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Abstract The real solutions to a system of sparse polynomial equations may be
realized as a fiber of a projection map from a toric variety. When the toric variety is
orientable, the degree of this map is a lower bound for the number of real solutions
to the system of equations. We strengthen previous work by characterizing when the
toric variety is orientable. This is based on work of Nakayama and Nishimura, who
characterized the orientability of smooth real toric varieties.
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1 Introduction

A ubiquitous phenomenon in enumerative real algebraic geometry is that many geo-
metric problems possess a non-trivial lower bound on their number of real solutions.
For example, at least 3 of the 27 lines on a real cubic surface are real as are at least 8 of
the 12 rational cubics interpolating 8 real points in the plane [4, Prop. 4.7.3], but there
are many, many other examples [1,6,7,9,16,17,19,20,23]. This phenomenon has the
potential for significant impact on the applications of mathematics as a nontrivial lower
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bound is an existence proof of real solutions. For this potential to be realized, methods
need to be developed to predict when a system of polynomial equations or a geometric
problem has a lower bound on its number of real solutions and to compute this
bound.

We developed a theory of lower bounds on the number of real solutions to systems
of sparse polynomials [20]. There, a system of polynomial equations was formulated
as a fiber of a projection map from a toric subvariety of a sphere. When the toric
variety is orientable, the absolute value of the degree of this projection map is a lower
bound on the number of real solutions. Besides giving a condition implying this ori-
entability, a method (foldable triangulations of the Newton polytope) was developed
to compute the degree of certain maps, and a class of examples of polynomial sys-
tems (Wronski polynomial systems from posets) was presented to which this theory
applied.

Further work [12,13] on foldable triangulations has advanced our understanding
of the bound they give. Others [1,7,11,16,17] have developed additional methods for
proving lower bounds in real algebraic geometry and experimentation [10,19,20] has
revealed many more likely examples of lower bounds.

We characterize which sparse polynomial systems possess a lower bound in the
context of [20], by extending work of Nakayama and Nishimura [15], who character-
ized the orientability of small covers, which are topological versions of smooth real
projective toric varieties. We characterize the orientability of the smooth points of any
real toric variety, as well as toric subvarieties of a sphere, solving an important open
problem from [20].

We review the construction of real toric varieties and spherical toric varieties in
Sect. 2, where we formulate our results on orientability. Section 3 contains the mildly
technical proof of these results. In Sect. 4 we use this characterization of orientability
to strengthen results from [20] on the theory of lower bounds for the number of real
solutions to systems of sparse polynomials.

2 Constructions of Real Toric Varieties

Real toric varieties appear in many applications of mathematics [2,14,18] and are
interesting objects in their own right [5]. Davis and Januszkiewicz [3] introduced the
notion of a small cover of a simple convex polytope as a generalization of smooth
projective real toric varieties. We describe real toric varieties and small covers in
terms of the gluing of explicit cell complexes and give a mild extension of Davis
and Januszkiewicz’s notion of a small cover (which are manifolds) to not necessarily
smooth spaces. A projective toric variety may be lifted to the sphere over real projective
space, and we also describe these spherical toric varieties in terms of the gluing of
explicit cell complexes.

Nakayama and Nishimura [15] used this presentation of small covers to characterize
their orientability, and similar arguments characterize the orientability of the smooth
points of the above spaces.

Real toric varieties, singular small covers, and toric subvarieties of the sphere are
obtained by gluing the real torus T

n := (R×)n or {±1}×T
n = T

n+1/R≥ along copies
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of T
n−1, one copy for each vector in a set of integer vectors. There are further gluings

in higher codimension, which presents these spaces as explicit cell complexes. They
are smooth at the points of their dense torus T

n (or at {±1}×T
n) and the attached tori

T
n−1, and so their orientability is determined by the gluing along the tori T

n−1.
Complex toric varieties are normal varieties over C equipped with an action of an

algebraic torus (C×)n having a dense orbit. They are classified by rational fans �

in R
n , which encode their construction as a union of affine toric varieties Uσ , one

for each cone σ ∈ �. A toric variety is a union of disjoint torus orbits Oσ , one for
each cone σ ∈ �, with dim Oσ = n− dim(σ ). The dense orbit O0 coincides with the
smallest affine patch U0, and both are associated to the origin 0 in the fan. See [8] for
a complete description.

A toric variety has a canonical set Y of real points obtained from the real points of
the orbits Oσ of the construction [8, Ch. 4]. The dense orbit O0(R) � T

n is isomorphic
to (R×)n = (R>0)

n ×{±1}n , which has 2n components, each a topological n-ball. The
subgroup {±1}n ⊂ T

n acts on Y , permuting the components of O0(R). The orbit space
of Y under the group {±1}n is isomorphic to the closure Y≥ of any component of O0(R)

in the usual topology (not Zariski!) on Y . Each orbit Oσ (R) has a unique component
contained in Y≥. We call this component Fσ a face of Y≥, which is isomorphic to
(R>0)

n−dim(σ ). This endows Y≥ with the structure of a cell complex that is dual to
the fan �. That is, the intersection Fσ ∩ Fτ of the closures of two faces is nonempty
only if σ and τ lie in some cone of �, in which case it is the closure Fρ where ρ is
the minimal such cone.

The integer points in a cone σ of � form a subsemigroup of Z
n whose image in

(Z/2Z)n = {±1}n is a subgroup σ of {±1}n . This subgroup σ is the isotropy subgroup
of the face Fσ of Y≥. We will write (−1)v = ((−1)v1 , . . . , (−1)vn ) for the image of
v ∈ Z

n in (Z/2Z)n = {±1}n . This gives the following description of Y as a quotient
space of Y≥ × {±1}n .

Proposition 2.1 The real toric variety Y is obtained as the quotient of the cell complex
Y≥ × {±1}n by the equivalence relation where

(p, ξ) ∼ (q, η) ⇐⇒ p = q and ξσ = ησ , where p lies in the face Fσ .

A facet of Y≥ is a face Fσ corresponding to a one-dimensional cone σ . The real
toric variety Y is smooth at points corresponding to facets, but may not be smooth
along lower-dimensional faces. If Y ◦≥ is the union of the dense face F0 and its facets,
then

Y ◦ := (Y ◦≥ × {±1}n)/ ∼
consists of smooth points of Y .

We generalize this construction. Let P be a finite ranked poset with minimal element
0 and rank at most n where two elements σ, τ ∈ P have at most one minimal upper
bound in P . The cones σ in a rational fan in R

n form such a poset. Suppose further that
we have a collection S := {σ | σ ∈ P} of subgroups of {±1}n where σ � {±1}rank(σ ),
and if σ ⊂ τ , then σ ⊂ τ . Finally, suppose that we have a cell complex � with cells
(called faces) indexed by elements of P ,
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� =
∐

σ∈P

Fσ ,

where each face Fσ is a cell of dimension n − rank(σ ), which we identify with the
interior of the closed unit ball in R

n−rank(σ ). We further suppose that:

• � is a subset of the closed ball F0 in R
n ,

• the closure of a face Fσ in R
n is homeomorphic to the closed ball of dimension

n − rank(σ ), and
• given σ, τ ∈ P , the closures of the faces Fσ and Fτ either do not meet (if σ and

τ have no upper bound in P), or their intersection is the closure of the face Fρ ,
where ρ is the least upper bound of σ and τ in P .

Definition 2.2 Given a ranked poset P , system S of subgroups of {±1}n , and a cell
complex � as above, the small cover Y (�,S) of � is the quotient

(� × {±1}n)/ ∼,

where (p, ξ) ∼ (q, η) if and only if p = q and ξσ = ησ , where p lies in the face Fσ .
Observe that Y (�,S) is equipped with a natural action of {±1}n whose orbit space

is �, where the orbit of a face Fσ is identified with Fσ × {±1}n/σ � T
n−rank(σ ). In

particular, it is a {±1}n-equivariant compactification of T
n .

A real toric variety Y associated to a fan � is a small cover where P is the set of
cones in the fan, � = Y≥, and S = {σ | σ ∈ �}.

The points of Y (�,S) corresponding to the big cell F0 and to facets Fσ are points
where Y (�,S) is a topological manifold. Write �◦ for the union of the big cell and
the facets, and Y ◦(�,S) = (�◦ × {±1}n)/ ∼ for this subset of the smooth points of
Y (�,S).

Let � ⊂ R
n be a n-dimensional polytope with integer vertices and normal fan

�. Then the real toric variety Y� associated to � has a projective embedding given
by �. We may assume that the integer points � ∩ Z

n generate Z
n . Let P

� be the
real projective space with coordinates indexed by � ∩ Z

n and yα := yα1
1 · · · yαn

n the
monomial with exponent α. Then we have an injection

ϕ� : T
n � y �−→ [yα | α ∈ � ∩ Z

n], (2.1)

where [· · · ] denotes homogeneous coordinates for P
�. The closure Y� of the image

of this map is isomorphic to the real toric variety Y� , and the cell complex Y ◦≥ is
identified with the polytope �.

The unit sphere S
� ⊂ R

� has a two-to-one map to P
�, and we define Y +

� to be the
pullback of Y� along this map. The sphere S

� has homogeneous coordinates (xα |
α ∈ �∩Z

n), where we identify points with a positive constant of proportionality. The
group {±1}n+1 acts on S

� with the last coordinate acting through global multiplication
by ±1 and the remaining coordinates {±1}n through the map ϕ� (2.1),

(g, gn+1).(xα | α ∈ � ∩ Z
n) = (gn+1gαxα | α ∈ � ∩ Z

n).
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The faces of Y +
� are its intersections with coordinate subspaces S

F of S
� corre-

sponding to faces F of �,

S
F := {

(xα | α ∈ � ∩ Z
n) | xα = 0 if α �∈ F ∩ Z

n}
.

The isotropy subgroup of S
F is

{
(g, gn+1) | gn+1gα = 1 for α ∈ F ∩ Z

n}.

Vectors b in the normal cone σF to a face F of � have constant dot product with
elements of F—define b· F to be this constant. Then the subgroup

σ F
+ := {

(−1)(b,b·F) | b ∈ σF
} ⊂ {±1}n+1

is the isotropy group of S
F , and therefore of the corresponding face of Y +

� .

Proposition 2.3 The spherical toric variety Y +
� is obtained as the quotient of the cell

complex � × {±1}n+1 by the equivalence relation

(p, ξ) ∼ (q, η) ⇐⇒ p = q and ξσ F
+ = ησ F

+, where p lies in the face F.

3 Characterization of Orientability

We follow Nakayama and Nishimura [15] to characterize the orientability of a general
small cover and of spherical toric varieties, and determine their numbers of compo-
nents.

Theorem 3.1 Let Y (�, S) be a small cover of dimension n.

(1) Y ◦(�, S) is orientable if and only if there exists a basis of {±1}n such that for
every σ ∈ P of rank 1, the generator of σ � {±1} is a product of an odd number
of basis vectors.

(2) The components of Y ◦(�, S) are naturally indexed by {±1}n/〈σ | rank(σ ) = 1〉.
Thus Y ◦(�, S) has 2n−k connected components, where 2k = |〈σ | rank(σ ) = 1〉|.

Proof For each σ ∈ P with rank 1, let gσ be the generator of σ � Z/2Z. Then
Y ◦ := Y ◦(�, S) is obtained by gluing (�, ξ) and (�, η) along Fσ whenever ξ = ηgσ

for some σ ∈ P of rank 1, so the connected components of Y ◦ correspond to the orbits
of Y ◦ under the action of 〈σ | rank(σ ) = 1〉.

The space Y ◦ is orientable if and only if Hn(Y ◦, Z) �= {0}. This group is the kernel
ker ∂ of the differential in the cellular chain complex of the cell complex Y ◦,

Cn
∂−→ Cn−1.

Here Cn is the free abelian group generated by

{�} × {±1}n = {(�, ξ) | ξ ∈ {±1}n}
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and Cn−1 is the free abelian group generated by

{[Fσ , ξ ] | σ ∈ P, rank(σ ) = 1, ξ ∈ {±1}n}
/ ∼,

where [Fσ , ξ ] ∼ [Fσ , ξgσ ]. Orient each facet Fσ so that

∂(�) =
∑

rank(σ )=1

Fσ .

Consider an n-cycle

X =
∑

ξ∈{±1}n

nξ · (�, ξ) ∈ Cn

on Y ◦, where nξ ∈ Z. Then

∂(X) =
∑

ξ∈{±1}n

nξ

∑

rank(σ )=1

[Fσ , ξ ] =
∑

rank(σ )=1

∑

ξ∈{±1}n/〈gσ 〉
(nξ + nξgσ )[Fσ , ξ ].

Hence an n-cycle X lies in ker ∂ if and only if nξ = −nξgσ for all ξ in {±1}n and σ

of rank 1. Equivalently, nξ = (−1)knξgσ1 ··· gσk
for all ξ ∈ {±1}n and σi of rank 1.

We show that ker ∂ is non-trivial if and only if there exists a basis e1, . . . , en of
{±1}n such gσ is a product of an odd number of basis vectors, for each element σ ∈ P
of rank one. Let O be the set of generators gσ of σ for rank one elements σ ∈ P .

Suppose that there exists a basis e1, . . . , en of {±1}n such that each gσ ∈ O is a
product of an odd number of basis vectors. For ξ ∈ {±1}n define nξ to be 1 if ξ is a
product of an even number of the ei and −1 if it is a product of an odd number of the ei .
Then nξ = −nξgσ for all ξ and σ , so ker ∂ is non-trivial and hence Y ◦ is orientable.

Since the number of connected components is 2n−k, the kernel is isomorphic to Z
2n−k

.
If there is no such basis of {±1}n , then there is some gσ ∈ O which is a product of

an even number of other elements in O, for otherwise we can reduce O to a linearly
independent set and then extend it to a basis of {±1}n . We get gσ = gσ1 · · · gσ2k and
hence 1 = gσ gσ1 · · · gσ2k , so for every ξ we get

nξ = (−1)2k+1nξgσ gσ1 ···gσ2k
= −nξ ,

which implies that nξ = 0 and hence ker ∂ = 0 and so Y ◦ is non-orientable. ��
We restate the orientability criteria of Theorem 3.1 for real toric varieties.

Theorem 3.2 Let Y be a real toric variety defined by a fan �. Then Y ◦ is orientable if
and only if there exists a basis of {±1}n such that (−1)b is a product of an odd number
of basis vectors, for each primitive vector b lying on a ray of �.

The condition of Theorem 3.2 is easily checked.
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Lemma 3.3 Given A ⊂ {±1}n, the condition that there exists a basis of {±1}n such
that each vector in A is a product of an odd number of basis vectors, is equivalent to
the condition that no product of an odd number of vectors in A is equal to 1 in {±1}n.

Proof If we had v1 · · · v2k+1 = 1, then v2k+1 = v1 · · · v2k, and expressing each vi as
the product of an odd number of basis elements of {±1}n yields a contradiction. For
the other implication, reduce A to a linearly independent set A′ and then extend A′ to
a basis of {±1}n . If there were a vector in A \ A′ which is a product of an even number
of vectors v = v1 · · · v2k, we would have then had v · v1 · · · v2k = 1. ��

We may check if the condition is satisfied by reducing A to a linearly independent
set A′ and checking if each vector in A \ A′ is a product of an odd number vectors
in A′.

The analog of Theorem 3.1 for spherical toric varieties has a similar proof.

Theorem 3.4 Let Y +
� ⊂ S

� be a spherical toric variety defined by a full-dimensional
lattice polytope � ⊂ R

n.

(1) Y +
� is orientable if and only if there exists a basis of {±1}n+1 such that for each

facet F of � with primitive normal vector b, the element (−1)(b,b·F) is a product
of an odd number of basis elements.

(2) The components of Y +
� are naturally indexed by

{±1}n+1/〈(−1)(b,b·F) | b is a primitive normal vector to a facet F of �〉.

4 Examples and Applications to Lower Bounds

We settle questions of orientability left open in [20] and explain our motivation from
the study of real solutions to systems of polynomials. We begin with an example.

4.1 Cross Polytopes

The cross polytope is the convex hull of the basis vectors e1, . . . , en in R
n and their

negatives −e1, . . . ,−en . When n > 1 the corresponding toric variety is singular.
The rays of its normal fan have generators (±1, . . . ,±1), all with the same image in
(Z/2Z)n . The hypotheses of Theorem 3.1 hold, and so the corresponding real toric
variety is orientable and its smooth points have 2n−1 connected components. Figure 1
displays the cross polytope when n = 2 and an embedding in R

3 of the corresponding
real toric variety.

This example was treated in detail in [21, § 7].

4.2 Order Polytopes

The order polytope O(P) [22] of a finite poset P is

O(P) := {
y ∈ [0, 1]P | a ≤ b in P ⇒ ya ≤ yb

}
.
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Fig. 1 Two-dimensional cross polytope and double pillow

The integer points of O(P) are its vertices and they correspond to the order ideals
of P .

Theorem 4.1 YO(P) is orientable if and only if all maximal chains of P have odd
length.

Proof Lemma 4.9 of [20] (or rather its proof) implies that YO(P) is orientable if all
maximal chains of P have odd length. We establish the converse.

The order polytope has three types of facets

ya = 0 for a ∈ P minimal,
yb = 1 for b ∈ P maximal,
yb − ya = 0 for b covering a (a � b) in P.

Replacing = by ≥ gives valid inequalities for O(P), which we write in matrix form

O(P) := {
y ∈ R

P | Ay ≥ c
}
. (4.1)

By Theorem 3.2, YO(P) is orientable if and only if there is a basis of the row space of
A, reduced modulo 2, such that each row is a sum of an odd number of basis vectors.

Fix a maximal chain a1 � · · · � ak in P . The corresponding facets of O(P) are

ya1 = 0, ya2 − ya1 = 0, . . . , yak − yak−1 = 0, yak = 1,

and the corresponding rows of the matrix A (modulo 2) are

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0 0 . . . 0
1 1 0 . . . 0 0 0 . . . 0
0 1 1 . . . 0 0 0 . . . 0
...

...
...
. . .

...
...

... . . .
...

0 0 0 . . . 1 0 0 . . . 0
0 0 0 . . . 1 1 0 . . . 0
0 0 0 . . . 0 1 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where the non-zero columns correespond to a1, . . . , ak . This gives k+1 rows whose
sum is zero modulo 2. If k is even, Lemma 3.3 implies that YO(P) is non-orientable. ��

A poset P is ranked modulo 2 if all maximal chains in P have the same parity.

Theorem 4.2 A spherical toric variety Y +
O(P) is orientable if and only if P is ranked

modulo 2.

Proof By Lemma 4.9 of [20], Y +
O(P) is orientable if it is ranked modulo 2.

Suppose that P is not ranked modulo 2. We exhibit an odd number of rows of the
augmented matrix [A : c] whose sum is zero modulo 2, which shows that Y +

O(P) is
not orientable, by Theorem 3.4 and Lemma 3.3, as these rows have the form (b, b · F)

for b a primitive normal to a facet of the order polytope.
The order polytope is defined by the facet inequalities (4.1). For a maximal chain

a1 � · · · � ak in P , the corresponding rows of the augmented matrix [A : c] are

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0 0 . . . 0 0
1 1 0 . . . 0 0 0 . . . 0 0
0 1 1 . . . 0 0 0 . . . 0 0
...

...
...
. . .

...
...

... . . .
...

...

0 0 0 . . . 1 0 0 . . . 0 0
0 0 0 . . . 1 1 0 . . . 0 0
0 0 0 . . . 0 1 0 . . . 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Observe that the sum of these rows is [0 : 1]. Each row of [A : c] has the form (b, b ·F)

(modulo 2), where b is a primitive normal vector to a facet F of �.
Since P is not ranked modulo 2, it has two maximal chains of different parities.

Summing the rows of [A : c] which correspond to facets given by the two chains gives
a sum of an odd number of rows of [A : c] which is equal to zero modulo 2. ��

4.3 Real Solutions to Systems of Equations

In [20] we considered systems,

f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0, (4.2)

where each fi is a real polynomial whose exponent vectors lie in � ∩ Z
n , for a fixed

lattice polytope �, called the Newton polytope of the system. When the exponent
vectors � ∩ Z

n affinely span Z
n , the solutions to (4.2) correspond to a linear section

L ∩ Y� of the real projective toric variety Y� corresponding to �. Here L ⊂ RP
� is a

linear subspace of codimension n. Projecting from a general codimension one linear
subspace E of L , we may realize the solutions to (4.2) as the fibers of a map

πE : Y� −→ RP
n,

to real projective space. If n is odd, then RP
n is orientable. If Y� is also orientable,

then fixing orientations, the map πE has a degree whose absolute value gives a lower
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bound on the cardinality of a fiber of πE , and thus on the number of real solutions
to (4.2).

More generally, we may lift this projection to the spherical toric varieties

π+
E : Y +

� −→ S
n . (4.3)

If Y +
� is orientable, we fix an orientation and the absolute value of the degree of π+

E is
a lower bound on the number of solutions to the system (4.2). Changing orientations
in each component if necessary, we may assume that the degree is divisible by the
number of components of (Y +

� )◦.
This has the following consequence for lower bounds to systems of polynomial

equations.

Theorem 4.3 Suppose that we have a system of polynomials (4.2) with Newton poly-
tope � where �∩Z

n affinely spans Z
n whose solutions are a fiber of a projection map

π+
E (4.3). If there is a basis for {±1}n+1 such that (−1)(b,b·F) is a product of an odd

number of basis elements for every primitive normal vector b to a facet F of �, then
the absolute value of the degree of the map π+

E is a lower bound for the number of real
solutions to (4.2), and this lower bound is a multiple of the number of components of
(Y +

� )◦.
Moreover, the map π+

E does not have a degree if this condition is not satisfied.

Remark 4.4 We did not need to consider the parity of n, for the condition of Theo-
rem 3.2 implies that of Theorem 3.4. (A vector lies in a ray of the normal fan � to �

if and only if it is normal to a facet F of �.)

4.4 Conclusions

We characterized the orientability of Y� and Y +
� , which implies that the corresponding

polynomial system has lower bounds on its number of real solutions, expressed as the
degree of a projection πE or π+

E . These degrees have been computed for polynomial
systems from posets [20] and those from foldable triangulations [12,13,20]. Our char-
acterization of orientability replaces the condition in [20] that a variety is Cox-oriented
and therefore strengthens the results of [20], particularly Theorem 3.5.
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