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Abstract Let n be a positive integer, not a power of two. A Reinhardt polygon is
a convex n-gon that is optimal in three different geometric optimization problems: it
has maximal perimeter relative to its diameter, maximal width relative to its diameter,
and maximal width relative to its perimeter. For almost all n, there are many Rein-
hardt polygons with n sides, and many of them exhibit a particular periodic structure.
While these periodic polygons are well understood, for certain values of n, additional
Reinhardt polygons exist, which do not possess this structured form. We call these
polygons sporadic. We completely characterize the integers n for which sporadic
Reinhardt polygons exist, showing that these polygons occur precisely when n = pqr
with p and q distinct odd primes and r ≥ 2. We also prove that a positive proportion
of the Reinhardt polygons with n sides is sporadic for almost all integers n, and we
investigate the precise number of sporadic Reinhardt polygons that are produced for
several values of n by a construction that we introduce.
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1 Introduction

For a convex polygon in the plane, its diameter is the maximum distance between two
of its vertices; its width is the minimal distance between a pair of parallel lines that
enclose it. A number of natural problems for polygons arise by fixing the number of
sides n, and fixing one of the four quantities diameter, width, perimeter, or area, and
then maximizing or minimizing another one of these attributes. Six different nontrivial
optimization problems for polygons arise in this way, including, for example, the well-
known isoperimetric problem, where the perimeter of a convex n-gon is fixed, and one
wishes to maximize the area. In that case, the regular n-gon is the unique optimal
solution for all n, but this is not the case in the other five nontrivial extremal problems
in this family.

Prior research has shown that a particular family of polygons is optimal in three of
these geometric optimization problems, provided that n is not a power of 2:

1. The isodiametric problem for the perimeter (maximize the perimeter, for a fixed
diameter).

2. The isodiametric problem for the width (maximize the width, for a fixed diameter).
3. The isoperimetric problem for the width (maximize the width, for a fixed perime-

ter).

Problem 1 was first studied by Reinhardt in 1922 [11], and later by others [3,6–8,13].
Problem 2 was investigated by Bezdek and Fodor [2] in 2000, and problem 3 was
considered by Audet et al. [1] in 2009.

Before describing the family of polygons that is optimal in these three problems
when n �= 2m , we recall that a Reuleaux polygon is a closed, convex region in the
plane, the boundary of which consists of a finite number of circular arcs, each with
the same curvature, with the property that every pair of parallel lines that sandwiches
the region is the same distance apart (that is, Reuleaux polygons have constant width).
We say a point on the boundary of a Reuleaux polygon R is a vertex of R if it lies
at the intersection of two adjacent circular arcs on its boundary. We briefly recall a
number of facts concerning Reuleaux polygons (see [7] for more details). First, every
Reuleaux polygon R has an odd number of vertices, and each vertex of R is equidistant
from all of the points on one of the circular arcs that form the boundary of R. Second,
connecting all pairs of vertices at maximal distance from one another in a Reuleaux
polygon forms a star polygon—a closed path in the plane consisting of an odd number
of line segments, each of which intersects all of the others. The sum of the measures
of the angles at the vertices of a star polygon is π , and each line segment comprising
the star polygon associated with a Reuleaux polygon has the same length, equal to
the diameter of the Reuleaux polygon. Third, we can recover the Reuleaux polygon R
from its associated star polygon S by visiting each vertex v of S and drawing a circular
arc between the two vertices adjacent to v in S, with radius equal to the length of each
line segment in S. Last, an ordinary polygon can always be inscribed in a Reuleaux
polygon with the same diameter.

A polygon with n �= 2m sides that is optimal in the three problems described above
is called a Reinhardt polygon, which we define as an equilateral convex polygon P
that can be inscribed in a Reuleaux polygon R having the same diameter as P in
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Fig. 1 Reinhardt polygons with n = 21 sides

such a way that every vertex of R is a vertex of P [1,2,11]. If n is odd, then the regular
n-gon is a Reinhardt polygon, but this is not the case when n is even. In addition,
for almost all n ≥ 3 there is more than one Reinhardt polygon with n sides—this is
the case for all n except those of the form p, 2p, or 2m , where p is prime [9]. For
example, Fig. 1 exhibits the ten different Reinhardt polygons having n = 21 sides.
These polygons are all distinct, in that one cannot be obtained from another by some
combination of rotations and flips.

We can describe a Reinhardt polygon P in a compact way by focusing on the star
polygon S associated with the Reuleaux polygon R that circumscribes P . Suppose
that P has n vertices. Vertices of P that are not vertices of R lie on the boundary
of R, and since P is equilateral, these vertices subdivide the circular arcs on the
boundary of R into subarcs of equal length. The angle at a vertex v of S then has
measure kπ/n, where k is the number of sides of P that are inscribed in the arc
of R that lies opposite v. We can thus describe a Reinhardt polygon by naming the
sequence of these integers k as one circumnavigates the star polygon S. If S has r
vertices, then we denote this sequence by [k1, k2, . . . , kr ]. For example, the sequence
for the 21-sided polygon in Fig. 1a, where the underlying star polygon is an equilateral
triangle, each angle of which is subdivided into sevenths, is [7,7,7], and we abbreviate
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this by [(7)3]. In the same way, the regular henicosagon of Fig. 1j is denoted by a
sequence of 21 ones: [(1)21]. A Reinhardt polygon with n sides is therefore denoted
by a particular composition of n into an odd number of parts. Naturally, we consider
two such compositions to be equivalent if one can be obtained from the other by a
combination of cyclic shifts and list reversals (corresponding to rotations and flips of
the polygon), and so we consider equivalence classes of such compositions under a
dihedral action. We call such an equivalence class a dihedral composition.

Not every dihedral composition of an integer n into an odd number of parts corre-
sponds to a Reinhardt polygon; an extra condition is required to ensure that the path
determined by a list of integers is closed. Reinhardt [7,11] obtained a characterization
for valid compositions in terms of an associated polynomial: given [k1, . . . , kr ] with
r odd and

∑r
i=1 ki = n, form the polynomial

F(z) = 1 − zk1 + zk1+k2 − · · · + zk1+···+kr−1 .

Then [k1, . . . , kr ] corresponds to a Reinhardt polygon if and only if Φ2n(z) | F(z),
where Φm(z) denotes the mth cyclotomic polynomial. We say F(z) is a Reinhardt
polynomial for n if F(0) = 1, deg(F) < n, F has an odd number of terms, the nonzero
coefficients of F alternate ±1, and Φ2n(z) | F(z). For example, the polynomials
associated with the polygons of Fig. 1a, b are respectively 1 − z7 + z14 and 1 − z3 +
z6 − z9 + z12 − z15 + z18.

Let E(n) denote the number of Reinhardt polygons with n sides, counting two
polygons as distinct only if one cannot be obtained from the other by a combina-
tion of rotations and flips. One may determine E(n) by enumerating the Reinhardt
polynomials for n; this strategy shows for example that Fig. 1 exhibits the complete
set of 21-sided Reinhardt polygons. Such computations reveal that for many val-
ues of n, every Reinhardt polygon with n sides exhibits special structure, in that the
corresponding dihedral composition is periodic. We call such a polygon a periodic
Reinhardt polygon. From Fig. 1, we see that every henicosagonal Reinhardt polygon
is periodic, since each corresponding dihedral composition in this figure has the form
[(k1, . . . , ks)

d ] for some divisor d of 21. In fact, every Reinhardt polygon with n < 30
sides is periodic, but at n = 30, there are 38 periodic Reinhardt polygons, plus three
that do not exhibit such structure. We call these polygons sporadic, and the three for
n = 30 are exhibited in Fig. 2. They also appear at n = 42 and at n = 45, but at no
other integers n < 60.

Let E0(n) denote the number of periodic Reinhardt polygons having n sides, and
let E1(n) denote the number of sporadic Reinhardt polygons with n sides (again, with
both counts taken under dihedral equivalence), so E(n) = E0(n) + E1(n). In [9], the
second author obtained a number of results regarding these quantities, including an
exact value for E0(n):

E0(n) =
∑

d|n
d>1

μ(2d)D(n/d), (1.1)
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(a) (b)

(c)

Fig. 2 Sporadic Reinhardt polygons for n = 30

where μ(·) is the Möbius function,

D(m) = 2�(m−3)/2� + 1

4m

∑

d|m
2�d

2m/dϕ(d),

and ϕ(·) is Euler’s totient function. This formula follows from some combinatorial
analysis, after observing that every composition of an integer n ≥ 3 of the form
[(k1, . . . , ks)

d ] with s and d odd corresponds to a Reinhardt polygon. Gashkov [5]
obtained a similar result, but assuming cyclic equivalence classes instead of dihedral
ones.

In [9], it was also shown that E1(n) = 0 if n has the form n = 2a pb+1, for some
odd prime p, where a and b are nonnegative integers, and that E(n) = 1 if and only
if n = p or n = 2p for some odd prime p. In addition, some computations in [9]
indicated that E1(n) = 0 for 40 different values of n of the form n = pq, with
p and q distinct odd primes, and that E1(n) > 0 for many integers having neither
the form n = pq nor n = 2a pb+1. Two problems were posed in that article: first,
determine if E1(pq) = 0 whenever p and q are distinct odd primes; second, determine
if E1(n) > 0 whenever n = pqr , with p and q distinct odd primes and r ≥ 2. In this
article, we prove both of these assertions.

Theorem 1.1 If n = pq, with p and q distinct odd primes, then every Reinhardt
polygon with n sides is periodic, that is, E1(n) = 0.
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Using Theorem 1.1 and (1.1), we therefore obtain an exact formula for the number
of Reinhardt polygons with n sides (under dihedral equivalence) when n is a product
of two distinct odd primes:

E(pq) = 2(p−3)/2 + 2p−1 + p − 1

2p
+ 2(q−3)/2 + 2q−1 + q − 1

2q
− 1. (1.2)

Section 2 describes the proof of Theorem 1.1. It relies on the structure of a principal
ideal in Z[z] generated by a cyclotomic polynomial.

Theorem 1.2 If n = pqr, with p and q distinct odd primes and r ≥ 2, then there
exists a sporadic Reinhardt polygon with n sides, that is, E1(n) > 0.

Section 3 contains the proof of Theorem 1.2. This proof is constructive, describing a
method for creating a sizable family of sporadic Reinhardt polygons for any qualifying
integer n.

In [9], the exact value of E1(n) was computed for 24 different integers n having the
form specified in Theorem 1.2, and in each of these cases it was found that E0(n) >

E1(n), and often E0(n) was in fact several orders of magnitude larger than E1(n).
Despite this, it was conjectured in [9] that E1(n) > E0(n) for almost all positive
integers. We obtain some information on the size of E1(n) in this article, showing
that, in a particular sense, a positive proportion of the Reinhardt polygons with n sides
are sporadic, for almost all n. The following result is also established in Sect. 3.

Theorem 1.3 Suppose p and q are fixed odd primes with p < q, and let ε > 0. Then
for all sufficiently large integers r having no odd prime divisor less than p, we have

E1(pqr)

E(pqr)
>

2p − 2

p2q + 2p − 2
− ε.

Section 4 explores the precise number of sporadic Reinhardt polygons produced
by our method, and compares this number with the exact value of E1(n), for the
24 different integers n where this is known. We find, for example, that our method
constructs all of the sporadic polygons for some of these values. This section also treats
the case n = 105 in some detail, and here our method produces far more Reinhardt
polygons than what is suggested by the bound of Theorem 1.3. It was posited in [9]
that n = 105 is the smallest integer where E1(n) exceeds E0(n). Our calculations
here provide some further empirical evidence for this assertion.

2 Proof of Theorem 1.1

A theorem of de Bruijn [4] (see also [10,12]) states that the principal ideal generated by
the cyclotomic polynomial Φm(z) in Z[z] is generated by the collection of polynomials
{Φp(zm/p) : p is prime and p | m}. Note that each term in this generating set is
certainly a multiple of Φm(z), since
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Φp(z
m/p) =

∏

d|m
d�m

p

Φd(z).

Thus, if {p1, . . . , pr } are the odd prime divisors of a (possibly even) positive integer
n, and if Φ2n(z) | F(z), then there exist integer polynomials f0(z), . . . , fr (z) such
that

F(z) = f0(z)(z
n + 1) +

r∑

i=1

fi (z)Φpi (z
2n/pi ).

However, since

Φpi (z
2n/pi ) − zn/pi (zn + 1)

z(pi −1)n/pi − 1

z2n/pi − 1
= Φpi (−zn/pi ),

then an equivalent condition for Φ2n(z) | F(z) is the existence of polynomials fi (z)
such that

F(z) = f0(z)(z
n + 1) +

r∑

i=1

fi (z)Φpi (−zn/pi ). (2.1)

Suppose F(z) is the Reinhardt polynomial corresponding to a periodic Reinhardt
polygon with n sides, which arises from a composition of n of the form [(k1, . . . , ks)

d ],
where d and s are odd and d ≥ 3. Let m = ∑s

i=1 ki . Then

F(z) = f (z)
d−1∑

i=0

(−1)i zmi ,

where f (0) = 1, deg( f ) < m, and the s nonzero coefficients of f alternate ±1. Select
j so that the odd prime divisor p j of n divides d, and let e = d/p j . Then

F(z) = f (z)
(e−1∑

i=0

(−1)i zmi )Φp j (−zn/p j ),

and this has the form of (2.1) if one takes f j (z) = f (z)
∑e−1

i=0 (−1)i zmi , and every
other fi (z) = 0. Conversely, if F(z) is a polynomial formed by using (2.1) with each
fi (z) = 0 except for one with positive index j , and taking this polynomial f j (z) to
have alternating ±1 nonzero coefficients, an odd number of terms, f j (0) = 1, and
deg( f j ) < n/p j , then clearly F(z) corresponds to a periodic Reinhardt polygon for
n. Thus, the polygons corresponding to the Reinhardt polynomials in (2.1) in which
each fi (z) = 0 except for one with positive index are precisely the periodic Reinhardt
polygons for n.
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In order to establish Theorem 1.1, we therefore need only prove that every Reinhardt
polynomial for n = pq, where p and q are distinct odd primes, can be represented by
using just the i = 1 or the i = 2 term of (2.1). We may state this requirement in a com-
pact way as a divisibility condition on F(z). Theorem 1.1 then follows immediately
from the following proposition.

Proposition 2.1 Let n = pq with p and q distinct odd primes. If F(z) is a Reinhardt
polynomial for n, then either Φp(−zq) | F(z) or Φq(−z p) | F(z).

In order to establish this statement, we require two preliminary results.

Lemma 2.2 Let n = pq with p and q distinct odd primes, and suppose that F(z)
is a Reinhardt polynomial for n. Then there exist polynomials f1(z) and f2(z) with
integer coefficients, deg( f1) < q, deg( f2) < p, and

F(z) = f1(z)Φp(−zq) + f2(z)Φq(−z p). (2.2)

Further, we may choose f1(z) and f2(z) to have all their coefficients in {−1, 0, 1}.
Proof First, as in [12], we note that if s and t are positive integers and s = tu + v,
with u and v integers and 0 ≤ v < t , then the division algorithm in Z[z] certainly
produces

s−1∑

k=0

zk = ( u∑

k=1

zs−kt)(
t−1∑

k=0

zk) +
v−1∑

k=0

zk .

It follows that the Euclidean algorithm in Z[z] applied to the cyclotomic polynomials
Φp(z) and Φq(z) produces integer polynomials a(z) and b(z), with deg(a) < q
and deg(b) < p, such that a(z)Φp(z) + b(z)Φq(z) = 1. Since Φm(−z) = Φ2m(z)
when m is odd, we may rewrite this as a(−z)Φ2p(z) + b(−z)Φ2q(z) = 1. Write
F(z) = Φ2pq(z)h(z), so that deg(h) < p + q − 1. We therefore find that

F(z) = h(z)a(−z)Φ2pq(z)Φ2p(z) + h(z)b(−z)Φ2pq(z)Φ2q(z).

Let f1(z) and c(z) be the integer polynomials satisfying deg( f1) < q − 1 and

h(z)a(−z) = c(z)Φ2q(z) + f1(z),

so that

F(z) = f1(z)Φ2pq(z)Φ2p(z) + (h(z)b(−z) + c(z)Φ2p(z))Φ2pq(z)Φ2q(z).

We choose f2(z) = h(z)b(−z)+c(z)Φ2p(z) and one may check easily that deg( f2) <

p. Since Φpq(z)Φp(z) = (z pq −1)/(zq −1) = Φp(zq), we see that Φ2pq(z)Φ2p(z) =
Φp(−zq), and similarly when the roles of p and q are reversed. We have therefore
produced integer polynomials f1(z) and f2(z) satisfying the required degree bounds
and (2.2), and the first statement of the Lemma follows.

For the second statement, let
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f1(z)Φp(−zq) =
pq−1∑

i=0

si z
i and f2(z)Φq(−z p) =

pq−1∑

j=0

t j z
j , (2.3)

so that si+q = −si for 0 ≤ i < q(p − 1) and t j+p = −t j for 0 ≤ j < (q − 1)p, and

let F(z) = ∑pq−1
i=0 ui zi . It is straightforward to verify that if ( f1(z), f2(z)) satisfy

(2.2), then so does ( f1(z) + mΦ2q(z), f2(z) − mΦ2p(z)) for any integer m. Since
u0 = 1, we may therefore assume that s0 = 1 and t0 = 0. Select integers p′ and q ′
so that pp′ + qq ′ = 1, and select an integer i with 1 ≤ i < pq. Let e be the integer
with 0 ≤ e < pq such that e ≡ i pp′ mod pq. Since e ≡ 0 mod p, e ≡ i mod q, and
t0 = 0, we see that ue = se + te = ±si . As a Reinhardt polynomial, each coefficient
of F(z) is −1, 0, or 1, so consequently si ∈ {−1, 0, 1} for each i .

If there exists an integer i with 1 ≤ i < pq and si = 0, then a similar argument,
using 0 ≤ e < pq such that e ≡ i pp′ + jqq ′ mod pq, shows that t j ∈ {−1, 0, 1} for
each j . Suppose then that each si = ±1. If si + ti �= 0 for all i then si + ti = (−1)i ,
and we can use the trivial decomposition si = (−1)i and ti = 0 for each i . Hence
assume that there exists a k such that sk + tk = 0. In particular, tk = −sk = ∓1 is odd.
Replace f1(z) by f ∗

1 (z) = f1(z) − Φ2q(z) and f2(z) by f ∗
2 (z) = f2(z) + Φ2p(z),

and write f ∗
1 (z)Φp(−zq) = ∑pq−1

i=0 s∗
i zi and f ∗

2 (z)Φq(−z p) = ∑pq−1
j=0 t∗j z j . Thus,

each s∗
i is even, s∗

0 = 0, t∗0 = 1, and t∗k is even. If e satisfies 0 ≤ e < pq, e ≡ 0 mod
p, and e ≡ k mod q, then ue = ±s∗

0 ± t∗k = ±t∗k ∈ {−1, 0, 1}, and consequently, as
t∗k is even, t∗k = 0. In the same way as above, the fact that s∗

0 = 0 implies that each
t∗j ∈ {−1, 0, 1}, and because t∗k = 0, we now conclude that each s∗

i ∈ {−1, 0, 1} as
well. In fact, because each s∗

i is even, we have that f ∗
1 (z) = 0 and so f1(z) = Φ2q(z).

�

We say that polynomials f1(z) and f2(z) satisfying all the conditions of Lemma 2.2

form a decomposition of the Reinhardt polynomial F(z), and we say that a decompo-
sition is trivial if either f1(z) ∈ {0, Φq(−z)}, or f2(z) ∈ {0, Φp(−z)}. Note that we do
not require that f1(z) = 0 or f2(z) = 0 in a trivial decomposition, since other trivial
configurations may occur. For example, with p = 3 and q = 5, one may check that
choosing f1(z) = z(1− z) and f2(z) = Φ3(−z) in (2.2) produces the same Reinhardt
polynomial as the selection f1(z) = 1 − z3 + z4 and f2(z) = 0.

From the proof of the lemma, we see that both zero and nonzero coefficients appear
among both the si and the t j in any nontrivial decomposition. We require one further
property of a nontrivial decomposition.

Lemma 2.3 Let n = pq with p and q distinct odd primes, suppose F(z) is a Reinhardt
polynomial for n, and suppose f1(z) and f2(z) form a nontrivial decomposition of
F(z), and define the sequence {si } as in (2.3). Then there exist integers i and j with
0 ≤ i < j < pq such that i ≡ j mod 2, si = 1, s j = 0, and there are an even number

of nonzero terms between si and s j :
∑ j−1

k=i+1 |sk | ≡ 0 mod 2.

Proof It suffices to establish the result for si = ±1, since if si = −1, we may use
i ± q and j ± q in place of i and j . We first note that if a coefficient sequence of the
form s�00 ever occurs with s� �= 0, then we may select i = � and j = � + 2.
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Choose k with 0 ≤ k < q such that sk = 0. Such an integer k must exist since f1(z)
is nontrivial. Then sk+q = 0 as well. Consider the sequence 0sk+1 . . . sk+q−10. Using
the observation above, we may assume that each 0 in this sequence is isolated. Since
k and k + q have opposite parity, we conclude that there exists a string of consecutive
nonzero terms of even length within this sequence, beginning at si for some i , and
ending at si+2m−1 for some positive integer m, so that si+2m = 0. Selecting j = i +2m
completes the proof. �


We may now prove the proposition.

Proof of Proposition 2.1. Assume that there exists a nontrivial decomposition of F(z),

F(z) = f1(z)Φp(−zq) + f2(z)Φq(−z p),

and define the sequences {si } and {t j } as in (2.3). Using Lemma 2.3, select integers i , j ,
k, and �, each in [0, pq), so that i ≡ j mod 2, k ≡ � mod 2, si = tk = 1, s j = t� = 0,
i < j , k < �, and there are an even number of nonzero terms between si and s j , as
well as between tk and t�. Select integers p′ and q ′ so that pp′ + qq ′ = 1, and assume
without loss of generality that p′ is even, so qq ′ ≡ 1 mod 2p and pp′ = 1 + q mod
2q. Let

F̂(z) = (1 − z pq + z2pq − z3pq)F(z) =
4pq−1∑

i=0

ui z
i ,

so that the nonzero coefficients of F̂(z) alternate ±1, and let

(1 − z pq + z2pq − z3pq) f1(z)Φp(−zq) =
4pq−1∑

i=0

si z
i

and

(1 − z pq + z2pq − z3pq) f2(z)Φq(−z p) =
4pq−1∑

j=0

t j z
j .

Select integers ei,k in [0, 2pq), and ei,� and e j,k each in [2pq, 4pq), so that

ei,k ≡ i pp′ + kqq ′ mod 2pq,

ei,� ≡ i pp′ + �qq ′ mod 2pq,

e j,k ≡ j pp′ + kqq ′ mod 2pq.

We then obtain that

ei,k ≡ i + q(i + k) mod 2q, ei,k ≡ k mod 2p,

ei,� ≡ i + q(i + �) mod 2q, ei,� ≡ � mod 2p,

e j,k ≡ j + q( j + k) mod 2q, e j,k ≡ k mod 2p,
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and so

sei,k = ±si = ±1, tei,k = tk = 1,

sei,� = ±si = ±1, tei,� = t� = 0,

se j,k = ±s j = 0, te j,k = tk = 1.

However, since sei,k + tei,k = uei,k ∈ {−1, 0, 1} and tei,k = 1, we must have sei,k = −1.
If i and k had the same parity, then ei,k ≡ i mod 2q, and this would imply that
sei,k = si = 1, so in fact i �≡ k mod 2, and therefore i �≡ � mod 2 and j �≡ k mod 2 as
well. Thus, ei,k ≡ ei,� ≡ i + q mod 2q and so sei,� = −1. Thus,

uei,k = sei,k + tei,k = 0,

uei,� = sei,� + tei,� = −1, (2.4)

ue j,k = se j,k + te j,k = 1.

Consider the number of nonzero values of sm and tm with m lying strictly between ei,k

and e j,k . Notice that ei,k < e j,k and ei,k < ei,� by construction. Since ei,k ≡ e j,k ≡ k
mod 2p, using the fact that t j = t j+2p we find that there are an odd number of such
terms tm , and because ei,k ≡ i +q mod 2q and e j,k ≡ j +q mod 2q, there are an even
number of such terms sm , due to the manner of choosing i and j . This implies that
there are an odd number of nonzero terms um with index lying strictly between ei,k and
e j,k . A similar argument can be made using ei,k and ei,�, so there are an odd number of
nonzero terms um with index lying strictly between these two values. It follows then
that there are an odd number of nonzero coefficients of F̂(z) lying strictly between
ei,� and e j,k . However, from (2.4) these terms have opposite sign, yet the nonzero
coefficients of F̂(z) must alternate in sign, so we obtain a contradiction. Therefore,
no nontrivial decomposition exists. �


3 Proofs of Theorems 1.2 and 1.3

3.1 Proof of Theorem 1.2

Let n = pqr , with p and q distinct odd primes and r ≥ 2. Using (2.1), it suffices to
construct nontrivial polynomials f1(z) and f2(z) so that the polynomial

F(z) = f1(z)Φq(−z pr ) + f2(z)Φp(−zqr )

has the required structure. (We set f0(z) = 0, as well as all of the fi (z) that correspond
to other prime factors of r .) We select f1(z) = 1 − z, and let g1(z) = f1(z)Φq(−z pr )

for convenience. Arrange the coefficients of g1(z) as q rows of length pr :

+ − 0 0 · · · 0
− + 0 0 · · · 0
...

...
...

...
. . .

...

+ − 0 0 · · · 0,

(3.1)
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where we write + for +1 and − for −1. Next, we select f2(z) to have a coefficient
sequence of the form

0 A1 B1 A2 B2 · · · At Bt C,

where each Ai and Bi is a sequence of length r over {−1, 0, 1}, C is a sequence of
length r − 1 over {−1, 0, 1}, and t = (q − 1)/2, so there are qr coefficients in all.
In addition, we require that each Ai , Bi , and C must have an odd number of nonzero
terms which alternate in sign, and further the first (and last) nonzero term of each Ai

and C must be +1, while the first (and last) nonzero term of each Bi must be −1.
It is straightforward to count the number of different such polynomials f2(z). Each

possible Ai or Bi corresponds to a subset of {1, . . . , r} with odd length (the subset
corresponds to the positions of the nonzero coefficients), and in the same way C
corresponds to a subset of {1, . . . , r −1} with odd length. Since

∑
k≥0

( m
2k+1

) = 2m−1

for any positive integer m, it follows that the number of different possible polynomials
f2(z) is 2(r−1)(q−1)+(r−2) = 2q(r−1)−1.

For convenience, we let g2(z) = f2(z)Φp(−zqr ), so that g2(z) has the coefficient
sequence

0 A1 B1 A2 B2 · · · At Bt C
0 A′

1 B ′
1 A′

2 B ′
2 · · · A′

t B ′
t C ′

0 A1 B1 A2 B2 · · · At Bt C
...

...
...

...
...

. . .
...

...
...

0 A1 B1 A2 B2 · · · At Bt C,

(3.2)

where there are p rows of length qr , and here X ′ denotes the sequence created by
negating each term of the sequence X .

We claim first that every polynomial F(z) = g1(z) + g2(z) produced in this way
is a Reinhardt polynomial for n. Since it is clear that F(0) = 1, deg(F) < n, the last
nonzero coefficient of F(z) is +1, and Φ2n(z) | F(z), we need only verify that the
nonzero coefficients of F(z) alternate ±1. Certainly the polynomial g2(z) already has
this property, so we need only verify that adding g1(z) to it maintains this pattern.
For convenience, let αk denote the kth block of length r from g1(z), so that α2kp =
(+1,−1, 0, . . . , 0) for 0 ≤ k ≤ (q − 1)/2, α(2k+1)p = (−1,+1, 0, . . . , 0) for 0 ≤
k < (q − 1)/2, and all other αk are entirely 0. We consider the effect of adding each
block αkp to the coefficient sequence for g2(z).

Consider first the block α0. If A1 begins with +1, then this coefficient cancels with
the −1 in the second position of α0, and so the coefficient sequence for F(z) begins
with +1, then the remaining coefficients of A1 follow, and any nonzero values here
begin with −1 and alternate in sign. On the other hand, if A1 begins with 0, then
adding α0 simply adds an additional (+1,−1) pair at the beginning of the sequence.

Next, consider the block α2kp with 1 ≤ k ≤ (q − 1)/2. The (+1,−1) pair of this
block from (3.1) overlays the coefficient sequence of g2(z) either in the last position
of some Bi and the first position of either Ai+1 or C , or in the last position of some A′

i
and the first position of B ′

i . Suppose the overlay occurs at the last position of Bi and
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the first position of Ai+1. If Bi ends with −1 and Ai+1 begins with +1, then this pair is
canceled by α2kp. If Bi ends with −1 and Ai+1 begins with 0, then the addition of α2kp

in effect simply moves the −1 by one position to the right. If Bi ends with 0 and Ai+1
begins with +1, then α2kp moves the +1 by one position to the left. Finally, if Bi ends
with 0 and Ai+1 begins with 0, then adding α2kp inserts an additional (+1,−1) pair
between a −1 and a +1, so the alternating sign pattern is maintained. The argument
for the other cases is similar.

Finally, consider the block α(2k+1)p with 0 ≤ k < (q − 1)/2. Now the (−1,+1)

pair of this block occurs either at the last position of Ai and the first position of Bi , or
at the last position of B ′

i and the first position of either A′
i+1 or C ′. The proof here is

similar to the one for the even-indexed blocks. This completes the proof that F(z) is
a Reinhardt polynomial for n.

Next, we claim that only 2r−2 of the polynomials that may be constructed with
this method produce periodic Reinhardt polygons, so that the vast majority are in fact
sporadic.

Let uk denote the coefficient of zk in F(z), for 0 ≤ k < n. The polynomial F(z)
corresponds to a periodic Reinhardt polygon if there exists a positive integer d | n
such that uk = −uk+d for 0 ≤ k < n − d. In this case, we say that F(z) is d-periodic.
Let m = n/d. Since the number of nonzero coefficients of F(z) is odd, it follows that
the number of nonzero coefficients uk with 0 ≤ k < d is odd, and so m is odd. By
replacing d with an odd multiple of it if necessary, we may assume that m is prime.
We consider three cases to complete the proof.

First, suppose that m = p, so d = qr . Since F(z) and g2(z) are both qr -periodic,
it follows that g1(z) must be qr -periodic as well. Let γk denote the kth block of size
r of the coefficients of g1(z). By construction, the only nonzero such blocks are γkp,
for 0 ≤ k < q, but by hypothesis γ0 = γ ′

q . Clearly, q is not a multiple of p, so this is
a contradiction.

Second, suppose that m = q, so d = pr . Since F(z) and g1(z) are both pr -periodic,
then so is F(z)− g1(z) = g2(z), and thus so is g2(z)/z. Let At+1 denote the sequence
of length r obtained by appending 0 to C , so that g2(z)/z has the coefficient sequence

A1 B1 A2 B2 · · · At Bt At+1
A′

1 B ′
1 A′

2 B ′
2 · · · A′

t B ′
t A′

t+1
...

...
...

...
. . .

...
...

...

A1 B1 A2 B2 · · · At Bt At+1,

(3.3)

organized as p rows of size qr . Let βk denote the kth block of size r in this sequence,
so β0 = A1, β1 = B1, etc. By hypothesis, we have that β0 = β ′

p = β2p = β ′
3p =

· · · = β(q−1)p, and we note that each index in this list is unique modulo q. It follows
that A1 precisely matches exactly one block in each column of (3.3), and by observing
the parity of the indices we conclude that A1 = · · · = At+1 = B ′

1 = · · · = B ′
t . Since

At+1 ends with 0, it follows that if m = q then f2(z) has coefficients with the form

0 C 0 C ′ 0 C 0 · · · 0 C,
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where C has length r−1 and nonzero coefficients alternating+1 and−1, with+1 for its
first and last nonzero coefficient. Thus, there are exactly 2r−2 polynomials with m = q.

Last, suppose that m = �, where � is an odd prime dividing r , with � �∈ {p, q}. Let
r = �s, so that d = pqs. Group the coefficients of F(z) into blocks of size qs, and
denote these blocks by δk with 0 ≤ k < p�. Arrange these blocks as p rows of size �:

δ0 δ1 · · · δ�−1
δ� δ�+1 · · · δ2�−1
...

...
. . .

...

δ(p−1)� δ(p−1)�+1 · · · δp�−1,

(3.4)

so that the coefficients are arranged into p rows of size qr , just as in (3.2). Thus, the
first integer in each row of (3.4) corresponds to the coefficient positions kqr , with
0 ≤ k < p. When g1(z) is added to g2(z), from (3.1) we see that the only coefficients
affected occur in pairs beginning at positions which are multiples of pr . It follows
that δ0 begins with +1, but δk� begins with 0 for 1 ≤ k < p. Using the hypothe-
sis of periodicity with m = �, we then find that the first integer in δ2kp is +1 for
0 ≤ k ≤ (� − 1)/2, and the first value in δ(2k+1)p is −1 for 0 ≤ k ≤ (� − 3)/2.
In particular, δp must begin with −1, and δp+� must begin with 0 (since δ� begins
with 0), and so either δp or δp+� must have been altered by one of the nonzero blocks
of g1(z). Suppose δp was altered. Then the first position of δp is either (2k + 1)pr
or 2kpr + 1 for some k. The first case implies that q = (2k + 1)�, and the second
produces ps(q − 2k�) = 1, and both of these are clearly impossible since p and q are
prime. Suppose then that δp+� was altered. Since 0 occurs in the first position here, we
have that (p + �)qs must be either kpr or kpr + 1 for some k. The first case implies
that p | �q, which is impossible, and the second case yields s(pq + �q − k�p) = 1,
so s = 1 and thus � = r . In particular, we have that pq ≡ 1 mod r in this case.

We can eliminate this last possibility by considering δ2p and δ2p+r . Since δ2p

begins with +1 and δ2p+r starts with 0, one of these blocks must have been altered
by a nonzero block of g1(z). If δ2p was altered, then since s = 1 we have that 2pq
must equal either 2kpr or (2k +1)pr +1 for some k, and it is straightforward to show
that neither of these is possible. If δ2p+r was changed, then (2p + r)q must equal
either kpr or kpr + 1 for some k. The former possibility is easily dismissed; the latter
produces 2pq + qr − kpr = 1, and so 2pq ≡ 1 mod r . However, from the analysis
of δp, we know that pq ≡ 1 mod r , and so we conclude r = 1, a contradiction. Thus,
F(z) cannot be periodic with m = �. This completes the proof of Theorem 1.2. �

3.2 Proof of Theorem 1.3

Suppose p and q are fixed odd primes with p < q, let ε > 0, and suppose that r
is a positive integer having no odd prime divisor less than p. We first generalize the
construction of the proof of Theorem 1.2, by allowing freedom in the construction of
f1(z). Select a nontrivial, proper subset S of {0, 1, . . . , p − 1}, and let

f1(z) =
∑

s∈S

(−1)s zrs(1 − z),
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so that the case S = {0} corresponds to the polynomial f1(z) = 1 − z employed
in the prior proof. Let g1(z) = f1(z)Φq(−z pr ) as before, and construct f2(x) and
g2(z) as in the previous proof, by selecting qualifying sequences Ai , Bi , and C , for
1 ≤ i ≤ t = (q − 1)/2. Let F(z) = g1(z) + g2(z).

Since the nonzero coefficients of g1(z) overlap g2(z) at the boundaries of the blocks
Ai , Bi , and C , one may verify in the same way as the prior proof that the coefficients
of F(z) are all −1, 0, and 1, with the nonzero coefficients alternating in sign. Also, it is
easy to see that different choices for g1(z) and g2(z) can never produce the same poly-
nomial F(z): if g1(z) + g2(z) = g∗

1(z) + g∗
2(z), then g1(z) − g∗

1(z) = g∗
2(z) − g2(z),

and the left side is pr -periodic and the right side is qr -periodic, so both sides must
be r -periodic, and g2(0) − g∗

2(0) = 0 then implies that g1(z) − g∗
1(z) = 0. It fol-

lows that the total number of different polynomials that can be produced by using this
construction is (2p − 2)2q(r−1)−1.

We may also determine the number of polynomials F(z) arising from this con-
struction that exhibit a periodic structure. Suppose that F(z) is d-periodic, and that
m = n/d is prime. If m = p, then as before g1(z) is qr -periodic, and it follows that
S = {} or S = {0, . . . , p − 1}, but these choices were disallowed. If m = q, then as
in the prior proof we find that A1 = · · · = At = C0 = B ′

1 = · · · = B ′
t , so that there

are (2p − 2)2r−2 such polynomials. Finally, an argument similar to that employed in
the previous proof shows that no polynomials F(z) have m = � with � an odd prime
divisor of r and � �∈ {p, q}.

Not all polynomials F(z) constructed by using this method are Reinhardt polyno-
mials, since we do not guarantee that F(0) = 1. (For this, one must require that 0 ∈ S.)
However, each such F(z) is equivalent to a Reinhardt polynomial under a dihedral
action, and we may therefore determine a lower bound on the number of different spo-
radic Reinhardt polygons with n = pqr sides. By accounting for equivalence classes,

we conclude that this method constructs at least (2p − 2)
(

2q(r−1)−1

2pqr − 2r−2
)

different

sporadic Reinhardt polygons.
Since p is the smallest odd prime divisor of n, from [9, Cor. 2] we have that

E0(pqr) ∼ 2qr

4qr

as r grows large. Therefore,

E0(pqr)

E1(pqr)
≤

1
4qr · 2qr (1 + o(1))

(2p − 2)
(

2q(r−1)−1

2pqr − 2r−2
) ≤ p2q

2p − 2
+ o(1)

for qualifying integers r → ∞, and so

E1(pqr)

E(pqr)
= 1

E0(pqr)
E1(pqr)

+ 1
>

2p − 2

p2q + 2p − 2
− ε

for sufficiently large such r . �
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Of course, in practice we may build additional Reinhardt polygons for n by select-
ing p and q in other ways in our construction. However, it is possible that some of the
same polygons (up to dihedral equivalence) will be constructed for different choices
of p and q, so in general an inclusion/exclusion argument would need to be employed
to improve the lower bound of Theorem 1.3 by using this construction.

4 Constructing Sporadic Reinhardt Polygons

In [9], the exact value of E1(n) was computed for 24 different values of n where
E1(n) > 0. In addition, a partial count for n = 105 was reported, and some evidence
was presented that n = 105 may be the smallest positive integer where E1(n) > E0(n).
It is natural then to determine the number of different Reinhardt polygons that can be
constructed by using the method of Sect. 3 for these 25 values of n. We report here on
some computations made to investigate this.

Table 1 displays the 24 integers of the form n = pqr , with p and q distinct odd
primes and r ≥ 2 for which n − ϕ(2n) ≤ 46. (The bound of 46 was selected due to

Table 1 Number of sporadic
Reinhardt polygons constructed n Factorization r E1(n) Ê1(n)

30 2 · 3 · 5 2 3 3

42 2 · 3 · 7 2 9 9

45 32 · 5 3 144 144

60 22 · 3 · 5 4 4, 392 3, 492

63 32 · 7 3 1, 308 1, 308

66 2 · 3 · 11 2 93 93

70 2 · 5 · 7 2 27 27

75 3 · 52 5 153, 660 107, 400

78 2 · 3 · 13 2 315 315

84 22 · 3 · 7 4 161, 028 150, 444

90 2 · 32 · 5 6 5, 385, 768 3, 371, 568

99 32 · 11 3 192, 324 192, 324

102 2 · 3 · 17 2 3, 855 3, 855

110 2 · 5 · 11 2 279 279

114 2 · 3 · 19 2 13, 797 13, 797

117 32 · 13 3 2, 587, 284 2, 587, 284

130 2 · 5 · 13 2 945 945

140 22 · 5 · 7 4 633, 528 478, 548

154 2 · 7 · 11 2 837 837

170 2 · 5 · 17 2 11, 565 11, 565

182 2 · 7 · 13 2 2, 835 2, 835

190 2 · 5 · 19 2 41, 391 41, 391

238 2 · 7 · 17 2 34, 695 34, 695

286 2 · 11 · 13 2 29, 295 29, 295
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computational constraints.) The fourth column of this table shows the exact value of
E1(n) from [9], and the last column exhibits Ê1(n), the number of different sporadic
Reinhardt polygons that can be constructed by using the method of the proof of The-
orem 1.3, by selecting values for p, q, and r , and then checking all possible nontrivial
proper subsets S, all permissible sequences Ai and Bi for 1 ≤ i ≤ (q − 1)/2, and
all allowable sequences C . In each case, the value of r is forced, and p and q may
be selected in two different ways; both ways were checked in computing Ê1(n). As
in [9], we count two polygons to be distinct only if one cannot be obtained from the
other by some combination of rotations and flips.

We see that our construction produces all of the sporadic Reinhardt polygons for
the nineteen values of n in the table where r = 2 or r = 3. For example, when n = 30,
select p = 5, q = 3, r = 2, A1 = 0+, B1 = 0−, and C = +. If A2 = +0 and
B2 = 0−, then we obtain the polygon of Fig. 2a; if A2 = 0+ and B2 = 0−, then we
construct the polygon of Fig. 2b; finally, if A2 = 0+ (or +0) and B2 = −0, then we
create the polygon of Fig. 2c. (Here, we have normalized each dihedral composition of
30 so that the largest part occurs first.) This accounts for all three sporadic Reinhardt
triacontagons. For the values of n where r > 3 (r = 4 for n ∈ {60, 84, 140}, r = 5
for n = 75, and r = 6 for n = 90), our method constructs a substantial proportion,
but not all, of the sporadic Reinhardt polygons with n sides.

For n = 105, in [9] it was found that the number of periodic Reinhardt polygons is
E0(105) = 245, 518, 324, and some evidence was presented that n = 105 may be the
smallest integer where E1(n) > E0(n). Table 2 displays E1(105, m), the total number
of sporadic Reinhardt 105-gons in which the corresponding dihedral composition has
largest part m, for m = 2 and m ≥ 12, as computed in [9]. This table also exhibits
the value of Ê1(105, m), the number of sporadic Reinhardt 105-gons with largest part
m that may be constructed by using the method of the proof of Theorem 1.3. For this
calculation, we considered only sets S that contained 0 when constructing f1(z), as

Table 2 Sporadic Reinhardt 105-gons with largest part m

m E1(105, m) Ê1(105, m) m E1(105, m) Ê1(105, m)

2 1,831 378 15 1, 227, 719 260, 920

3 ? 869, 572 16 544, 966 132, 839

4 ? 12, 319, 890 17 250, 440 66, 113

5 ? 27, 537, 337 18 117, 075 32, 391

6 ? 32, 613, 532 19 55, 382 16, 362

7 ? 19, 788, 045 20 20, 234 6, 145

8 ? 13, 529, 809 21 16, 580 4, 612

9 ? 8, 758, 704 22 5, 609 2, 044

10 ? 4, 936, 396 23 2, 144 903

11 ? 2, 868, 824 24 788 384

12 5,749,059 1, 601, 785 25 242 164

13 3,155,368 941, 576 26 80 64

14 1,830,741 425, 757 27 36 36
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these in fact sufficed for the results of Table 1. All six different possible choices of p,
q, and r were considered. In all, our method constructs 126,714,582 different sporadic
Reinhardt 105-gons, including 3,492,473 of the 12,978,294 polygons with m = 2 or
m ≥ 12, or about 27 % of this portion. By using the values we computed for Ê1(105, m)

for 3 ≤ m ≤ 11, we might expect then that E1(105) is close to 470 million, or nearly
twice the value of E0(105). This then provides some additional empirical evidence
that sporadic Reinhardt polygons first outnumber the periodic ones at n = 105.
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