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Abstract Given a convex body K , consider the smallest number N so that there is a
point P ∈ ∂K such that every circle centred at P intersects ∂K in at most N points. In
1946 Erdős conjectured that N = 2 for all K , but there are convex bodies for which
this is not the case. As far as we know there is no known global upper bound. We show
that no convex body has N = ∞ and that there are convex bodies for which N = 6.
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1 Introduction

Paul Erdős often said that his most important contribution to discrete geometry was his
paper [1] from 1946 entitled “On sets of distances of n points”. In this short and very
influential paper, with more than 300 citations according to Google Scholar, Erdős
writes:

“On every convex curve there exists a point P such that every circle with centre P
intersects the curve in at most 2 points.”
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This statement is easily shown to be false; for any point P on the boundary of an
acute triangle there is a circle centred at P that intersects the boundary of the triangle
4 times. In fact, any regular (2k + 1)-gon has this property.

It might be possible that the number 2 in this conjecture can be replaced by some
other number independent of the convex curve. We wish to determine how large this
number can be.

A related conjecture, also by Erdős, was that every convex polygon has a vertex P
such that no three other vertices are equidistant from it. This was disproved by Danzer
[2] and (in a stronger form) by Fishburn and Reeds [4].

Let K be a planar convex body. We define N = N (K ) ∈ N ∪ {∞} as the smallest
number for which there is a point P ∈ ∂K such that every circle with centre P
intersects ∂K in at most N points. With this notation, Erdős’s original conjecture
states that N (K ) ≤ 2 for every convex body K . We conjecture that N (K ) is indeed
bounded by some finite constant independent of K , probably by 6.

Theorem 1.1 There is a planar convex body K with N (K ) = 6.

In Sect. 3 we construct a 15-gon with this property. This is the simplest example
we have found so far. On the other hand we can prove the following theorem.

Theorem 1.2 For every planar convex body K , N (K ) < ∞.

A stronger version of this theorem is proved in Sect. 2. So far we have not been able
to find a finite upper bound that works for all K . Part of the difficulty of improving
this bound may come from the following two theorems.

For n ∈ N∪{∞}, let J (K , n) be the set of points P ∈ ∂K such that there is a circle
centred at P that intersects ∂K in at least n points. Note that, in view of Theorem 1.2,
N = N (K ) is the largest N such that J (K , N ) = ∂K .

We denote by |X | the 1-dimensional Hausdorff measure (perimeter) of a set
X ⊂ R

2.

Theorem 1.3 Let ε > 0, then there is a convex body Kε such that

|J (Kε,∞)|
|∂Kε| > 1 − ε.

If K0 is a segment or an acute triangle, then we can construct Kε as in the previous
theorem so that limε→0 Kε = K0 in the Hausdorff metric. These examples are also
constructed in Sect. 3.

The next theorem is in the Baire category sense (see Sect. 4 and Chap. 20 of [5] for
notions and definitions). Let K be the set of planar convex bodies together with the
Hausdorff metric.

Theorem 1.4 For most convex bodies K ∈ K, the set
⋂

n∈N

J (K , n)

contains most points of ∂K .

We give the proof of this theorem in Sect. 4.
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2 The Finiteness of N

First we fix some notation. We write B for the closed unit disk, B(Q, r) for the closed
disk centred at Q with radius r > 0 and S(Q, r) for the circle bounding B(Q, r).

If K is a convex body and P ∈ ∂K , then a line l is a normal of K at P if P ∈ l
and the line orthogonal to l through P supports K at P .

Fix a convex body K and define the set

� = {
(Q, l) : Q ∈ ∂K , l is a normal of K at Q

}
.

The set � is actually a curve, this can be seen by considering the smooth convex
body K ′ = K +B. The set � is in bijective correspondence with ∂K ′ in the following
way: For every point Q′ ∈ ∂K ′, let l be the normal line of K ′ at Q′ and let Q be the
point in l ∩ ∂K at distance 1 from Q′. Then the pair (Q, l) ∈ � corresponds to the
point Q′ ∈ ∂K ′.

The distance between two points Q′
1, Q′

2 ∈ ∂K ′ is the length of the shortest arc
of ∂K ′ bounded by these points. We use the above bijection to measure the distance
between points in � and the Euclidean metric to measure distances between points in
the plane.

Now we go back to the problem in question. Take P ∈ ∂K and assume that there are
two different points Q1, Q2 ∈ S(P, r)∩ ∂K . Let H ⊂ ∂K be the closed arc bounded
by Q1 and Q2 that does not contain P . Consider the function g(Q) = dist(P, Q) for
Q ∈ H . Since g(Q1) = g(Q2), there exists Q in the relative interior of H such that
g attains either its maximum or its minimum on Q. For this Q there is a line l so that
(Q, l) ∈ �, and P ∈ l.

Hence, if P ∈ ∂K is a point such that there are exactly M pairs (Q, l) ∈ � with
P ∈ l and P 
= Q, then any circle centred at P intersects ∂K in at most M +1 points.
This implies N (K ) ≤ M + 1, therefore to prove Theorem 1.2 it is enough to show the
following.

Theorem 2.1 Given a convex body K , there is a point P ∈ ∂K such that the number
M of pairs (Q, l) ∈ � with P 
= Q and P ∈ l is finite.

It may even be possible that M is bounded by some constant independent of K .
From the proof it can be seen that M is finite in a positive fraction of the perimeter
of K .

To prove this theorem we define �0 ⊂ � as the set of pairs (Q, l) for which l ∩ ∂K
contains exactly one point besides Q, let f (Q, l) be this point. We shall study the
function f : �0 → ∂K .

If (Q, l) ∈ � \ �0 then l ∩ ∂K contains either one point (namely Q) or an infinite
number of points (namely an edge of K with Q as an endpoint). In either case, ∂K
is not smooth at Q and the internal angle formed at this point is at most π

2 . We call
such a point Q a small angle of K . Since there are at most 4 small angles on a closed
convex curve, � \ �0 contains at most 8 connected components.
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(a) (b)

Fig. 1 Lemma 2.2

Given (Q, l) ∈ �0, define α(Q, l) as the smallest angle between the line l and a
supporting line of K at f (Q, l). Note that α(Q, l) > 0 and that α : �0 → R is a
lower semi-continuous function and therefore the sets

�t = {
(Q, l) ∈ �0 : α(Q, l) > t

}

are open in �0.

Lemma 2.2 For every t > 0, the function f |�t : �t → ∂K is locally Lipschitz. If D
is the diameter of K , then

lip( f ) ≤ max{1, D}
sin( t

2 )

in any small-enough open set of �t .

Proof Let (Q, l) ∈ �t and P = f (Q, l). Since K is convex, there exists ε > 0 such
that any point R ∈ B(P, ε) ∩ ∂K satisfies 
 Q P R > t

2 (see Fig. 1a).
It is not difficult to see that there is a δ > 0 such that if the pair (Q′, l ′) ∈ �t is at

distance less than δ from (Q, l), then the point P ′ = f (Q′, l ′) is in B(P, ε).
Since dist(Q, Q′) ≤ dist((Q, l), (Q′, l ′)) and the angle between l and l ′ is at most

dist((Q, l), (Q′, l ′)), the region where P ′ is can be further bounded. If we assume in
Fig. 1a that Q′ is to the left of Q, then we have 
 P ′Q P ≤ dist((Q, l), (Q′, l ′)) if
P ′ is right of P , and dist(P ′, l) ≤ dist((Q, l), (Q′, l ′)) if P ′ is to the left of P . This
determines the marked region in Fig. 1b. Thus,

dist(P, P ′) ≤ 1

sin( t
2 )

dist((Q, l), (Q′, l ′))

if P ′ is right of P , and

dist(P, P ′) ≤ dist(Q, P ′)
sin( t

2 )
dist((Q, l), (Q′, l ′))

123



Discrete Comput Geom (2013) 50:253–261 257

if P ′ is to the left of P . In both cases we have

dist(P, P ′) ≤ max{1, D}
sin( t

2 )
dist((Q, l), (Q′, l ′)).

This implies for the Lipschitz constant of f that

lip( f ) ≤ max{1, D}
sin( t

2 )

in any small-enough open set of �t . ��
Lemma 2.3 Assume the convex body K is not a polygon with at most 6 sides. Then
there is a set F ⊂ ∂K with |F | > 0 and a number t > 0 such that f −1(F) ⊂ �t .

Proof For every small angle Q ∈ ∂K the set of pairs (Q, l) ∈ � is a closed arc, let
(Q, l+) and (Q, l−) be its boundary points. Define the set L = ⋃

(l+ ∪ l−), where the
union is taken over all small angles of K .

Since K is not a polygon with at most 6 sides, then ∂K \ L is open relative to ∂K
and non-empty. Therefore, there is a closed set F ⊂ ∂K \ L with non-empty interior
relative to ∂K (and hence, with positive perimeter).

Suppose that there is a sequence of pairs {(Qi , li )}i∈N with f (Qi , li ) ∈ F and
satisfying limi→∞ α(Qi , li ) = 0. Let l ′i be a supporting line of K at f (Qi , li ) that
forms an angle of α(Qi , li ) with li . By taking a subsequence if necessary, we may
assume that (Qi , li ) converges to a pair (Q, l) and that l ′i converges to a line l ′.
Then l ′ must support K at (Q, l), thus Q ∈ L . This contradicts the definition of F ,
therefore there exists t > 0 such that α(Qi , li ) > t for all (Q, l) ∈ F and hence
f −1(F) ⊂ �t . ��
Proof of Theorem 2.1 If K is a polygon with at most 6 sides, then for any P ∈ ∂K
the set f −1(P) contains at most 12 points, so M ≤ 12 there.

Assume now that K is not a polygon with at most 6 sides and take F as in Lemma
2.3. By Lemma 2.2, f is Lipschitz on f −1(F) and by the coarea formula (see [3]) we
obtain

∫

F

# f −1(P)dP =
∫

f −1(F)

|∇ f (Q, l)| d(Q, l) ≤
∣∣∣ f −1(F)

∣∣∣ lip( f ).

Therefore, there is a point P ∈ F which is taken only finitely many times by f| f −1(F).
Since no other pair (Q, l) ∈ � with Q 
= P can have P ∈ l, we are done. ��

3 Examples

In this section we give examples for Theorems 1.1 and 1.3. First we need a couple of
lemmas.

123



258 Discrete Comput Geom (2013) 50:253–261

Fig. 2 Lemma 3.1

Lemma 3.1 Fix N ∈ N ∪ {∞}. Let A, B, C, D be points in convex position ordered
counter-clockwise such that the angle 
 ABC ∈ (0, π

2 ). For any neighbourhood V of
B there is a sequence of points {Ci }N

i=1 such that:

(i) The points D, C, C1, C2, . . . B, A are all extreme points of their convex hull and
are ordered clockwise.

(ii) For every P ∈ [A, B] outside of V , there is a circle centred at P that intersects
the broken line CC1C2 . . . B A in at least 2N + 2 points.

Proof Given a point P on the line AB, let SP be the circle centred at P that passes
through B. Let B ′ ∈ [A, B] ∩ V so that C is outside of SB′ .

We construct the points Ci inductively starting with C0 = C . Once Ci−1 is con-
structed, let Ci be a point such that:

• The points D, C0, . . . , Ci , B, A are all extreme points of their convex hull and are
ordered clockwise,

• Ci is outside of the circle SA,
• 
 ABCi < π

2 ,
• the segment (Ci−1, Ci ) intersects SB′ twice.

See Fig. 2 for a non-realistic example of this construction. Clearly condition (i) holds.
For a given P ∈ [A, B ′] the circle SP is between the circles SB′ and SA, therefore

SP intersects each of the segments (C, C1) and (A, B] at least once and each of the
segments (Ci , Ci+1) twice, giving an infinite number of intersections when N = ∞.
If N < ∞, then a circle slightly smaller that SP will, in addition, intersect (CN , B)

twice giving a total of 2N + 2 intersections.

Lemma 3.2 Let A1, B, A2 be points in the plane. For i = 1, 2 let Ci be the midpoint
of Ai B and Si be the set of points P such that the orthogonal projection of P on Ai B
is contained in the segment (B, Ci ]. Then for any point P ∈ S1 ∩ S2 there is a circle
centred at P that intersects each of the segments (Ai , B) twice.

Proof Let P ∈ S1 ∩ S2 and assume that dist(P, A1 B) ≤ dist(P, A2 B). It is easy
to see that there is a real number r larger than dist(P, A2 B) and smaller than
dist(P, B), dist(P, A1) and dist(P, A2). Therefore, the circle centred at P with radius
r intersects each of the segments (Ai , B) twice. ��

We note that the set of points P that satisfy the conditions in Lemma 3.2 is actually
larger. The regions we use are simpler and enough for our purposes.

Now we are ready to construct the examples which prove Theorems 1.1 and 1.3.
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Fig. 3 Construction for
Theorem 1.1 with the regions
from Lemma 3.2

Proof of Theorem 1.1 Consider the points

A1 = (1000, 0), A2 = (906, 114), A3 = (645, 359), A4 = (−498, 871).

For i = 1, . . . 4, let Bi and Ci be the rotation around the origin of Ai by an angle
of 2π/3 and 4π/3, respectively. The 12 points Ai , Bi , Ci are in convex position (see
Fig. 3).

Using Lemma 3.2 on the triples C1, C2, C3 and C2, C3, C4, it can be shown by
direct computation that for any point P in some neighbourhood V of the broken line
A4 B1 B2 B3 there is a circle centred at P that intersects the broken line C1C2C3C4 in
at least 6 points. This direct computation amounts to checking that the two shaded
strips in Fig. 3 together contain the broken line B3 B2 B1 A4 in their interior.

The angle 
 A3 A4 B1 is acute. This is again a simple computation. Lemma 3.1
implies the existence of a point A5 ∈ V such that for any point P on [A3, A4] \ V
there is a circle centred at P that intersects A3 A4 A5 B1 in at least 4 points. Define B5
and C5 as above to obtain a 15-gon K having Ai , Bi Ci as its vertices. The radius of
the circle SP is close to |P A4| and therefore intersects ∂K an additional 2 times, once
between C3 and P and once again between A5 and B3.

By the rotational symmetry of the figure, K has the desired property.
It can also be verified that there are points P ∈ ∂K that are not in J (K , 7), for

example the midpoint of [A3 A4]. ��
An interactive version of Fig. 3 made with GeoGebra (http://www.geogebra.org)

can be found at http://www.geogebratube.org/student/m33469.

Proof of Theorem 1.3 As mentioned before, the convex body Kε can be constructed
so that it is close to any triangle or a straight line segment.

Fix a triangle A1 A2 A3 and let ε > 0. Choose points B1, B2 and B3 so that
A1 B1 A2 B2 A3 B3 is a convex 6-gon, each Bi is ε-close to Ai and the angles 
 Ai Bi Ai+1
are acute. Using Lemma 3.1 with N = ∞ on the points Ai Bi Ai+1 Bi+1, we obtain
three families of points that together with the points Ai and Bi determine the required
convex body.
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For a straight segment [A, B] a similar thing is done. Choose points C close to
A and D close B such that AC B D is a convex 4-gon and the angles 
 AC B and

 ADB are acute, then Lemma 3.1 on BC AD and ADBC gives the required convex
body. ��

4 Generic Behaviour

The set of planar convex bodies K with the Hausdorff metric is a complete metric
space, thus, it is a Baire space.

The defining property of Baire spaces is that the intersection of countably many
dense open sets is also dense. The intersection of countably many open sets is called
a Gδ set. Such sets are considered large. It is said that most points in a Baire space
satisfy a property if the set of points satisfying this property contains a dense Gδ set.
These notions can be found in Chap. 20 of [5] and similar techniques are applied
in [6].

We prove Theorem 1.4 here, but we need some definitions and lemmas first. Let K
be a convex body and assume the circle S intersects ∂K at Q. If for every ε > 0 there
are points Q1, Q2 ∈ B(Q, ε) ∩ S such that Q1 ∈ intK and Q2 
∈ K , then we say that
S intersects ∂K transversally at Q.

To make things simpler, we work with the set J0(K , n) ⊂ J (K , n)of points P ∈ ∂K
such that there is a circle centred at P that intersects ∂K transversally in at least n
points. If n < ∞ then the sets J0(K , n) are clearly open relative to ∂K .

Remark It can be shown that if n < ∞ and ∂K contains no circle-arcs (which is true
for most convex bodies) then J0(K , n) = J (K , n), but we do not need this.

Instead of proving Theorem 1.4 we prove the following stronger statement.

Theorem 4.1 For most convex bodies K ∈ K, the set
⋂

n∈N
J0(K , n) contains most

points of ∂K .

Let Kn,m be the set of convex bodies K ∈ K such that for every point P ∈ ∂K , the
set J0(K , n) ∩ B(P, 1

m ) is non-empty.

Lemma 4.2 The set Kn,m is open and dense in K.

Proof First we prove that Kn,m is open. Let K ∈ Kn,m and choose a finite family {Pi }
such that {B(Pi ,

1
2m )} covers ∂K . From the definition of J0(K , n) and the finiteness

of {Pi }, it follows that there exists ε > 0 such that whenever dist(K , K ′) < ε the
following hold:

• {B(Pi ,
1

2m )} covers ∂K ′,
• if Q ∈ J0(K , n) and Q′ ∈ ∂K ′ ∩ B(Q, ε) then Q′ ∈ J0(K ′, n).

This implies that Kn,m is open.
To show that it is dense, let K ∈ K and ε > 0. We construct a convex body

K ′ ∈ Kn,m such that dist(K , K ′) < ε.
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Let K0 be a polygon such that dist(K , K0) < ε and the distance between any
two consecutive vertices of K0 is less than 1

4m . Let {P1, . . . , PM } be the set of mid-
points of the sides of K0. Given these points we construct new polygons K1, . . . , KM

recursively, the following way.
Once Ki−1 has been constructed, let Q, R, S be consecutive vertices of Ki−1 such

that R is a vertex of Ki−1 farthest away from Pi . Now we remove the vertex R from
Ki−1 and add vertices R1, . . . , Rn to form a new polygon Ki with the following
properties:

• The points R1, . . . , Rn are between Q and S,
• the distance between Pi and any R j is some r > 0,
• the points P1, . . . , PM belong to ∂Ki and are not vertices of Ki ,
• dist(K , Ki ) < ε.

Note that any circle centred at Pi with radius slightly smaller than r will intersect
∂Ki−1 transversally in at least n points.

It clear that the polygon obtained at the end of this process belongs to Kn,m . ��
Proof of Theorem 4.1 By Lemma 4.2 and since K is a Baire space,

⋂
n,m∈N

Kn,m is a
dense Gδ subset of K. Let K ∈ ⋂

n,m∈N
Kn,m , then each J0(K , n) is open and dense

relative to ∂K . Therefore
⋂

n∈N
J0(K , n) is a dense Gδ subset of ∂K . ��
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