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Abstract A well-known theorem of de Bruijn and Erdős states that any set of
n non-collinear points in the plane determines at least n lines. Chen and Chvátal
asked whether an analogous statement holds within the framework of finite metric
spaces, with lines defined using the notion of betweenness. In this paper, we prove that
the answer is affirmative for sets of n points in the plane with the L1 metric, provided
that no two points share their x- or y-coordinate. In this case, either there is a line that
contains all n points, or X induces at least n distinct lines. If points of X are allowed
to share their coordinates, then either there is a line that contains all n points, or X
induces at least n/37 distinct lines.

Keywords Lines in metric spaces · de Bruijn–Erdős theorem ·
Chen–Chvátal conjecture

1 Lines in Metric Spaces

Two well-known results are known under the name “de Bruijn–Erdős theorem”. One
of them, published in [8] in 1948, states that every set of n points in the plane is either
collinear or it determines at least n distinct lines.

The notion of a line can be extended naturally into an arbitrary metric space. If
(V, ρ) is an arbitrary metric space and a, b, x ∈ V , we say that x is between the points
a and b if
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ρ(a, b) = ρ(a, x) + ρ(x, b).

Following the convention (established by Menger [12]) of writing [axb] to denote that
x lies between a and b, the line determined by the points a and b, denoted 〈a, b〉,
consists of points in the set

{x; [xab]} ∪ {a} ∪ {x; [axb]} ∪ {b} ∪ {x; [abx]}. (1)

We say that a, b are the defining points of this line.
The situation is now slightly more complicated than with ordinary lines. For

instance, it can happen that one line is a proper subset of another line.
Chen and Chvátal asked in [4] whether a statement analogous to the de Bruijn–

Erdős theorem holds in this setting as well. More precisely, they asked whether the
following statement is true:

In an arbitrary metric space on n points, either there are points p, q such that
the line 〈p, q〉 contains all points, or there are at least n distinct lines.

Despite many partial results, this question remains open. In this paper, we concen-
trate on a scenario that resembles the original de Bruijn–Erdős situation. The points
lie in the plane, but the usual Euclidean metric is replaced with the L1, or Manhattan,
metric, defined by d((u1, u2), (v1, v2)) = |u1 − v1| + |u2 − v2|.

We encounter two very different kinds of lines in this case: those determined by
two points that share their x- or y-coordinate, and those determined by two points that
differ in both coordinates. If a set contains pairs of points that share a coordinate, we
call it degenerate, otherwise it is non-degenerate.

Our first main result is that the answer to the Chen–Chvátal question is affirmative
for non-degenerate sets.

Theorem 1.1 In any metric space (X, d) where X is a non-degenerate finite set of
points in the plane and d is the L1 metric restricted to X, either there is a line that
contains all points of X, or there are at least n distinct lines.

In the special case of degenerate sets we can prove a linear lower bound on the
number of lines.

Theorem 1.2 In any metric space (X, d) where X is a finite set of points in the plane
and d is the L1 metric restricted to X, either there is a line that contains all points of
X, or there are at least n/37 distinct lines.

It is easy to see that the de Bruijn–Erdős theorem is tight: consider n − 1 points on
a line, and one additional point that does not belong to this line. A similar construction
works in the L1 case as well to show that Theorem 1.1 is tight. Many other similarities
between lines in L2 and L1 metrics in the plane can be found, but in many important
aspects the situations are fundamentally different.

Another important metric is L∞, defined by

d∞((u1, . . . , uk), (v1, . . . , vk)) = max
1≤i≤k

|ui − vi |.
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Let φ denote the rotation around the origin by 45 degrees. Inspecting the L∞ lines,
we see that for any pair of points v1, v2, we have

〈φ(v1), φ(v2)〉∞ = {φ(u) : u ∈ 〈v1, v2〉1}.

That is, for any finite set of points in the plane, the L∞-lines correspond to the L1-lines
of the rotated set (we will describe what L1-lines look like in Sect. 2). The following
theorem is then a direct corollary of Theorems 1.1 and 1.2.

Theorem 1.3 In any metric space (X, d) where X is a finite set of points in the plane
and d is the L∞ metric restricted to X, either there is a line that contains all points of
X, or there are at least n/37 distinct lines. If, moreover, we have |u1 −v1| �= |u2 −v2|
for every two points (u1, u2), (v1, v2) of X, then there are at least n distinct lines.

To close this section, let us list the most important results that are known regarding
the Chen–Chvátal question. In [4], Chen and Chvátal proved that in every metric space
on n points, either some line contains all points, or there are at least lg n distinct lines.
Chiniforooshan and Chvátal proved in [5] that

• in every metric space induced by a connected graph, either there is a line containing
all points, or there are �(n2/7) distinct lines,

• in every metric space on n points, there are �((n/ρ)2/3) distinct lines, where ρ is
the ratio between the larges distance and the smallest nonzero distance, and

• in every metric space on n points where every nonzero distance equals 1 or 2, there
are �(n4/3) lines.

The last result implies an affirmative answer to the Chen–Chvátal question for metric
spaces with nonzero distances equal to 1 or 2, as long as n is large enough. In [7],
Chvátal proved a variation on this result—he showed that the answer is affirmative for
such metric spaces with any value of n. The authors of [1] proved that this is the case
also for metric spaces induced by connected chordal graphs. In [2], the same authors
generalize the de Bruijn–Erdős theorem in a different direction. Several results dealing
with lines in metric spaces induced by graphs were also proved by Jirásek and Klavík
in [11].

As an example of a result that does not hold in this setting, let us mention the
Sylvester–Gallai theorem, conjectured by Sylvester in [13] and proved by Gallai many
years later (see [9] for a history of the problem). This classic theorem of ordered
geometry states that every set of points in the plane is either collinear, or it contains
two points such that the line passing through them contains no other points of the set.
De Bruijn and Erdős observed in [8] that their theorem follows from this result. In [6],
Chvátal provided an example showing that the Sylvester–Gallai theorem is no longer
necessarily true in general metric spaces. He conjectured, however, that if we consider
the line 〈a, b〉 to be the recursive closure of (1) instead of (1) itself, then the statements
holds in arbitrary finite metric space. This conjecture was verified by Chen in [3].

In the rest of this paper, we will assume the hypotheses of Theorem 1.2, i.e., X will
be a finite set of points in the plane equipped with the L1 metric.
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2 Monotone Sequences of Points

In this section, we will see that long increasing or decreasing sequences of points
guarantee the existence of many lines.

We will denote points by lowercase letters p, q, . . . or by pairs of coordinates,
whatever is more convenient at the moment.

We say that a pair of points (x1, y1), (x2, y2) is

• increasing if (x1 − x2)(y1 − y2) > 0,
• decreasing if (x1 − x2)(y1 − y2) < 0,
• horizontal if y1 = y2,
• vertical if x1 = x2.

If (x1, y1), (x2, y2) is an increasing pair with x1 < x2, the line determined by these
points consists of points in the (closed) rectangle determined by the two points and of
points lying in the two quarter-planes

{(x, y); x ≤ x1, y ≤ y1} and {(x, y); x ≥ x2, y ≥ y2}.
The line determined by a horizontal pair (x1, y1), (x2, y1) consists of points (x, y1)

with x1 ≤ x ≤ x2 and of points in the two half-planes {(x, y); x ≤ x1} and {(x, y); x ≥
x2}. Lines determined by decreasing or vertical pairs look similar.

We say that p1, p2, . . . , pk form an increasing sequence if every pair of points
from the sequence is increasing. Decreasing sequences are defined analogously.

Let us start with two easy observations.

Proposition 2.1 If p1, p2 is an increasing pair and p /∈ 〈p1, p2〉, then either p, p1
or p, p2 is a decreasing pair. Also, if p1, . . . , pk is an increasing sequence and the
pair p, p j is decreasing, then pi /∈ 〈p, p j 〉 for all i �= j .

Lemma 2.2 If X is a non-collinear set that contains an increasing sequence of size
k, then X defines at least k different lines.

Proof Let p1, . . . , pk be the points of the increasing sequence and let us consider the
pair p1, p2. As there is a point p /∈ 〈p1, p2〉, we obtain by the first part of Proposi-
tion 2.1 that p, pi form a decreasing pair with i = 1 or i = 2 and therefore, by the
second part of Proposition 2.1, 〈p, pi 〉 contains only pi from the increasing sequence.
Now we repeat the procedure for p3−i , p3 to obtain another line �2 that contains either
only p3−i or p3 among the points of the increasing sequence. Continuing in a similar
way, we finally obtain k − 1 lines that contain exactly one point from the increasing
sequence and these points are pairwise different, thus the lines are different. Further-
more for any i, j with 1 ≤ i and j ≤ k, the line 〈pi , p j 〉 contains all points of the
increasing sequence, therefore there is a k-th different line defined by P . 
�

A version of Lemma 2.2 for decreasing sequences can be proved in an analogous
way.

The well-known Erdős–Szekeres theorem [10] implies that whenever we have a
set of n points in the plane such that no two share their x- or y-coordinates, I is the
number of points in the longest increasing sequence and D is the number of points

123



Discrete Comput Geom (2013) 49:659–670 663

in the longest decreasing sequence, then D · I ≥ n. Together with Lemma 2.2 this
implies the existence of at least

√
n distinct lines in such sets.

Let us take this idea a step further and prove that �(n2/3) lines exist in such sets.
Draw a vertical line so that exactly half of the points are to the left of the line, and a
horizontal line so that exactly half of the points are above it. We obtain four quadrants
and either the top left and the bottom right quadrants have at least n/4 points each,
or the same holds for the top right and the bottom left. Let us suppose the first option
holds. If either the top left or the bottom right quadrant contains a decreasing sequence
with �(n2/3) points, we are done by Lemma 2.2. If this is not the case, by the Erdős–
Szekeres theorem we obtain an increasing sequence with �(n1/3) points in each of
the two quadrants. We have �(n2/3) pairs of points such that one point is in one of
the two sequences and the other point is in the second one. The lines determined by
these pairs are all distinct.

Much stronger results can be obtained by more complicated ideas along these lines,
but in order to reach our ultimate goal and prove the existence of a linear number of
lines, we have to make better use of the structure of the set X . We will do this in the
subsequent sections.

3 Definition of a Partial Order; Many Lines Are Found

In this section, X will be a non-collinear set of points in the plane, and Y will be an
n-element subset of X in which no two points share their x-coordinates and no two
points share their y-coordinates.

Let us define a partial order  on Y by putting p  q whenever p, q is an increasing
pair and p has smaller x-coordinate than q. Define a partition Y = A0 ∪ · · · ∪ Ak

recursively as follows. Let A0 be the set of minimal elements of the partially ordered
set (Y,), and if A0, . . . ,Ai−1 are already defined, let Ai be the set of minimal
elements of the partially ordered set obtained from (Y,) by removing all points that
belong to A0, . . . ,Ai−1. We will call each such Ai a layer. The aim of this section is
to find for each i > 0 a set of lines of cardinality |Ai |.

We will say that two points are neighbors if they are adjacent in the cover graph of
this partial order.

Let Gi be the (bipartite) cover graph induced by Ai−1 and Ai (that is, V (Gi ) =
Ai−1 ∪ Ai , and edges are all increasing pairs of points). Fix a positive integer i , and
let q1, . . . , qt be all elements of Ai such that all their neighbors in Gi have degree 1 in
Gi . For each such qs , select one of its neighbors (in Gi ) arbitrarily, and call it φ(qs).
Define a set of lines Li . This set contains

• all lines 〈φ(qs1), φ(qs2)〉 (these are decreasing lines) and
• all lines 〈p, q〉 such that p ∈ Ai−1, q ∈ Ai , the pair p, q is increasing, and

degGi
(p) > 1 (these are increasing lines).

The lines in Li have several useful properties. In order to accommodate lines that
will be defined later, we formulate these properties in a slightly more general way
here.
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Claim 3.1 Each decreasing line � = 〈φ(qs1), φ(qs2)〉 ∈ Li has the following prop-
erties:

• D1: it contains all points of Ai−1,
• D2: it contains all points of Ai except for the neighbors (in Gi ) of the defining

points of �. (this is because φ(qsi ) forms an increasing pair with q ∈ Ai if and
only if q = qsi ),

• D3: whenever p is a defining point of � that belongs to A j for some index j , there
exists an increasing sequence p0, . . . , p j = p such that for all indices s we have
ps ∈ As , and for s ≤ j − 1 we have ps /∈ �.

Claim 3.2 Each increasing line � = 〈p, q〉 ∈ Li has the following properties:

• I1: � ∩ Ai−1 = {p} and � ∩ Ai = {q},
• I2: there exists a point q ′ ∈ Ai with p  q ′ and q ′ /∈ � (this is because p by

definition has at least two neighbors in Gi ),
• I3: for any j ≤ i − 1, there exists a point p j ∈ A j with p j ∈ �,
• I4: for any j ≥ i , if p j ∈ A j ∩ �, then for all p j+1 ∈ A j+1 with p j  p j+1 we

have p j+1 ∈ �.

Let L be the union of all Li for i > 0. For the purposes of the following claim, we
consider L to be a multiset. We will see later (in Lemma 3.6) that the lines in L are in
fact distinct, i.e., it is a set.

Claim 3.3 We have |L| ≥ ∑
i>0(|Ai | − 1).

Proof For a fixed i , suppose that Ai contains ci points for which all neighbors in Gi

have degree equal to 1 and di points that have neighbors of higher degree. Then Li

contains at least di increasing lines and
(ci

2

)
decreasing lines. We have

(ci
2

) ≥ ci − 1
for all non-negative integers ci , so we obtain |Li | ≥ |Ai | − 1. 
�

Some of the sets Li might contain only |Ai | − 1 lines. This can happen only if
ci = 1 or ci = 2. In both cases we need to find a line �+

i different from all lines in L.
We will put L′

i = Li ∪ {�+
i } and L′ = ∪i>0L′

i .
If ci = 1, Li does not contain any decreasing line. If |Ai−1| ≥ 2, pick any two points

p, q ∈ Ai−1 and let �+
i = 〈p, q〉. If |Ai−1| = 1, then we also have |Ai | = 1, since

otherwise the only point in Ai−1 would have degree at least 2, implying ci = 0. Let q
denote the only point in Ai and let r be a point outside 〈p, q〉. We have A j ⊆ 〈p, q〉
for all j ≥ i − 1. It follows that if r ∈ Y , then r ∈ ∪ j<i−1A j and the pair r, p is
decreasing. If the line 〈p, q〉 contains all points of Y , then r ∈ X \ Y , and the pair r, p
can be increasing or decreasing. Let �+

i = 〈r, p〉. We will call such line a special line.

Claim 3.4 Decreasing lines defined in this step satisfy properties D1, D2, and D3. A
special increasing line satisfies I3. The pair r, q is decreasing since r /∈ 〈p, q〉, so a
special increasing line 〈r, p〉 also satisfies

• I′
2: no point of Ai belongs to 〈r, p〉.

If ci = 2, there is exactly one decreasing line in Li . Let q1 = (x1, y1) and q2 =
(x2, y2) be the two points in Ai that only have neighbors of degree 1 in Gi , and
suppose x1 < x2 and y1 > y2. Let p1, p2, . . . , pk be the points of Ai−1 sorted in
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increasing order according to their x-coordinate. Note that the neighbors of q2 in Gi

are consecutive points in the above ordering. Let pa be the neighbor of q2 with the
smallest index and define �+

i = 〈pa−1, q2〉. Note that a > 1 holds, since all neighbors
of q1 have smaller indices than a.

Claim 3.5 The line �+
i has the property D3, as well as the following two properties:

• D′
1: �+

i contains all points of Ai−1 except the neighbors of q2, therefore �+
i contains

at least one point from all increasing pairs from Ai−1 ∪ Ai ,
• D′

2: it contains all points of Ai except for the neighbors of pa−1.

Lemma 3.6 All lines in L′ are distinct.

Proof Since for each line in L′ = ∪i>0L′
i , at least one of its defining points lies in Y ,

the condition that no two points of Y share their x- or y-coordinates guarantees that
an increasing line never coincides with a decreasing line.

Let �1 ∈ L′
i , �2 ∈ L′

j be two decreasing lines. If i = j and both lines satisfy D2,
then they are distinct. Otherwise one of them satisfies D1 and the other D′

1 and thus
they are distinct.

Suppose i < j . The line �2 has at least one defining point u on A j−1, and by D3
there exists an increasing sequence u0, . . . , u j−1 = u such that us �∈ �2 for s ≤ j −2.
If ui−1 ∈ �1, we are done. If not, �1 satisfies D′

1. The vertex ui−1 has degree 1 in Gi ,
so vi is the vertex q2 defined above. If i < j − 1, then q2 ∈ �1 \ �2 and we are done.
Now suppose i = j − 1. We have q2 = u. If the other defining point of �2 is on A j−1,
repeat the same argument to get q2 = v, a contradiction. If the other defining point of
�2 is on A j , similar argument applies. If the other defining point of �2 is on Ak with
k < j − 1, then |A j−1| = 1, a contradiction with the assumption that according to
D′

1 for �1, it contains two different points, q1 and q2.
Let �1 ∈ L′

i , �2 ∈ L′
j be two increasing lines. If i = j , then both �1 and �2 satisfy

I1 (if L′
i contains a special increasing line, then there is only one increasing line in

L′
i ), so they are distinct. If i < j and �1 satisfies I′

2, then the lines are distinct since
I3 holds for �2. Otherwise they are distinct because �1 satisfies I4, and �2 satisfies I2
or I′

2. 
�
For future reference, let us state also the following observation as a lemma.

Lemma 3.7 For i > 0 we have |L′
i | ≥ |Ai |.

4 Linear Lower Bound for Arbitrary Sets of Points

Lemma 4.1 Let X be a set of non-collinear points in the plane. Moreover suppose
that X has an n-element subset in which no two points share their x-coordinates and
no two points share their y-coordinates. Then X induces at least n/2 distinct lines.

Proof The n-element subset of X satisfies the conditions placed on Y in Sect. 3. Let
us use the notation and results introduced in that section. Since |L′| = ∑

i>0 |L′
i |,

Lemma 3.7 implies that

|L′| ≥
∑

i>0

|Ai |.
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If this sum is at least n/2, then we have found n/2 distinct lines determined by X .
Otherwise, since points in A0 form a decreasing sequence, X induces at least |A0| =
n − ∑

i>0 |Ai | > n/2 distinct lines by Lemma 2.2. 
�
Lemma 4.2 Let {(a, y1), (a, y2)} and {(b, y′

1), (b, y′
2)} be two vertical pairs in X such

that the pairs {y1, y2} and {y′
1, y′

2} are distinct. Then the lines 〈(a, y1), (a, y2)〉 and
〈(b, y′

1), (b, y′
2)〉 are distinct.

Proof Suppose first that a = b. If p1, . . . , pk ∈ X are points with the same
x-coordinate a and with y-coordinates y1, . . . , yk , then for any integer i with 1 ≤
i < k, there exists a point p′

i = (x ′
i , y′

i ) ∈ X such that a �= x ′ and yi < y′
i < yi+1. For

l < m, the line 〈pl , pm〉 contains all the points p′
i except for p′

l , . . . , p′
m−1. It follows

that the lines 〈pl , pm〉 are pairwise distinct for all distinct pairs {pl , pm}.
If a �= b and y1 < y2 ≤ y′

1 < y′
2, then for any point p /∈ 〈(a, y1), (a, y2)〉 we

have p ∈ 〈(b, y′
1), (b, y′

2)〉. If y1 < y′
1 < y2 < y′

2, then (b, y′
1) /∈ 〈(a, y1), (a, y2)〉.

Finally, if y1 < y′
1 < y′

2 < y2, then again (b, y′
1) /∈ 〈(a, y1), (a, y2)〉. 
�

Lemma 4.3 Let {(a, y1), (a, y2)} and {(b, y′
1), (b, y′

2)} be two distinct vertical pairs
of points in X such that there exists a point (a, y3) ∈ X with y3 strictly between y1
and y2. Then the line �1 = 〈(a, y1), (a, y2)〉 does not coincide with the line �2 =
〈(b, y′

1), (b, y′
2)〉.

Proof If {y1, y2} = {y′
1, y′

2}, then a �= b and (a, y3) ∈ �1 \ �2. If the two pairs of
y-coordinates do not coincide, then the lines are distinct by Lemma 4.2 
�

Analogous pair of lemmas holds for horizontal lines.

Lemma 4.4 Let X be a set of n points such that each point shares its x-coordinate
with at least four others. Then X determines at least n (vertical) lines.

Proof A set of m points that all share the same x-coordinate determines at least(m−1
2

)
non-consecutive pairs of points. If m ≥ 5, this is greater than m. Overall

we have at least n non-consecutive vertical pairs. These determine distinct lines by
Lemma 4.3. 
�
Proof of Thorem 1.2 Let 0 ≤ c, d ≤ 1 be some constants. If at least cn points share
their x-coordinates with at least four other points, then we have cn vertical lines by
Lemma 4.4. If not, we have at least (1 − c)n points that share their x-coordinate with
at most three other points. Deleting some points we get a set of at least (1 − c)n/4
points with unique x-coordinates. Again, if at least d-fraction of these points share
their y-coordinates with at least four other points, then we have (1−c)dn/4 horizontal
lines. If not, deleting some points we get a set of at least (1 − d)(1 − c)n/16 points
such that no two share x- or y-coordinate. By Lemma 4.1 we then obtain at least
(1 − d)(1 − c)n/(16 · 2) lines. Set d = 1/9, c = 1/37. 
�

Since our method does not yield the conjectured lower bound of n, we did not
attempt to improve the multiplicative constant 1/37.
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5 Additional Lines for Non-degenerate Sets

If X = Y , we can prove a stronger lower bound on the number of lines. In this section,
we will assume that X is a non-collinear set of n points in the plane, such that no two
points share their x- or y-coordinate.

Define the set L′ of lines as in Sect. 3. Note that in this case all lines �+
i are

decreasing. We need to add a set L0 of new lines so that |L0 ∪L′
1| ≥ |A0 ∪A1| holds.

Partition A0 into four parts A0,0, A0,h, A0,−, A0,+. A point p ∈ A0 belongs to
A0,0 if there exists no q such that p, q is an increasing pair. A point p ∈ A0 \ A0,0
belongs to A0,h if it belongs to some increasing pair but all pairs p, q with q ∈ A1
are decreasing. A0,− consists of the points of A0 that have degree 1 in G1, and A0,+
is set of points in A0 with degree at least 2 in G1.

Let us first introduce the new increasing lines. For any point p ∈ A0 \ A0,0 let h(p)

denote the minimum index i such that there exists a point q ∈ Ai with p ≺ q. We
define

L0,incr = {〈p, q〉 : p ∈ A0,− ∪ A0,h, q ∈ Ah(p), p ≺ q}.

Every line � = 〈p, q〉 ∈ L0,incr has the following properties:

• I′′
1: � ∩ A0 = {p}, � ∩ Ah(p) = q, and for all 0 < j < h(p) we have � ∩ A j = ∅,

• I′′
4: for any j ≥ h(p), if p j ∈ A j ∩ �, then for all p j+1 ∈ A j+1 with p j ≺ p j+1

we have p j+1 ∈ �.

Lemma 5.1 The lines in L′ ∪ L0,incr are all distinct.

Proof Property I′′
1 ensures that two lines 〈p, q〉 and 〈p′, q ′〉 that both belong to L0,incr

are distinct unless {p, q} = {p′, q ′}. A line 〈p, q〉 = �1 ∈ L0,incr is different from

any increasing line �2 ∈ ∪h(p)
i=1 Li because �1 satisfies I′′

1 and �2 satisfies I1. If �2 ∈
∪i>h(p)Li , then �1 �= �2 because �1 satisfies I′′

4 and �2 satisfies I2. 
�
To introduce the new decreasing lines, let A1,c denote the set of all elements of A1

such that all their neighbors in G1 have degree 1 in G1 (i.e., |A1,c| = c1). Writing
A1,d = A1\A1,c, consider the induced subgraph G ′ = G1[A1,d , A0,+]. Let us create a
final partition of A1,d and A0,+. Let A consist of the points of A1,d that have degree 1
in G ′ and let C ⊆ A0,+ be the set of neighbors of A in G ′. Write B = A1,d \ A
and D = A0,+ \ C . Let p1, p2, . . . , ps be the enumeration of C in increasing order
according to their x-coordinates and let q1

k , q2
k , . . . , qm(k)

k be the neighbors of pk in A
enumerated again in increasing order according to their x-coordinates. Let uk be either
the rightmost point in A0,− ∪ A0,+ that has larger y-coordinate than q1

k or the leftmost

point in A0,− ∪ A0,+ that has larger x-coordinate than qm(k)
k . If k ≥ 2 then pk−1 has

larger y-coordinate than q1
k while if k ≤ s − 1, then pk+1 has larger x-coordinate

than qm(k)
k . If this was not the case, pk−1 and q1

k (or pk+1 and qm(k)
k ) would form an

increasing pair, contradicting that q1
k and qm(k)

k have degree 1 in G ′. It follows that if
s ≥ 2,then uk exists for all 1 ≤ k ≤ s. If s ≥ 2, define

L0,decr = {〈uk, q1
k 〉 : 1 ≤ k ≤ s}.
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Claim 5.2 Every line � = 〈uk, q1
k 〉 ∈ L0,decr has the following properties:

• D′′
1: � contains all points of A0 except for pk (this is because the only point in A0

with which q1
k forms an increasing pair is pk),

• D′′
2: there exists a point q ∈ A1 with q /∈ � (since uk ∈ A0,− ∪ A0,+, it has positive

degree in G1),
• D′′

3: for every q ∈ A1 either q ∈ � holds or there exists p ∈ A0 with p ≺ q and
p ∈ � (if the only neighbor of q is pk , then by definition q ∈ � holds, otherwise
we are done by D′′

1).

Lemma 5.3 The lines in L′ ∪ L0,decr are all distinct.

Proof For k1 �= k2, the lines 〈uk1 , q1
k1

〉 and 〈uk2 , q1
k2

〉 are distinct because of the

property D′′
1. If �1 = 〈uk, q1

k 〉 and �2 ∈ L′
1, then they are distinct because �1 satisfies

D′′
1 and �2 satisfies D1 or D′

1, since we have pk /∈ A0,−. If �1 = 〈uk, q1
k 〉 and �2 ∈ L′

2,
the property D′′

2 guarantees that there is a point q ∈ A1 that does not belong to �1. If
q ∈ �2, we are done. If this is not the case, then �2 satisfies D′

1, so q has a neighbor
in A2 that belongs to �2. This point does not belong to �1. Finally, if �1 = 〈uk, q1

k 〉
and �2 ∈ L′

j with j ≥ 3, then they are distinct because �1 satisfies D′′
3 and �2

satisfies D3. 
�
Thanks to the assumption that no two points in X share their x- or y-coordinate, an

increasing line never coincides with a decreasing line. We have therefore shown that
the lines in L′ ∪ L0,decr ∪ L0,incr are all distinct.

Lemma 5.4 We have |L′
1 ∪ L0,decr ∪ L0,incr| ≥ |A0 ∪ A1| − 2.

Proof We partitionedA1 into A1,c, A, B, whileA0 is partitioned into A0,0, A0,h, A0,−,

C, D. The number of decreasing lines in L′
1 is at least c1 = |A1,c|. The number of

increasing lines in L′
1 is e(G ′), where G ′ = G1[A1,d , A0,+] = G1[A ∪ B, C ∪ D].

Let us note that we have |L0,incr| ≥ |A0,−| + |A0,h | and |A0,0| ≤ 1. The first
inequality follows from the definition of L0,incr. For the second inequality observe
that if p1, p2 belonged to A0,0, then the decreasing line 〈p1, p2〉 would contain all
points of X . The number of lines in L0,decr is |C | if |C | �= 1 and 0 = |C | − 1 if
|C | = 1.

We claim that e(G ′) ≥ |A| + |B| + |D|. Vertices in A, by definition, have degree 1
in G1, thus the number of edges adjacent to A is exactly |A| and these edges have
their other endpoint in C . The degree of all vertices of B ∪ D is at least 2, thus the
number of edges in G ′ not adjacent to vertices in A is at least |B| + |D|. Adding all
these inequalities we obtain that |L′

1 ∪ L0,decr ∪ L0,incr| ≥ |A0 ∪ A1| − 2. 
�

6 Non-Degenerate Sets: n Lines Exist

If X = Y , then we can improve Lemma 4.1 and obtain Theorem 1.1.

Proof of Thorem 1.1 Putting together Lemma 3.7 with Lemma 5.4, we see that X
induces at least n − 2 lines, and moreover the term −2 would disappear if we had
A0,0 = ∅ and |C | �= 1 in the proof of the Lemma 5.4.

To overcome these last two problems, let us introduce three more partial orders on
X . Let (X,1) = (X,), and define (X,2), (X,3), (X,4) by

123



Discrete Comput Geom (2013) 49:659–670 669

• p 2 q if and only if q 1 p,
• p 3 q if and only if p, q is a decreasing pair and p has a smaller x-coordinate

than q,
• p 4 q if and only if q 3 p.

All the sets L′
i , as well as L0,decr and L0,incr, can be defined with respect to the

layers according to (X, j ) for all j = 1, 2, 3, 4. We claim that for at least one of them
A0,0 = ∅ and |C | �= 1 must hold. Note first that a point in A0,0 forms a decreasing pair
with all other points in X when A0,0 is defined according to (X,1) or (X,2), while
it forms an increasing pair with all other points in X when A0,0 is defined according to
(X,3) or (X,4). Clearly, there cannot exist two points simultaneously with these
properties. Thus we can assume that for, say, (X,1) and (X,2) the set A0,0 is
empty.

We still have to deal with the case where |C | = 1. Let p1 denote the only point in C .
If A0,− ∪ A0,+ contains other points besides p1, then u1 is defined and we obtain one
decreasing line in L0,decr. Otherwise, as A0,− is empty, we have c1 = 0 and thus L′

1
does not contain any decreasing line. Therefore, if A0,h is not empty, then a decreasing
line 〈q, p1〉 with q ∈ A0,h contains all A0 and thus is different from any other lines. If
A0,h is empty, then we obtain A0 = {p1} meaning p1  q for any other point q. The
same proof for (X,2) shows that we find an extra line unless there exists a point p2
such that p2 2 q, or equivalently q 1 p2, for any other point q. But then 〈p1, p2〉
contains all points. Thus for one of the partial orders (1, X) or (2, X) we must have
defined at least |A0 ∪ A1| distinct lines. 
�
Remark Note that all four partial orders are needed in the above proof. Consider the
points p1 = (x1, y1), p2 = (x2, y2), . . . , pn−1 = (xn−1, yn−1), p = (x, y) such that
x < x1 < x2 < · · · < xn−1 and y1 < y2 < · · · < yn−1 < y hold (this is the
configuration mentioned in the introduction, showing that Theorem 1.1 is tight). Then
only (X,4) will have the property that A0,0 = ∅ and |C | �= 1.
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