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Abstract We present a deterministic algorithm to compute the Reeb graph of a PL
real-valued function on a simplicial complex in O(m log m) time, where m is the size
of the 2-skeleton. The problem can be solved using dynamic graph connectivity. We
obtain the running time by using offline graph connectivity which assumes that the
deletion time of every arc inserted is known at the time of insertion. The algorithm
is implemented and experimental results are given. In addition, we reduce the offline
graph connectivity problem to computing the Reeb graph.
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1 Introduction

Let f be a continuous function from a topological space to the real line. Roughly
speaking, the Reeb graph of f is achieved by considering connected components of
preimages (or level-sets) f −1(r) as points, for r ∈ R. When the domain contains no
nontrivial loop, such as R

d , Reeb graph is the same as the contour tree. For example,
for the altitude function on a terrain, contours (preimage components) are drawn on
the plane, and their evolution traces out the contour tree. On the other hand, if the
domain is a torus, contours should be drawn on a torus and it is no longer true that
their evolution traces a tree; it traces a graph called the Reeb graph.

The Reeb graph of f provides a compact description of the domain, seen through f .
Reeb graphs have found applications in a wide range of areas such as shape matching
and retrieval [4,16,31], shape segmentation and simplification [23,32], animation
[3,18], high dimensional data visualization and analysis [14,19] and robotics [22].
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We refer to [5,6] for a survey of the Reeb graph and some applications. In this paper
we consider the efficient computation of the Reeb graph of a piecewise linear function
on an arbitrary simplicial complex. This setting is general enough to approximate
functions and spaces usually considered in practice.

Our contributions are the following:

– We give the first algorithm that runs in worst-case time O(m log m), where m is
the size of the 2-skeleton. This is certainly optimal, if the number of edges and
triangles of the complex is in the same order as the number of vertices.

– We implemented a simple version of the algorithm including a heuristic to speed
up the computation. This implementation gives running times superior to those of
existing algorithms. Given the simplicity and possible choices for the implemen-
tation, it might turn into the algorithm of choice for various applications.

– We use an offline variant of the dynamic graph connectivity and show that this
offline problem is equivalent to Reeb graph construction.

2 Related Work

Carr et al. [7] gave an efficient algorithm for computing the contour tree for a function
on a simplicial complex domain in time O(n log n + mα(m)), where n is the number
of vertices and m is the number of edges of the input complex. The first algorithm
to compute the Reeb graph was given by Shinagawa and Kunii [24] that works for
the triangulation of a 2-manifold and runs in time Θ(n2). This algorithm sweeps the
vertices in increasing order of function values and maintains the preimage. For the case
of 2-manifolds, Cole-McLaughlin et al. [8] improved the running time to O(n log n).
They used circular lists to maintain the preimage.

The Reeb graph of a d-dimensional simplicial complex for d ≥ 2, depends only on
the 2-skeleton, whose size we denote by m. One can maintain the preimage components
as graphs, reducing to dynamic graph connectivity on a graph of size m. Then, for
an arbitrary simplicial complex, the sweep algorithm asymptotically runs in time m
times the bound for an operation in the dynamic graph connectivity data structure.
The number of nodes of the graph is O(m). Doraiswamy and Natarajan [10] were the
first to use this reduction to compute the Reeb graph, see Sect. 4 for details.

Holm et al. [17] gave a deterministic algorithm for dynamic graph connectiv-
ity with O(log2 m) amortized time per operation. As used in [10], this connectiv-
ity algorithm resulted in the best deterministic algorithm for the Reeb graph for a
general simplicial complex before this paper. Moreover, Thorup [29] presents an
algorithm with O(log m(log log m)3) expected amortized running time per oper-
ation for the dynamic graph connectivity. For computing the Reeb graph on a
3-manifold, Doraiswamy and Natarajan [10] give an algorithm that runs in expected
time O(m log m+m log g(log log g)3), where g is the maximum genus over all preim-
ages. This algorithm maintains a tree/co-tree partition of the graph, and uses Thorup’s
randomized graph connectivity.

Tierny et al. [30] present an algorithm that works on 3-manifolds-with-boundary
embedded in R

3. Their algorithm runs in time O(m log m + hm), where h is the
number of independent loops in the Reeb graph. This algorithm is not general but is
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very efficient. A streaming algorithm for computing the Reeb graph of an arbitrary
simplicial complex is presented in [20] with Θ(nm) running time. Harvey et al. [15]
presented a randomized algorithm with the expected running time O(m log m). The
algorithm works by collapsing triangles adjacent to a vertex. In the end, the complex
collapses to a representation of the Reeb graph. The evolution of the Reeb graph, as
the function varies over time, is studied in [11]. In [9], the authors study approximation
of the Reeb graph and its persistence. Higher dimensional analogs of Reeb graphs are
called Reeb spaces. They are more difficult to compute, however. These spaces are
studied in [12].

We also mention that there has been extensive research on the dynamic graph
connectivity and related problems, both from the upper bound and from the lower
bound point of view. In addition to the above, Patrascu and Demaine [21] proved
an Ω(log m) lower bound in the cell-probe model. Eppstein [13] uses a linear time
minimum spanning tree algorithm to solve the offline minimum spanning tree problem
in O(log m) time per operation. This is the only reference to offline graph connectivity,
and we came to know about it after publishing this paper.

3 Background

3.1 Simplices and Simplicial Complexes

A d-simplex is the convex hull of d + 1 affinely independent points V = {v0, . . . , vd}
in some Euclidean space, e.g. R

d , where d ≥ 0. The set V = V (σ ) is called the vertex
set of the simplex. Let σ be a d1-simplex and δ a d2-simplex. If V (σ ) ⊂ V (δ), we
say σ is a d1-face of δ and denote it by σ ≤ δ. We also call a 0-simplex, a 1-simplex
and a 2-simplex a vertex, an edge and a triangle, respectively. If K is a finite set of
simplices, all in the same Euclidean space, then K is a simplicial complex provided
(i) δ ∈ K and σ < δ ⇒ σ ∈ K , (ii) σ1, σ2 ∈ K ⇒ σ1 ∩ σ2 < σ1, σ2 if σ1 ∩ σ2 is
not empty. We define K0, K1 and K2 to be the set of vertices, edges, and triangles,
respectively, of the simplicial complex K . Moreover, set n0 = #K0, n1 = #K1 and
n2 = #K2, where # denotes the number of elements of the set. By |K | we mean
the underlying space of K , i.e. |K | = ⋃

σ∈K σ with the topology inherited from the
ambient Euclidean space. For convenience, if no ambiguity is caused, we also write
K instead of |K |. The dimension of a simplicial complex is the highest dimension
of its simplices. The k-skeleton of the simplicial complex, denoted K k , is the set of
its simplices of dimension at most k. We denote by m the size of the 2-skeleton, i.e.
m = n0 + n1 + n2.

If x ∈ |K |, then there is a unique simplex with smallest dimension that contains x ,
say σ ′. By definition of a simplex, x can be written as a convex combination of the
vertices of σ ′. Setting the coefficients of other vertices in K0 to zero, we can write
x as a convex combination of points in K0 in a unique way: x = ∑n0

i=1 bivi where
K0 = {v1, v2, . . . , vn0} and

∑
i bi = 1 and bi ≥ 0 for all i . The numbers bi are called

the barycentric coordinates of x ∈ |K |.
To express the difference with a complex, we call the vertices of a graph nodes and

its edges arcs. Graphs in this paper will be abstract over a fixed, labeled set of nodes.
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3.2 Reeb Graph

Let f : K0 → R be a function. We say that f is generic if it is injective. In this
paper, we always assume the function f on the set of vertices to be generic. One can
extend f to all of |K | by setting f (x) = ∑

i bi f (vi ), where bi are the barycentric
coordinates of x . Then, the extended function f , is called a piecewise linear function
from |K | to R. Now, fix r ∈ R and consider the preimage of r : f −1(r) = {x ∈
|K |, f (x) = r}. If σ ∈ K is a d-simplex, then f −1(r) ∩ σ is the intersection of
a (d − 1)-plane with σ . It is not hard to see that f −1(r) ∩ K 2 is also a simplicial
complex, namely, f −1(r) ∩ K 2 = {σ ∩ f −1(r) : σ ∈ K 2}. Therefore, every vertex
of f −1(r) ∩ K 2, r /∈ f (K0), corresponds to exactly one edge of K and every edge of
it comes from a unique triangle of K .

We are interested in the connected components of f −1(r), and their behavior as r
varies. The Reeb graph of a function f : |K | → R is the topological graph obtained
by contracting every connected component of f −1(r) to a point, for every r ∈ R.
So it is a quotient space of |K | with the quotient topology. Formally this means
that, two points in |K | are equivalent if they belong to the same connected com-
ponent of f −1(r) for some r ∈ R, and the Reeb graph is the set of equivalence
classes of this relation, with quotient topology. Intuitively, the points of the Reeb
graph are connected together as the preimage components were connected together.
Thus, f −1(r) reduces to a finite set of points and as r varies, these points trace out
arcs of a graph which meet at points where corresponding connected components meet
(Fig. 1).

It is easily seen that when r changes continuously, without passing any f (v) value,
the connected components of the preimages f −1(r) remain unchanged. Given a simpli-
cial complex and a generic piecewise linear function, we are concerned with finding
an efficient algorithm that computes its Reeb graph. Note that if the complex K is
d-dimensional, one can easily embed the Reeb graph in |K | ⊂ R

k , where k is as in
the definition of the complex. However, there is no “natural” embedding of the Reeb
graph on the plane (page) for example. This is true, even if the Reeb graph is planar.

Fig. 1 A drawing of the Reeb graph for the height function on a simplicial complex embedded in space

123



868 Discrete Comput Geom (2013) 49:864–878

In the following we look at the Reeb graph as an abstract graph. We also note that, the
Reeb graph is in fact a multigraph.

If we sweep the Reeb graph in increasing function value, a node is a point where a
component (arc) is created, merged with others, split or destroyed. Since these events
can happen only at preimage of some f (v) and the preimage only includes one vertex
v, vertices can be used to identify Reeb graph nodes. Consider the component of
f −1( f (v)) containing v. If the contraction of this component in the Reeb graph is
not a node, we call v Reeb-regular. In other words, Reeb-regular vertices correspond
exactly to those v such that when the preimage changes from f −1( f (v) − ε) to
f −1( f (v) + ε) no arcs of the Reeb graph are created, get destroyed, merge or split. If
a vertex is not Reeb-regular, we call it Reeb-critical. Therefore, a Reeb-critical vertex
identifies a node of the Reeb graph. Moreover, a Reeb-critical value is the function
value of a Reeb-critical vertex. Other values are Reeb-regular.

4 Algorithm

We describe the algorithm in two parts. First we show how to reduce the problem to
that of maintaining connected components of a graph through insertion and deletion
of arcs, then we explain how the latter problem can be solved in our setting within
optimal time bounds. The Reeb graph of a d-dimensional simplicial complex depends
only on its 2-skeleton so we assume that the input is the 2-skeleton of the original
complex, then f −1(r) is a 1-dimensional simplicial complex.

The input to our algorithm is described as a list of vertices, edges and triangles.
Edges and triangles are defined by indexing their vertices. Also, for every vertex we
need to know edges and triangles incident on it, which we compute in time linear in
number of edges and triangles.

4.1 The Reduction

The outline of the algorithm is as follows. To obtain the Reeb graph of f , we need to
know its nodes and its arcs. Since the components of the preimage (arcs of the Reeb
graph) are created and/or destroyed only at Reeb-critical values, we need to find the
Reeb-critical vertices of K . Sort the vertices so that f (v1) < f (v2) < · · · < f (vn0).
We find the Reeb-critical vertices by sweeping f from −∞ to +∞ and for each value
f (vi ), we look how the preimage components change in number, when we pass that
value. If the vertex is recognized as Reeb-critical, we add it to the Reeb graph as a
node and connect it to other nodes appropriately.

Before going into more detail, we introduce some terms. We say an edge of K starts
at its vertex of lower function value and ends at the one with higher function value.
Similarly, a triangle starts at its vertex of lowest function value and ends at its vertex
of highest function value. The vertex with the middle function value of a triangle we
call its middle vertex. We denote by v1v2 the edge connecting vertices v1 and v2. In
this notation, we always first write the vertex with smaller function value.

The preimage f −1(r) can be abstracted into a graph Gr , which we call the preimage
graph at value r . Nodes of Gr are edges of K intersecting the preimage and arcs of
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Gr are triangles of K contributing to the preimage, so arcs indeed connect nodes to
each other. Gr changes if and only if we pass a function value f (vi ). The graph Gr is
f −1(r), when viewed as an abstract graph. In the following, we use a data structure to
maintain the connected components of the preimage graph which we call DynTrees. Its
description is the topic of the next section. The pseudo-code for the sweep algorithm
is given below:

Algorithm 1 Sweep Algorithm
set DynTrees to be an empty graph
for i = 1 to n0 do

Lc = LowerComps(vi )
UpdatePreimage()
Uc = UpperComps(vi )
if ¬(#Lc = #Uc = 1) then

UpdateReebGraph(Lc,Uc)
end

end

In Algorithm 1, we use four subroutines. The LowerComps(vi ) subroutine considers
edges ending at the vertex vi , one by one, and finds their corresponding components in
the current preimage graph (which is G f (vi )−ε). At the end, LowerComps(vi ) provides
us with a set of nodes of the preimage graph, each representing a component. A pseudo-
code for this procedure is given in Algorithm 2.

The UpdatePreimage() subroutine updates the preimage graph from that of imme-
diately before f (vi ) to that of immediately after f (vi ). Triangles and edges ending at
vi are removed from the graph and edges and triangles starting at vi are inserted into
the preimage graph. Moreover, for every triangle of K that has vi as a middle vertex,
we delete the arc of the preimage graph that will no longer be in the graph and insert
the new arc; see Fig. 2. A pseudo-code for this subroutine is given in Algorithm 3.
This code assumes that edges not intersecting the preimage are also in the preimage
graph as isolated nodes so there is no need to add and remove isolated nodes. The
subroutine UpperComps(vi ) is symmetric to LowerComps(vi ).

Algorithm 2 LowerComps(v)
Lc = empty list
for all edges e ending at v do

c = DynTrees.find(e)
if c is not marked then

Lc.add(c)
mark c as listed

end
end

The UpdateReebGraph(Lc,Uc) subroutine, updates the Reeb graph. Note that all
components in Lc will be merged into one component at vi and this one, will split into
the components in Uc. The vertex vi is Reeb-regular, if and only if Lc and Rc both have
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Fig. 2 Processing of a
Reeb-critical (split) vertex
in a 2-D simplicial complex

exactly one element, therefore it is easy to decide if the vertex corresponds to a node
of the Reeb graph. For such a vertex, we create a new node in the Reeb graph, νvi , and
associate it to components in Uc. Intuitively, those components were first generated
at vi . We make an arc between corresponding Reeb graph nodes of components in Lc
to the node νvi . A pseudo-code for this subroutine is given in Algorithm 4.

Algorithm 3 UpdatePreimage(v)
for all triangles t = {v1, v2, v3} incident on v while f (v1) < f (v2) < f (v3) do
if v = v3 then DynTrees.delete((v1v)(v2v)) end
if v = v2 then

DynTrees.delete((v1v3)(v1v))
DynTrees.insert((vv3)(v1v3))

end
if v = v1 then DynTrees.insert((vv2)(vv3)) end

end

Algorithm 4 UpdateReebGraph(Lc,Uc)
create a new node ν in Reeb graph
assign the node to all c ∈ Uc
create an arc between ν and νc , for all c ∈ Lc

The total time spent in UpdateReebGraph(Lc,Uc) is linear in the size of the Reeb
graph. The DynTrees data structure supports three types of operations: finding compo-
nent of a node, inserting an arc, and deleting an arc from the preimage graph. Assuming
n is the number of nodes in this graph, we write U (n) for the time needed for any of
these operations. Every edge of K is considered once in LowerComps(vi ) and once
in UpperComps(vi ). For each, there is one find operation for finding the component
of the edge in preimage graph, therefore the total running time of the two subrou-
tines is O(n1U (n1)) in the worst case. Moreover, every triangle gives rise to two arc
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insertions and two arc deletions in the preimage graph, so the total running time of
UpdateGraph() is O(n2U (n1)). Summing all of these together, the algorithm runs in
time O(mU (m)) where m is the size of the 2-skeleton.

4.2 Graph Connectivity

We complete the description of the algorithm by explaining how to implement the
three operations find, delete and insert on the preimage graph, required by the sweep
algorithm. The DynTrees data structure keeps track of the connected components of
the graph, when arcs are inserted and deleted over a fixed node set. This is called the
dynamic graph connectivity problem.

A dynamic graph connectivity algorithm usually works by maintaining a rooted
spanning forest of the graph. The root is used to identify the component, so a find
query will be just finding the root of the tree containing the node. This is the approach
we will also take, but we exploit the fact that the operations requested by the sweep
algorithm can be predicted to choose our spanning trees. In order to do so, we assign
weights to arcs of the preimage graph. The weight of an arc is the time that the arc is
going to be deleted. In other words, if the arc (v1v2)(v3v4) corresponds to a triangle
(so the vi are not distinct), then the weight of the arc is the smallest function value of
endpoints, i.e. min{ f (v2), f (v4)}. The weight of an arc is computed in constant time
when the arc is inserted, and assigned to the arc.

The main idea is now to maintain the maximum spanning forest of the preimage
graph. It has the important property that, the arc that is going to be deleted is not in
this forest, unless it is absolutely necessary. To maintain the forest, we use a dynamic
tree data structure. These data structures can keep a forest of node-disjoint trees and
support various operations on those trees. Arcs can have weights and information
about the weights on a tree or a path can be obtained. The operations that we require
are as follows:

– parent(x): return the parent of node x , or null if x is the root.
– root(x): return the root of the tree containing node x .
– link(x1,x2,w): link distinct trees containing the two nodes x1 and x2 by adding the

arc x1x2. Assign the weight w to this arc.
– cut(x1,x2): remove the arc between x1 and x2, splitting the tree in two.
– minWeight(x): return a node with minimum weight arc to its parent on the path

from x to the root of its tree, or null if x is the root.
– evert(x): make the node x the root of its tree.

All of the above operations are supported by existing dynamic tree data structures
that allow path operations, for example, ST-trees or Link–Cut trees [25,26], top trees
[2,27] and RC-trees [1]. See [28] for an experimental comparison of these data struc-
tures. Different implementations of ST-trees and/or top trees support all of the above
operations in worst-case or amortized time O(log n), where n is the number of nodes
in the forest [28]. RC-trees achieve the same bound in expected running time.
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Using the above, we implement our three tree operations as follows:

The Reeb graph node associated with a root transfers as the root node changes in
evert. Reeb graph nodes are assigned to the roots of new trees generated, after each
cut or link operation. The overall cost of keeping track of Reeb graph nodes is then
constant number of find calls per every edge. So, we can maintain the Reeb graph data
in O(n1U (n1)) time. Considering the above, we have U (n) = O(log n) using this
semi-dynamic graph connectivity algorithm.

As explained later on, here we say semi-dynamic instead of offline, since for the
approach to work, we do not need the entire sequence of updates, we only need to be
able to compute the deletion time in time of insertion of an arc.

4.3 Correctness

At the beginning of the algorithm, the preimage graph has no arcs. We should show
that the above operations result in a maximum spanning forest, if they are applied to
one such forest. The insert(a) operation, breaks the cycle that is formed by adding
the arc a between two nodes of a tree. It does that by removing the arc of minimum
weight, say b, on this cycle, if that weight is less than the weight of a. Therefore the
overall weight of the tree increases. If a tree with higher weight existed, then it should
have a as an arc. By removing a and inserting a missing edge of the cycle (with weight
at least that of b), we get a new tree with higher weight for the original graph before
insertion, which is a contradiction.

123



Discrete Comput Geom (2013) 49:864–878 873

In delete(a), note that every other arc in the whole graph has weight at least as large
as weight of a, since the weights are deletion times. Every arc that exists, either is
deleted during the current call to UpdatePreimage() or has a higher weight. If all of
the weights are higher than that of a, then, the deletion indeed splits the maximum
spanning tree in two. Otherwise, any arc reconnecting the resulting trees is also deleted
before update process finishes and before any find queries, therefore there is no harm
in not connecting back the split trees. We have the following theorem:

Theorem 1 Reeb graph of a piecewise linear function on a simplicial complex can be
constructed in O(m log m) time in the worst case, where m is the size of the 2-skeleton.

5 Implementation

We use “lazy insertion” to make the implementation faster. Roughly speaking, our
goal is not to insert arcs that die (i.e. get deleted) before any Reeb-critical value is
met.

5.1 Simple Reeb-Regular Vertices

We recall some concepts before going into details. The star of a simplex σ ∈ K is
the collection of simplices of K that have σ as a face. This might not be a simplicial
complex, however, if we add the missing faces of the simplices in the star, we obtain
a subcomplex of K which is called closed star of σ . Here we are only concerned
with stars of vertices. With f : |K | → R as above, the lower star of a vertex v ∈ K
contains all the simplices in the star for which f (v) is the maximum value among its
vertices. Again, the closed lower star is obtained by adding missing simplicies. Upper
star and closed upper star are defined symmetrically.

If the upper star and the lower star of a vertex both have just one component, then the
vertex is Reeb-regular. We use this fact, to quickly decide if a vertex is Reeb-regular
of this kind, which we call simple Reeb-regular. Note that, if this is not the case, the
vertex still can be Reeb-regular. However, non-simple Reeb-regular vertices tend to
be smaller in number compared to simple Reeb-regular vertices in practice.

Non-simple regular vertices happen for instance when the first Betti number of
the preimage changes but the links do not have any non-trivial loop. For an example,
consider the case depicted in Fig. 3. The figure on the right is the preimage before
processing v and the figure on the left is the preimage after processing v. The small
circles are intended to show the lower and upper links of v. We can think of these
figures as being two dimensional, that is, a deformed disk and an annulus. Then, the
links would be parts of the preimage inside the small circles. It is clear that the lower
link has two components and the upper link has one component and the vertex is
Reeb-regular. The space here could be a 3-manifold with boundary.

In our implementation, we first check if the vertex is simple Reeb-regular, if so, we
do not insert the corresponding arcs into the preimage, rather, we merely keep them for
insertion later in an insertion list. For such a vertex, the arcs that should be removed,
will be removed from the insertion list and the current preimage spanning trees. This

123



874 Discrete Comput Geom (2013) 49:864–878

Fig. 3 A non-simple
Reeb-regular vertex

causes some of the spanning trees to be currently not valid and incomplete since we
are just removing arcs and not inserting any arc into the preimage forest.

If a vertex is found to be not simple Reeb-regular, we build the preimage trees
completely from the arcs survived in the insertion list and continue the algorithm as
usual. This means, we insert the arcs in the insertion list one by one into the current
preimage graph as if they are being first encountered.

We remark that building the preimage from insertion list involves also keeping track
of the corresponding Reeb graph nodes of the spanning tree roots. This needs special
care, since all the arcs incident to a root might have been removed, or the entire tree
might have been removed before reaching a vertex which is not simple Reeb-regular.

5.2 Performance comparison

We did a preliminary implementation of the algorithm using the simple “linear” tree
data structure, that is, the data structure is simply a set of nodes, every node contains
a pointer to its parent and the weight of the arc to its parent if it is not a root. Each
operation is done trivially by following the parent pointers. In the worst case, tree
operations will need O(n) time over a graph of n nodes, however, as the running times
below demonstrate, it is promising.

We compare our implementation with that of [15] which we call RandReeb. This
algorithm takes O(m log m) time in expectation, and has actual running times superior
to earlier ones, see [15]. The exception is the surgery method of [30]. However, this
approach cannot handle arbitrary 3-manifolds or simplicial complexes. The running
times are shown in Table 1. The input data sets are almost the same as those of Harvey
et al. [15] and were kindly provided to us by the authors. We ran the experiments on

Table 1 Comparison of running
times

The running times are in
seconds. The size of the
2-skeleton, m, is the total
number of vertices, edges, and
triangles of the input complex.
IV is the fraction of Reeb-critical
and non-simple Reeb-regular
vertices of all the vertices

Data set m IV RandReeb Ours

Camel 110,785 0.03 0.32 0.99
Simulation 190,165 0.6 1.64 1.39

Fighter 245,300 0.49 6.70 1.95

Blunt 762,683 0.05 13.29 5.12

Post 2,086,950 0.003 17.32 13.45

Buckyball 4,322,620 0.05 69.11 36.63

Plasma 4,530,561 0.02 135.79 42.35

Earthquake 7,085,157 0.05 177.68 71.41
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a 64-bit computer with Dual-Core 3.00 GHz CPU and 8 GB’s of memory running a
Linux operating system.

With the exception of the Camel and Simulation, all data sets are manifolds. For
further information on the data sets we refer to [15,30] and the aim@shape database.
As can be seen from the table, the algorithm shows an almost linear performance. We
note that this linearity is mostly the result of lazy insertion trick. The IV (important
vertex) column shows the fraction of Reeb-critical vertices and non-simple Reeb reg-
ular vertices of all the vertices. These vertices cause the non-linearity of the algorithm,
which is barely noticeable, since the fraction is small. As long as this fraction remains
low, the algorithm works specially well, even with trivial implementation of the tree
data structure. With a full fledged dynamic tree data structure, we expect the running
times to improve substantially, at least for large data sets, as building the preimage
at the value of a IV involves a large number of tree operations. The source code is
available upon request.

6 More on Graph Connectivity

We distinguish between two variants of the graph connectivity problem. The first is
what we called the semi-dynamic graph connectivity. Semi-dynamic graph connec-
tivity problem is answering the queries of the dynamic graph connectivity problem
when we can compute the deletion times of every edge inserted at the time of its
insertion. The other variant, which we call the offline dynamic graph connectivity,
refers to answering the queries of a known sequence of dynamic graph connectivity
operations. In the following, we first show that the offline connectivity is a special case
of semi-dynamic connectivity when the deletion times can be computed in constant
time. Later, we will give a linear (in the number of operations) time reduction from
offline graph connectivity to the Reeb graph computation.

Let C = c1c2 . . . cm be a sequence of three types of dynamic graph connectivity
operations over a fixed node set of size n, starting with an empty graph. The parameters
of operations are fixed and we think of them as indexing the nodes of the graph, thus
integers in {1, . . . , n}. The problem of answering the queries in a given sequence
like C is what we call the offline graph connectivity problem. C consists of some
arc insertions and deletions mixed with queries. We say i is the time when operation
ci happens. We can determine the deletion time of any arc in constant amortized
time as follows. We make indices for arcs inserted and deleted using the two integers
indexing its endpoint nodes, and then sort them using a linear time algorithm for
sorting integers. Then we can find operations that index the same arc. This takes time
linear in the number of edges inserted. Having found the deletion times in constant
time, we can solve this problem in O(log n) time per operation, as above. Here we
again note that this bound matches that of [13] which has given an algorithm for the
harder problem of answering queries for an offline dynamic minimum spanning tree
problem.

In the more general setting of semi-dynamic graph connectivity, i.e. when we can
compute the deletion time of every arc at the time of its insertion, say with worst-
case (amortized) time d(n), we can apply the technique above and get an algo-
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Fig. 4 Making a complex

(a) (b)

rithm that runs in time O(log n + d(n)) in worst-case (amortized) for all of the
operations.

6.1 Reduction to the Reeb graph

Here we show a linear time reduction from the offline graph connectivity problem, as
defined above, to the Reeb graph construction. This implies that the two problems are
equivalent in terms of computational complexity. Given a sequence C of m graph con-
nectivity operations, we construct a simplicial complex whose Reeb graph contains
the answers to the queries and these can be read off in constant time. For this, we use
the augmented Reeb graph. It is the same as the Reeb graph except every vertex of the
input complex has a corresponding node in it. Reeb-regular vertices are degree-two
nodes with one incoming and one outgoing arc. It is clear that with some modifica-
tions, our algorithm can compute the augmented Reeb graph within the same time
bound. Moreover, every Reeb-regular vertex can contain an identifier of the preimage
component (Reeb graph arc) that it belongs to.

We build the complex and the function at the same time. For simplicity, we assume
that at the end of the sequence C , all arcs are deleted. For every node of the graph
that will have an incident arc we create a sufficiently long vertical edge, say of length
m + 1. So, at the beginning we have a collection of edges all of the same height. We
consider each ci in turn. If ci is an insertion of an arc a = xy with deletion time
da , then we connect two edges x and y as in Fig. 4a, where the vertices are assigned
the heights as in the figure. In Fig. 4, i ′ and da

′ are slightly perturbed values. If ci

is a query we add a regular vertex as in Fig. 4b with height i . If ci is a deletion, we
do nothing. The function on this complex is the height function. It is easy to verify
that when the augmented Reeb graph of this complex is computed, the answer to the
query is the component identifier kept with the node corresponding to the regular
vertex.
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