Regular Polytopes of Nearly Full Rank: Addendum

Peter McMullen

Received: 5 November 2012 / Accepted: 1 February 2013 / Published online: 23 February 2013
© Springer Science+Business Media New York 2013

Abstract

A small family of regular polytopes of nearly full rank was omitted from the earlier paper with this title. This omission is rectified here.

Keywords Abstract regular polytope, Realization, Nearly full rank
Mathematics Subject Classification (2010) Primary, 51M20

1 Introduction

At the end of [2], we expressed the hope that our enumeration of the regular polytopes of nearly full rank was then complete. In retrospect, it is fortunate that we did not make an absolute claim for completeness; it turns out that we overlooked a family which is closely related to others that we did describe. In this note, we shall repair the omission.

Perhaps a brief word is in order about how we found the new family. In writing [5], it has seemed useful to present a wider range of illustrations of realization theory than we felt appropriate to put in papers. In particular, the new techniques of [3,4] have enabled us to describe realization domains of polytopes which were out of reach of the theory in [6, Chap. 5]. One example (which actually has a rather complicated realization domain) is the dual J_{5}^{δ} of the polytope that in [2, Sect. 13] we called J_{5}; this six-dimensional regular polytope of rank 5 has 270 vertices, which it shares with the difference body $D\left(2_{21}\right)$ of the Gosset polytope 2_{21}. At an early stage of looking at this polytope, we discovered that the corresponding abstract regular polytope had

[^0]another six-dimensional realization K_{5} (in the notation of Sect. 2), with the 27 vertices of 2_{21} itself. This realization is our starting point.

It is worth pointing out as well that a further opportunity to come across this family was missed. In [1, Sect. 10], we eliminated two possible candidates as regular polytopes of full rank. What we failed to appreciate subsequently is that the facet of the six-dimensional case, namely K_{5}, was actually a polytope.

2 The New Family

The new family of regular polytopes (or apeirotopes) is derived by twisting the diagram below by an improper inner automorphism. If we omit the rightmost node (and corresponding branch), then we obtain the diagram for the polytope called $G_{s+1,3}^{\pi}$ in [2, Sect. 11]; it is the Petrial of the polytope $G_{s+1,3}$ of the first Gosset class, whose details are given in [2, Proposition 11.1]. (We have changed the index from the original for future convenience.)

It is clear that we cannot extend the diagram by any more nodes to the right, because we would then obtain the diagram of the infinite group $\left[3^{2,2,2}\right]$ as a subdiagram. However, as we shall shortly see, we can allow any $s \leq 2$, in spite of the fact that there is again an 'infinite' subdiagram; we encountered such a situation several times in [2, Sect. 12].

So, let us draw the diagram in the case $s=2$, now with labels attached which indicate the corresponding generators of the symmetry group \mathbf{G}.

For the present purposes, the best way to list the generators R_{j} of \mathbf{G} is by giving the equations of their mirrors, in terms of coordinate vectors $\left(\xi_{1}, \ldots, \xi_{8}\right) \in \mathbb{E}^{8}$. They are

$$
R_{j}: \begin{cases}\xi_{1}+\xi_{8}=2, & \text { if } j=0, \\ \xi_{1}+\cdots+\xi_{8}=0, & \text { if } j=1, \\ \xi_{2}+\xi_{7}=0, & \text { if } j=2, \\ \xi_{2}=\xi_{3}, & \text { if } j=3, \\ \xi_{1}=\xi_{8}, \xi_{2}=\xi_{7}, \xi_{3}=\xi_{6}, \xi_{4}=\xi_{5}, & \text { if } j=4, \\ \xi_{5}=\xi_{6}, & \text { if } j=5, \\ \xi_{4}=\xi_{5}, & \text { if } j=6, \\ \xi_{1}+\cdots+\xi_{4}=\xi_{5}+\cdots+\xi_{8}, & \text { if } j=7 .\end{cases}
$$

Thus R_{4} is the diagram twist, which just reverses the order of the coordinates ξ_{1}, \ldots, ξ_{8}.
Of course, as we know from [6, Chap. 2], to show that we do obtain polytopes (rather than pre-polytopes), we must verify the intersection property

$$
\left\langle R_{i} \mid i \in \mathrm{~J}\right\rangle \cap\left\langle R_{i} \mid i \in \mathrm{~K}\right\rangle=\left\langle R_{i} \mid i \in \mathrm{~J} \cap \mathrm{~K}\right\rangle
$$

for all subsets $\mathrm{J}, \mathrm{K} \subseteq\{0, \ldots, 7\}$. However, the geometric picture given by the generators makes this straightforward, if a little tedious.

For $r=5, \ldots, 8$, the symmetry group of the general member K_{r} of the family is

$$
\mathbf{K}_{r}:=\left\langle R_{8-r}, \ldots, R_{7}\right\rangle .
$$

For $r=5,6,7, K_{r}$ is a (finite) $(r+1)$-dimensional regular polytope of rank r, and thus of nearly full rank; similarly, K_{8} is an eight-dimensional apeirotope of nearly full rank.

The initial vertex of K_{8} is the origin o; which R_{0} takes into the initial vertex $\left(2,0^{6}, 2\right)$ of the vertex-figure K_{7}; as usual in this context, α^{k} denotes a string α, \ldots, α of length k. Under the group $\mathbf{G}_{0}=\mathbf{K}_{7}$ of the vertex-figure, we obtain all permutations with an even number of changes of sign of $\left(2,2,0^{6}\right)$ and $\left(1^{8}\right)$, namely, the vertex-set of the Gosset polytope 4_{21}. Thus K_{8} has the vertices of the semi-regular tiling 5_{21} of \mathbb{E}^{8}.

More generally, the r-coface (that is, coface of rank r) K_{r} has the same vertices as $(r-3)_{21}$. Moreover, as we said above, the facet of K_{r} is the Petrial $G_{r-5,3}^{\pi}$ of the regular polytope $G_{r-5,3}$ of the first Gosset class. We pointed out in [2, Sect. 11] that G_{33}^{π} is an apeirotope, whose facets are themselves apeirotopes; these are actually of type J_{6} of Sect. 13, rather than of type A_{6} of Sect. 12 as mistakenly asserted. Hence K_{8} even has ridges which are apeirotopes.

So far as K_{5} is concerned, its group is obtained from that of J_{5}^{δ} by changing the sign of the diagram twist T (that is, replace the mirror T by its orthogonal complement T^{\perp}); this changes a proper outer automorphism to an improper inner one. Since such replacements were used quite often in [2, Sect. 12], this makes the fact that K_{5} was overlooked even less excusable.

Let us add one comment about K_{7}. In spite of the apparent symmetry of the diagram, K_{7} is not self-dual; indeed, like each of the polytopes K_{r}, it has no geometric dual. However, just as with other cases, if we reverse the order of the generators R_{1}, \ldots, R_{7} and change the sign of the twist R_{4}, then we obtain the symmetry group of another copy of K_{7} (or, rather, the same copy, but with different initial vertex and so on).

References

1. McMullen, P.: Regular polytopes of full rank. Discrete Comput. Geom. 32, 1-35 (2004)
2. McMullen, P.: Regular polytopes of nearly full rank. Discrete Comput. Geom. 46, 660-703 (2011)
3. McMullen, P.: Realizations of regular polytopes, III. Aequationes Math. 82, 35-63 (2011)
4. McMullen, P.: Realizations of regular polytopes, IV. Aequationes Math. (in press)
5. McMullen, P.: Geometric Regular Polytopes (in preparation)
6. McMullen P., Schulte, E.: Abstract Regular Polytopes. Encyclopedia of Mathematics and Its Applications, No. 92. Cambridge University Press, Cambridge (2002)

[^0]: P. McMullen (\boxtimes)

 University College London, Gower Street, London, WC1E 6BT, UK
 e-mail: p.mcmullen@ucl.ac.uk

