and let f be a continuous map
from a simplex Σ with the same vertex set as G to R

d . If

q > KΔ

then there is a q-coloring of G satisfying
q⋂

i=1

f (simplex spanned by color i) �= ∅.

The emeritus of the field, Helge Tverberg, believes in the conjecture [15]. In Corol-
lary 3.4 we prove the following fixed-parameter version of it.
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Theorem For every ε > 0 there exists a constant Kε such that the following holds:
Let G be a graph on ((d + 1)(q − 1) + 1)(1 + ε) vertices and maximal degree Δ

(with d and Δ large enough depending on ε), and let f be a continuous map from a
simplex Σ with the same vertex set as G to R

d . If

q > KεΔ

then there is a q-coloring of G satisfying

q⋂

i=1

f (simplex spanned by color i) �= ∅.

The crucial statements in equivariant topology of Sect. 3 builds on graphs being
vertex decomposable. In Sect. 2 we introduce this concept and prove some fairly
technical statements about it. We have made an effort to make Sect. 2 completely
independent and only about graph theory, allowing experts in this field to improve on
our results without a deep understanding of the equivariant topology used in Sect. 3.

1.1 Some Notation

The neighborhood N◦
G(v) in a graph G of a vertex v is the set of vertices of G adjacent

to v; and N•
G(v) = N◦

G(v) ∪ {v}. The vertices on distance two from v in G, N2
G(v),

are all vertices u with a path on two edges to v. Usually we drop the G subscript if
the graph containment is clear. The complete graph on q vertices is Kq .

2 Decomposing Graphs

2.1 Vertex Decomposability of Simplicial Complexes

In topological combinatorics a central notion is shellability. A simplicial complex is
shellable if its facets can be pealed off in a controlled manner, providing a certificate
that the space topologically is a collection of equidimensional spheres wedged to-
gether at a point. One method to prove a complex shellable is by the stronger notion
of vertex decomposable. It is a powerful method, employed for example by Provan
and Billera for independence complexes of matroids [13]; and by Lee for the associ-
ahedron [11] as explained by Jonsson in [10]. Most simplicial complexes studied in
topological combinatorics are not wedges of spheres and a good bound on their topo-
logical connectivity is the best attainable description of their homology. One way
to achieve that is to prove that a pure skeleton is vertex decomposable, as done for
example by Ziegler [17] for chessboard complexes. For independence complexes de-
termined by graphs, we introduce a filtrated version of vertex decomposable right
off on the level of graphs, and then return to its topological interpretation and con-
sequences in Sect. 3. Note that we do not discuss the elementary question regarding
when one-dimensional simplicial complexes viewed as graphs are vertex decompos-
able.
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2.2 Vertex Decomposability of Graphs

Definition 2.1 For every non-negative integer k we define the graph property VDk .
Any graph G is VD0, and a graph G on k vertices and no edges is VDk . If G is a graph
with a vertex v such that G \ v is VDk and G \ N•(v) is VDk−1, then G is VDk .

Remark The empty graph is VD0.

This proposition is included to give some elementary examples.

Proposition 2.2 If G is the disjoint union of k edges and l vertices, then G is VDk+l .

Proof For k = 0 this is true by definition. For k > 0 pick a vertex v that is not isolated.
Then G \ v is VDk+l and G \ N•(v) is VDk+l−1 by induction, and G is VDk+l by the
definition. �

Proposition 2.3 If G is VDk and k ≥ l ≥ 0 then G is also VDl .

Proof Assume that l > 0 since any graph is VD0. In the case of only isolated vertices,
apply the recursive definition several times instead of the first part of the definition
right off. For the remaining cases it follows by induction on the number of vertices. �

Remark In Proposition 3.2 in Sect. 3 it will be proven that the (k − 1)-skeleton of the
independence complex of G is pure (k − 1)-dimensional and vertex decomposable if
G is VDk .

Proposition 2.4 If G is VDk and H is VDl then the disjoint union of G and H is
VDk+l .

Proof This is proved by induction on |V (G � H)| and |E(G � H)|. For the
case |E(G ∪ H)| = 0 this is true by definition and when |V (G � H)| = 0 then
|E(G � H)| = 0.

Without loss of generality assume that G has an edge.
There is a vertex v ∈ V (G) so that G \ v is VDk and G \ N•(v) is VDk−1.
Now G\v�H = (G�H)\v and G\N•(v)�H = (G�H)\N•(v). By induction

it follows that (G�H)\v is VDk+l and that (G�H)\N•(v) is VDk+l−1. This proves
that the disjoint union of G and H is VDk+l . �

Our goal in preparation of Sect. 3 and the equivariant topology, is to prove that
graphs are VDk for as high k as possible. There is a procedure that is not strong
enough, but since our approach builds on it, we explain it. First we need a lemma
that in the simplicial complex setting is due to Ziegler [17]. The lemma needed is a
special case of Proposition 2.4.

Lemma 2.5 If G has an isolated vertex v and G \ v is VDk−1, then G is VDk .
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Proof This is the special case of Proposition 2.4 when one of graphs is G \ v and the
other graph is v. �

Lemma 2.5 indicates that one way to recursively prove that a graph is VDk for a
non-trivial k, is to turn vertices isolated by removing their adjacent vertices, and then
increase k by applying Lemma 2.5. Here is one way to formalize that.

Lemma 2.6 Let G be a graph with a vertex v whose neighborhood is N(v) =
{u1, u2, . . . , un}. If G \ N•(v) and

G \ (
N•(ui) ∪ {u1, u2, . . . , ui−1}

)
for 1 ≤ i ≤ n

are VDk−1, then G is VDk .

Proof From Lemma 2.5 and that G \ N•(v) is VDk−1 we get G \ N◦(v) = G \
{u1, u2, . . . , un} is VDk . Now the idea is to add the vertices un,un−1, . . . , u1 one
by one to get G and control the invariant VDk during the process.

For i = n,n−1, . . . ,2,1, use Definition 2.1 on G\{u1, u2, . . . , ui−1} with the ver-
tex ui . It follows that G\{u1, u2, . . . , ui−1} is VDk from that (G\{u1, u2, . . . , ui−1})\
ui = G \ {u1, u2, . . . , ui} is VDk and (G \ {u1, u2, . . . , ui−1}) \ N•(ui) = G \
(N•(ui) ∪ {u1, u2, . . . , ui−1}) is VDk−1.

With the last step of i = 1, we add the vertex u1 and get G\{u1, u2, . . . , ui−1} = G

which is VDk . �

For generic graphs, avoiding global structures as in Cartesian products, the fol-
lowing proposition is efficient.

Proposition 2.7 (Dochtermann and Engström [5], Theorem 5.9) Let G be a graph
on n vertices and maximal degree Δ > 0. Then G is VD
n/2Δ�.

Proof We do induction on the number of vertices. The basis case of the induction is
when the number of vertices are 0 ≤ n < 2Δ. In that range the proposition states that
G should be VD0, and all graphs satisfy that.

If n ≥ 2Δ then fix some vertex v of G with neighborhood N◦(v) = {u1, u2,

. . . , um}. Now consider the following subgraphs: G \ N•(v) and G \ (N•(ui) ∪
{u1, u2, . . . , ui−1}) for 1 ≤ i ≤ m. All of these graphs includes a subgraph of G got-
ten by deleting an edge and all neighbors of the vertices of that edge. So, all of them
have less vertices than G, but the difference is at most 2Δ vertices. Thus by induc-
tion, and by the fact that the maximal degree never increases by taking subgraphs, all
of them are VD
n/2Δ�−1. By Lemma 2.6, the graph G is VD
n/2Δ�. �

2.3 A Few Algorithms

In Engström [7] a much weaker version of our main theorems was proved by remov-
ing squids. Our approach follows this idea, but is much more technically involved. To
begin with we define a class of algorithms to remove squids, called DF-algorithms.
Then we prove that any DF-algorithm provides certificates that graphs are of the right
VDk class.
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Fig. 1 For G a path on four vertices and q = 5, any subset of the marked vertices is a squid in G�Kq

with body w. On the right is a grimalditeuthis bonplandi squid without tentacles [1]

But first we define the Cartesian product and squids. The Cartesian product of two
graphs G and H , denoted G�H , is the graph with vertex set V (G)×V (H) and edge
set
{
(u, v)

(
u′, v

) ∣∣ uu′ ∈ E(G), v ∈ V (H)
} ∪ {

(u, v)
(
u,v′) ∣∣ u ∈ V (G), vv′ ∈ E(H)

}
.

As an example, the Cartesian product of the graph consisting of k isolated vertices and
the edge K2 is k isolated edges, a graph that is VDk . When passing to independence
complexes, an important class of graphs are Cartesian products of complete graphs,
because they become chessboard complexes.

Definition 2.8 A squid with body w in G�Kq is a subset of V (G�Kq) that is either

(i) a subset of
(
N◦

G(v) ∪ N◦
G(w)

) × {i} ∪ {w} × {1,2, . . . , q}
for two adjacent vertices v and w, and 1 ≤ i ≤ q , or

(ii) a subset of

N◦
G(w) × {i, j} ∪ {w} × {1,2, . . . , q}

where 1 ≤ i < j ≤ q .

The vertices not of the form (w, k) are arms. The heart of a squid of type (i) is (w, i)

and the hearts of a squid of type (ii) are (w, i) and (w, j). The hearts and body is part
of the squid data, and two squids could be on the same subset of V (G�Kq) but differ
in that regard.

If S is a squid, then we also use the symbol S for the subset of V (G�Kq) in
set theoretic statements if no confusion occurs. In Fig. 1 are examples of squids. An
instance of squids removed from a Cartesian product G�Kq is modeled as a DF-
tuple.
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Definition 2.9 A DF-tuple is a five tuple (G,q, j, {S1, S2, . . . , Sj },m) consisting of

(1) a finite graph G with vertices in N;
(2) integers |G| ≥ m ≥ j ≥ 0, and q > 0; and
(3) squids S1, S2, . . . , Sj in G�Kq .

In the definition of DF-tuples nothing is assumed regarding if squids intersect
each other or are empty. An adversary would try to achieve the opposite, to cover
the Cartesian product with as few squids as possible. A particularly bad situation
would be if a whole copy of Kq would be covered by arms of squids without anyone
having its heart there. To avoid this we construct DF-algorithms. A DF-algorithm is
a collection of DF-tuples with an instruction for how to remove one more squid if
j < m. The squid to be removed is defined by a map from the collection of tuples
into itself. Alternatively, we could have stated this as a decision-tree where the player
trying to maximize k in VDk decides where one heart of the squid should be, and the
adversary decides on what type of squid with that heart that should be removed.

Definition 2.10 A DF-algorithm (A,G) is a set G of DF-tuples, and a map

A : {(G,q, j, {S1, S2 . . . , Sj },m
) ∈ G|j < m

} →N×N

that for any T = (G,q, j, {S1, S2, . . . , Sj },m) ∈ G with j < m, satisfies

(1) (v, i) := A(T ) ∈ V (H) where H = G�Kq \ ⋃j

i=1 Sj , and
(2) if

(a) S ⊆ N◦
H (v, i) ∪ N◦

H (v, j ′) for some (v, j ′) ∈ H , or
(b) S ⊆ (N◦

H (v, i) ∩ G�{i}) ∪ N◦
H (u, i) for some u ∈ N◦

G(v) with (u, i) ∈ H ,
then (G,q, j + 1, {S1, S2, . . . , Sj , S},m) ∈ G.

After setting up the definitions and notations for removing squids with DF-
algorithms, we now prove that they certify that the relevant Cartesian products
are VDk .

Theorem 2.11 Let (A,G) be a DF-algorithm. If (G,q, j, {S1, S2, . . . , Sj },m) is in

G then G�Kq \ ⋃j

i=1 Si is VD(m−j).

Proof Set H = G�Kq \⋃j

i=1 Si . The proof is by induction on m− j . The base case
m = j , that H is VD0, follows from Definition 2.1.

Now assume that m > j and set (v, i′) = A((G,q, j, {S1, S2, . . . , Sj },m)). The
neighbors of (v, i′) in H are either in G × {i′} or in {v} × Kq . Chose a linear order
of the neighbors

N◦
H

(
v, i′

) = {
(u1, j1), (u2, j2), . . . , (un, jn)

}

such that u1 = u2 = · · ·uk = v and jk+1 = jk+2 = · · · jn = i′ for some k.
For l = 1,2, . . . , n define squids

S′
l = N◦

H (ul, jl) ∪ {
(u1, j1), (u2, j2), . . . , (ul, jl)

}
.

By just parsing the definition of a DF-algorithm letter by letter in this situation, we
see that (G,q, j + 1, {S1, S2, . . . , Sj , S

′
l},m) is in G
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by (2.b) in Definition 2.10 for 1 ≤ l ≤ k, and
by (2.a) in Definition 2.10 for k < l ≤ n.

Define one more squid S′′ = N◦
H (v, i′) ∩ G × {i′} and once again by just parsing

(2.a) of Definition 2.10 letter by letter in this situation, we find that (G,q, j +
1, {S1, S2, . . . , Sj , S

′′},m) is in G. This is not an unexpected consequence of Defi-
nition 2.10, rather the other way around. That definition was constructed to be able to
prove this theorem with exactly this proof. The interested reader might simply reverse
engineer Definition 2.10 from this proof. There is nothing deep going on here, just
formal verifications.

By induction, H \ S′′, and H \ S′
l for 1 ≤ l ≤ n, are VD(m−j−1). We can now

conclude by Lemma 2.6 that H = G�Kq \ ⋃j

i=1 Si is VD(m−j). �

Corollary 2.12 Let (A,G) be a DF-algorithm. If (G,q,0,∅,m) ∈ G then G�Kq

is VDm.

Proof This is a special case of Theorem 2.11. �

We now introduce two DF-algorithms. Using the first one, we later show the same
Tverberg type results as in Engström [7], but employ only the combinatorial topology
of shellability instead of stronger abstract tools from algebraic topology. This proves
Conjecture 3.10 of [7], and gives a result in the same spirit as Ziegler’s paper [17],
where he proved that the optimal connectivity bounds of chessboard complexes can
be proved by shelling skeletons of chessboard complexes.

Theorem 2.13 Fix a graph G and a positive integer m with m ≤ |G|. Let q be an
integer with q > |N2(v)| + 2|N◦(v)| for all vertices v of G.

Let G be the set of DF-tuples (G,q, j, {S1, S2, . . . , Sj },m).

Then G�Kq \ ⋃j

i=1 Si is non-empty if j < m and any map

A : {(G,q, j, {S1, S2 . . . , Sj },m
) ∈ G|j < m

} →N×N

sending (G,q, j, {S1, S2, . . . , Sj },m) to any vertex of G�Kq \⋃j

i=1 Si defines a DF-
algorithm (A,G).

Proof The first step is to prove that H = G�Kq \⋃j

i=1 Si is non-empty. By assump-
tion j < m and there is a vertex in v in G that is not a body of a squid Si . We claim
that v�Kq ∩ H is non-empty. If it was empty, it was deleted by arms of squids.

The worst case is if all vertices in N(v) are bodies of type (ii) squids in
{S1, S2, . . . , Sj } and all vertices in N2(v) are bodies of type (i) squids in {S1, S2,

. . . , Sj }. In this case the maximal number of vertices removed from v�Kq is
|N2(v)| + 2|N(v)|, but q > |N2(v)| + 2|N(v)| and then v�Kq ∩ H is non-empty.

Now a map

A : {(G,q, j, {S1, S2 . . . , Sj },m
) ∈ G|j < m

} →N×N

sending (G,q, j, {S1, S2, . . . , Sj },m) to any vertex of G�Kq \⋃j

i=1 Si defines a DF-
algorithm (A,G), as there is no restrictions on the squids. �
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Corollary 2.14 Let q be an integer and G a graph on m vertices with q > |N2(v)|+
2|N(v)| for all vertices v. Then G�Kq is VDm.

Proof There are no restrictions on the collections of squids in G from Theorem 2.13
and then (G,q,0,∅,m) ∈ G. Corollary 2.12 now proves the statement. �

To prove the second main theorem of this paper, we need a more dynamic way to
remove squids. We will use the following strategy to remove squids from G�Kq : We
first remove n1 squids with hearts on the top row G × r1 where r1 = 1. The removal
of these squids will have different effect on the rows G × j with j > 1. If a large
number of squids have arms also on row G × j , then this row is a bad choice for
continuing the removal of squids from. So the next step is to let r2 be the top-most
row with the most number of preserved vertices. We remove n2 squids with hearts
on the row G × r2 and proceed in the same manner, until n1 + n2 + · · · + nk is large
enough. To ensure that we simply don’t run out of vertices, the sizes ni are specified
with a dynamic DF-size scheme.

Definition 2.15 Let n,q,Δ be positive integers and let (n1, n2, . . . , nk) be a se-
quence of positive integers.

A tuple (n, q,Δ, (n1, . . . , nk))is a dynamic DF-size scheme if

(1) q ≥ k > 0 and all ni > 0; and
(2) for each 1 ≤ j ≤ k

(
Δ

q − j + 1
+ 1

)(j−1∑

i=1

ni

)
+ 2Δnj ≤ n.

Theorem 2.16 For every ε > 0 there exists a constant Kε such that for every graph
G with N(1 + ε) vertices (with Nand Δ large enough depending on ε) and

q > KεΔ,

there is a dynamic DF-size scheme (n1, n2, . . . , nk) with n = N(1 + ε) and N ≤∑k
i=1 ni .

Proof We only need asymptotic estimates and disregard that several of the variables
should be integers. To satisfy (2) of Definition 2.15 we prove that

a

(j−1∑

i=1

ni

)
+ 2Δnj ≤ n = N(1 + ε)

for some a when the nj are defined properly. To satisfy this inequality, with equality
for all j , we set

nj = N(1 + ε)

2Δ

(
2Δ − a

2Δ

)j−1

.
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Now set k = 2Δγ and a = √
1 + ε in

k∑

j=1

sj = N(1 + ε)

2Δ

1 − ( 2Δ−a
2Δ

)k

1 − ( 2Δ−a
2Δ

)

= N(1 + ε)
1 − ( 2Δ−a

2Δ
)k

a

= N
√

1 + ε

(
1 −

(
1 − γ

√
1 + ε

2Δγ

)2Δγ )

≥ N
√

1 + ε
(
1 − eγ

√
1+ε

)

= N

with γ = − 1√
1+ε

ln(1 − 1√
1+ε

). Finally, the variable a should satisfy

√
1 + ε = a = 1 + Δ

q − k
= 1 + 1

Kε − 2γ
,

and we set

Kε = √
1 + ε − 1 + 2γ = √

1 + ε − 1 − 2√
1 + ε

ln

(
1 − 1√

1 + ε

)
. �

Now we describe how to get a DF-algorithm from a dynamic DF-size scheme.

Definition 2.17 Given a graph G with vertices in N of maximal degree Δ, and a
dynamic DF-size scheme (n1, n2, . . . , nk) with n,q; the dynamic DF-scheme is the
set G of DF-tuples (G,q, j, {S1, S2, . . . , Sj }, n) such that:

• for each l with s1 + s2 + · · · + sl−1 ≤ j all the squids

Sn1+n2+···+nl−1+1, . . . , Smax{n1+n2+···+nl,j}
have hearts on the same row G × rl ,

• all the rl are different,
• when the squids with hearts on rows G× r1,G× r2, . . . ,G× rl−1 are deleted, then

G × rl is the top-most row with maximal number of preserved vertices.

together with a map

A : {(G,q, j, {S1, S2 . . . , Sj , }, n
) ∈ G|j < n

} → N×N

defined as the vertex (v, ri) ∈ G�Kq \ (S1 ∪S2 ∪ · · · ∪Sj ) for which n1 +n2 +· · ·+
ni−1 < j ≤ n1 + n2 + · · · + ni and

v = min(u | (u, ri) ∈ G�Kq \ (S1 ∪ S2 ∪ · · · ∪ Sj ).

A dynamic DF-scheme is a DF-algorithm, since the dynamic DF-scheme guaran-
tees

{
u | (u, ri) ∈ G�Kq \ (S1 ∪ S2 ∪ · · · ∪ Sj

}

to be non-empty.
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Corollary 2.18 For every ε > 0 there exists a constant Kε such that for every graph
G with N(1 + ε) vertices (with Nand Δ large enough depending on ε) G�Kq is
VDN if q > KεΔ

Proof This follows directly from Corollary 2.12, Theorem 2.16 and Definition 2.17. �

3 Equivariant Topology

In this section we will use the facts about vertex decomposable graphs derived in
Sect. 2 to derive new theorems of Tverberg type. Recall that a set of vertices of a
graph G is independent if none of them are adjacent. The independence complex of
a graph G, denoted Ind(G), is the simplicial complex on the same vertex set as
G whose faces are the independent sets of G. For basic combinatorial topology we
refer to Björner’s excellent survey [4], but we collect a few useful facts. The link
of a vertex v of Σ is lkΣ(v) = {σ ∈ Σ | v /∈ σ, σ ∪ {v} ∈ Σ}, and the deletion of
v is dlΣ(v) = Σ \ v = {σ ∈ Σ | v /∈ σ }. For independence complexes lkInd(G)(v) =
Ind(G\N•(v)) and dlInd(G)(v) = Ind(G\v). A more comprehensive introduction
to basic operations on independence complexes is given in [6]. The k-skeleton of Σ

is Σ≤k = {σ ∈ Σ | dimσ ≤ k}, and an easy exercise is lkΣ≤k (v) = lkΣ(v)≤k−1 and
dlΣ≤k (v) = dlΣ(v)≤k .

Definition 3.1 A simplicial complex Σ is vertex decomposable if it is pure, and
either Σ = {∅} or it has a vertex v with lkΣ(v) and dlΣ(v) vertex decomposable.

The most important consequences of a pure d-dimensional complex being ver-
tex decomposable, is that it is shellable, homotopically a wedge of d-dimensional
spheres, and, in particular, (d − 1)-connected.

Proposition 3.2 If G is a VDk graph then Ind(G)≤k−1 is pure (k − 1)-dimensional
and vertex decomposable.

Proof We first prove that if G is VDk then Ind(G)≤k−1 is pure (k − 1)-dimensional.
The first case is that Ind(G)≤−1 = {∅} is pure (−1)-dimensional for all G.
The second case is when G is a k-vertex graph without edges. Then Ind(G)≤k−1

is a (k − 1)-simplex and pure (k − 1)-dimensional.
The third case is when G is VDk since G \ v is VDk and G \ N•(v) is VDk−1.

Say that σ ∈ Ind(G)≤k−1 would be a facet of dimension less than k − 1 to reach
a contradiction. If v /∈ σ then we get a contradiction right off since σ is in the pure
(k − 1)-dimensional complex Ind(G \ v)≤k−1. If v ∈ σ , then σ \ v is not a facet of
Ind(G \ N•(v))≤k−2 since it is pure and (k − 2)-dimensional. If we extend σ \ v to
a facet τ in Ind(G \ N•(v))≤k−2, then σ is strictly included in the facet τ ∪ {v} of
Ind(G)≤k−1 and we have a contradiction.

Now we prove that Ind(G)≤k−1 is vertex decomposable if G is VDk .
The complex {∅} is vertex decomposable by definition, and simplices are by an

easy argument left to the reader.
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Now to the case that G is VDk since G \ v is VDk and G \ N•(v) is VDk−1.
The deletion dlInd(G)≤k−1(v) = dlInd(G)(v)≤k−1 = Ind(G \ v)≤k−1 is vertex de-
composable since G \ v is VDk . The link lkInd(G)≤k−1(v) = lkInd(G)(v)≤k−2 =
Ind(G \ N•(v))≤k−2 is vertex decomposable since G \ N•(v) is VDk−1. We con-
clude that Ind(G)≤k−1 is vertex decomposable. �

Theorem 3.3 Let q ≥ 2 be a prime power, d ≥ 1, and set N = (d + 1)(q − 1) + 1.
Let Σ be a simplex on the same vertex set as G and f a continuous function from Σ

to R
d . If G�Kq is VDN , then there is a q-coloring of G

C1 ∪ C2 ∪ · · · ∪ Cq = V (G)

such that
q⋂

i=1

f (simplex spanned by Ci)

is non-empty.

Proof The complex Ind(G�Kq)≤N−1 is vertex decomposable by Proposition 3.2
since G�Kq is VDN . The complex Ind(G�Kq) is (N − 2)-connected since
Ind(G�Kq)≤N−1 is that.

Now the remaining part of the proof is standard equivariant topology, a minor
modification of Theorem 2.2 in [7], and we only sketch the proof.

The map f from Σ to R
d induces a map f ∗q from the q-fold join Σ∗q to the

q-fold join (Rd)∗q . If we restrict Σ∗q to the σ1 ∗ σ2 ∗ · · · ∗ σq where all pairs σi, σj

are disjoint, then we get the 2-wise q-fold deleted join

Ind
(
G′�Kq

)

where G′ is the graph on the same vertex set as G but with no edges. If we further
restrict the deleted join to require that all σi are independent sets, then we get

Ind(G�Kq).

To prove the theorem by contradiction, suppose that there is no q-coloring whose
images of the faces given by the colors intersect in a non-empty set. Then the image
of the map can be restricted, and we have a map

f ∗q : Ind(G�Kq) → (
R

d
)∗q \ {

γ1x + · · · + γqx | x ∈R
d
}
.

By assumption q is a prime power pk , and there is a free Z
k
p action on Ind(G�Kq)

and (Rd)∗q by permuting the q coordinates. This action extends to the map f ∗q .
By a Borsuk-Ulam type argument of Volovikov [16], such an equivariant map into
(Rd)∗q \ {γ1x + · · · + γqx | x ∈ R

d} forces the connectivity of Ind(G�Kq) to be
at most N − 3 = (d + 1)(q − 1) − 2. But since it is (N − 2)-connected we have a
contradiction. �

Corollary 3.4 For every ε > 0 there exists a constant Kε such that the following
holds: Let G be a graph on ((d + 1)(q − 1) + 1)(1 + ε) vertices and maximal degree
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Δ (with d and Δ are large enough depending on ε), and let f be a continuous map
from a simplex Σ with the same vertex set as G to R

d . If

q > KεΔ

then there is a q-coloring of G satisfying
q⋂

i=1

f (simplex spanned by color i) �= ∅.

Bertrand’s postulate states that there is a prime between q and 2q . According to
classical analytic number theory, there is a prime between q and q + qα for some
α < 1 when q large enough. A contemporary result is α = 0.525 [2]. In the proof it
is only needed that for every δ > 0, if q is sufficiently large, there is a prime between
q and q + δq .

Proof The proof is in two steps. The first step is to prove it for q a prime power, the
second step is to prove it for general q using the prime-power case and estimates for
the density of primes.

According to Corollary 2.18 there is a constant K
p
ε such that G�Kq is

VD(d+1)(q−1)+1 if q > K
p
ε Δ. By Theorem 3.3 we see that there is a q-coloring with

the intersection of the images of monochromatic simplices non-empty if q is a prime
power.

An important easy property of the numbers K
p
ε needed in the following argument,

which has not been spelled out explicitly before, is that if ε1 < ε2 then K
p
ε1 ≥ K

p
ε2 . To

ensure that all involved numbers are integers there is a lower bound Δε for Δ.
The next step is to construct Kε that works for arbitrary q . It will be proved that

Kε = max(K
p

ε/16,Bε/4/Δε) works.
For every δ > 0 there is an integer Bδ so that if q ≥ Bδ then there is a prime qp so

that q ≤ qp < q(1 + δ).
Assume that q ≥ max(K

p

ε/16,Bε/4/Δε)Δ. Let qp ≥ q be the prime power closest
to q . Now qp is bounded above by q(1 + ε/4).

It is possible to find εp so that
(
(d + 1)(q − 1) + 1

)
(1 + ε) = (

(d + 1)(qp − 1) + 1
)
(1 + εp)

and as qp is bounded above by q(1 + ε/4) a straightforward calculation shows that
εp is bounded below by ε/16.

Now there is a qp coloring of G that gives a non-empty intersection by the prime-
power case. Only intersecting q of the color classes also give a non-empty inter-
section. One can extend the partial coloring obtained by the q picked classes into
a complete coloring only using q colors as the maximum degree of a vertex is less
than q , this is true as Kε can be assumed to be greater than 1. This new coloring also
give a non-empty intersection as the intersection only grows by adding vertices to the
color classes. �
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