
Discrete Comput Geom (2013) 49:221–246
DOI 10.1007/s00454-012-9473-x

About Tracing Problems in Dynamic Geometry

Britta Denner-Broser

Received: 21 November 2011 / Revised: 3 October 2012 / Accepted: 11 October 2012 /
Published online: 27 November 2012
© Springer Science+Business Media New York 2012

Abstract Dynamic Geometry is the field of interactively performing geometric con-
struction on a computer. In addition to simulating ruler-and-compass constructions we
allow a drag mode. This drag mode allows to move geometric objects that have at least
one degree of freedom. The remaining part of the construction should adjust automat-
ically. Thus, during the motion, we have to trace the resulting paths of all geometric
objects. This path tracking problem is known as the Tracing Problem from Dynamic
Geometry. It combines the step-by-step procedure of doing geometric constructions
with the continuous concept of motions. This study is based on the model for Dynamic
Geometry used in the interactive geometry software Cinderella. We give a numerical
solution to the Tracing Problem based on continuation methods and a reliable algo-
rithm based on real and complex interval arithmetic. Degenerate situations like the
intersection of two identical lines lead to critical points in the configuration space and
are treated separately.

Keywords Dynamic Geometry · Tracing Problem · Geometric Straight-Line
Program · Critical point · Continuation methods · Interval arithmetic

Mathematics Subject Classification (2000) 51M15 · 65D17 · 65G20 · 68U07

1 Introduction

Dynamic Geometry is the field of interactively performing geometric construction
on a computer. It combines the discrete step-by-step procedure of doing geomet-
ric constructions with the continuous concept of motions. Usually, the classical

B. Denner-Broser (B)
Institut für Informatik, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany
e-mail: broser@inf.fu-berlin.de

123

222 Discrete Comput Geom (2013) 49:221–246

ruler-and-compass constructions are considered. But also conic sections or higher
algebraic curves may be admitted. The available tools are simulated by the computer.
A Dynamic Geometry System is a system to do geometric constructions that has a “drag
mode”. In the drag mode, geometric elements with at least one degree of freedom can
be moved, and the remaining part of the geometric construction adjusts automatically.
Thus, the computer has to trace the paths of the geometric objects involved during the
motion.

The field of Dynamic Geometry has been founded in the late 1980s and 1990s.
At this time, the first geometry softwares Cabri Géomètre and Geometer’s Sketchpad
were developed that realize the drag mode. Up to now, several software packages for
DG have been designed. They all have the functionality to do geometric construc-
tions and provide a drag mode; additionally, they have different features. However,
their drag modes are implemented in different ways and have different properties
that arise from the underlying mathematical models. In this study, we focus on the
model by Kortenkamp and Richter-Gebert [15,22] that is the foundation of the geom-
etry software Cinderella [23] and that leads to a continuous behavior of the drag
mode.

To implement the drag mode in a Dynamic Geometry System is a challenging
task. The main problem is to deal with the ambiguities due to the involvement of
circles or angular bisectors. For example, a circle and a line intersect in two, one or
no points, two intersecting lines have two angular bisectors, which are orthogonal.
These ambiguities lead to the necessity to choose one of the two intersection points or
angular bisectors. In the initial drawing, the user of the Dynamic Geometry Software
makes these choices. In the drag mode, the computer has to make these decisions
autonomously. We expect that there are no “jumps” in the motions of the geometric
objects and prefer a continuous behavior of the Dynamic Geometry System.

In fact, to implement the drag mode, we have to solve a path tracking problem.
This problem is called the Tracing Problem from Dynamic Geometry. We are given a
starting configuration that was fixed by the user. In addition, we are given an abstract
description of the geometric construction and paths of the free objects; they implicitly
define the resulting motion of the dependent elements. The starting configuration acts
as an initial value. The Tracing Problem is to trace this implicitly given motion.

In Dynamic Geometry, the step-by-step-procedure of doing geometric constructions
can be represented by Geometric Straight-Line Programs (GSP). A GSP is a sequence
of instructions that describe the single construction steps or introduce new, independent
points; see Fig. 1. These independent points are called free points. The remaining
geometric objects are called dependent elements, they are defined by instructions that
belong to a construction step like the computation of a line connecting two points, the
intersection point of two lines, or one of the at most two intersection points of a line
and a circle. GSPs are closely related to Straight-Line Programs.

In some situations, considering complex coordinates of the objects turned out to
be useful. Depending on the motion p of the free variables, tracing along p might
force us to consider degenerate situations; see Fig. 1: when the free point P crosses
the y-axis-ly, then the dependent point Q reaches the origin, and the two circles
are identical. Thus we have a degenerate situation and the intersection point M is
not defined. To avoid a singularity S = p(t0) at time t = t0, we might bypass it

123

Discrete Comput Geom (2013) 49:221–246 223

Fig. 1 A GSP Γ and an instance of Γ , i.e., a concrete drawing of the geometric construction, are shown.
The point Q has to stay on the line lx . A singularity occurs if P moves on the path p(t) across the y axis ly

with a detour by modifying p in a neighborhood of t0. Unfortunately, this might be
impossible as our example shows; see Fig. 1: by construction, the dependent point Q
is incident to the line lx , and the singularity occurs when Q is moved to the origin.
Since Q has to stay on lx by construction, the singularity S cannot be avoided by
modifying the path p of the free point P. A way to solve this problem is to consider
detours for which the coordinates of the free points may have non-real coordinates.
Now the line lx of our example becomes a 2D object, and the point Q might bypass
S without leaving lx . In addition, if the singularity is removable, the instance being
reached after finishing the detour does not depend on the detour itself (as long as
the detour does not “catch” other singularities). The idea of detouring around critical
points as introduced by Kortenkamp and Richter-Gebert [15,17] leads to a consistent
treatment of degeneracies. A detailed discussion of this fact is given in [9, Sects. 2.6
and 7.2].

The geometric situation translates directly into an algebraic model where the objects
are numbers (real or complex) and the operations are addition, subtraction, multipli-
cation, division, and taking square roots [9,15]. We discuss algorithms for the Tracing
Problem in this algebraic model. We assume that each arithmetic operation and each
interval operation is executed exactly and in constant time.

The basic notions from Dynamic Geometry that are used in our model are explained
in Sect. 2 including the new concepts of the derivative of a GSP and of using intervals in
GSPs [8,9]. The interpretation of continuous evaluations as implicitly defined curves
in Sect. 3 enables the use of numerical continuation methods [9, Chap. 5]. We adapt
these methods to the discrete structure of GSPs to obtain a numerical algorithm for
the Tracing Problem. Since the resulting method is efficient, it might be a good choice
although the correctness of the solution is not guaranteed. The aim of Sect. 4 is to give
an algorithm for the Tracing Problem in the algebraic context. We have to deal with
two problems occurring in this setup:

1. Critical points: Division by 0 and square roots of 0;
2. Ambiguity of the root function√_ : C→ C, z �→ ±√z , e.g.,

√
4 = ±2.

The idea is to avoid these problems in advance using interval arithmetic [8,9]. Our
algorithm proceeds stepwise; in each step, the chosen step length guarantees that
Problems 1 and 2 can be handled. It turns out that the algorithm is robust [9, Sect. 6.5].
The treatment of critical points is discussed in Sect. 5; see [9, Chap. 7].

123

224 Discrete Comput Geom (2013) 49:221–246

2 Some Basic Concepts from Dynamic Geometry

We explain basic notions from Dynamic Geometry introduced by Kortenkamp and
Richter-Gebert [15,22] such as Geometric Straight-Line Programs, critical points,
continuous evaluations, and the Tracing Problem. The new concept of the derivative
GSP Γ̇ of a GSP Γ with respect to time is introduced [8,9]. We show how we can use
intervals in GSPs [8,9]. We define the interval-GSP Γint that results from a GSP Γ by
replacing all operations of Γ by the corresponding interval operations. The variables
of Γint take intervals as values.

Geometric Straight-Line Programs Geometric constructions can be described by Geo-
metric Straight-Line Programs (GSP); see [9,22,16]. We consider an algebraic situ-
ation: the objects are real or complex numbers with the operations addition, subtrac-
tion, multiplication, division, and square root. In this context, GSPs describe algebraic
expressions like

√
z2 − 1 instead of geometric constructions.

Definition 1 [9, Def. 3.1.1] GSP Γ over R or C

Let K ∈ {R, C} be either the field of real numbers or the field of complex numbers.
A GSP Γ over K is a finite sequence of instructions γ j of the form

γ j : v j ← FREE
γ j : v j ← va + vb (+)

γ j : v j ← va − vb (−)

γ j : v j ← va · vb (·)
γ j : v j ← va/vb (/)

γ j : v j ← √va . (√_)

We say that the instruction γ j defines the variable v j and require that the variables va

and vb are defined before the variable v j , i.e., the variables va and vb in the definition
of γ j are defined by instructions γa and γb with a < j and b < j .

The instruction v j ← FREE is used to generate free variables; it has no input and
allows the output to be any element of K. Variables that are created by one of the
instructions +,−, ·, /, or √_ are called dependent variables. For given values of the
variables va and vb, the instructions +,−, ·, or / compute the corresponding sum,
difference, product, or quotient, respectively. For a given value ofva , the instruction√_

describes one of the at most two solutions of the equation v2
j = va, the “sign” of va

is not fixed. Zero is defined not to be a valid input for the √_-operation. For K = R,
only positive numbers are valid inputs for the√_-operation. The divisor of a division
operation must not be zero.

Definition 1 is a practical description of the notion of GSPs, a formal and detailed
definition is given by Kortenkamp and Richter-Gebert and can be found in [15,22].
The notion of GSPs is derived from the notion of Straight-Line Programs described by
Bürgisser et al. in [4, Sect. 4]. The main difference is that the concept of GSPs allows
non-deterministic operations like the square root operation. Straight-Line Programs
are not designed for dealing with non-determinism. For simplicity of notation, we

123

Discrete Comput Geom (2013) 49:221–246 225

assume that the first k variables v−k+1 = z−k+1, . . . , v0 = z0 of a GSP Γ are free
variables and the following n variables v1, . . . , vn are dependent variables. Note that
every dependent variable of a GSP Γ describes an algebraic function in the free
variables z−k+1, . . . , z0 of Γ [9, Sect. 3.1].

Definition 2 [9,15,22] Instance of a GSP Γ

An instance of a GSP Γ is an assignment of valid values to the variables of Γ that
fulfill all relations of the GSP Γ. The configuration space of a GSP Γ is the set of all
instances of Γ . If Γ is a GSP with k free variables and n dependent ones, then the
set of all instances A = (a−k+1, . . . , a0, a1, . . . , an) with a−k+1 = ã−k+1, . . . , a0 =
ã0 is called the fiber of the point (ã−k+1, . . . , ã0). The instance A lies above the
position (a−k+1, . . . , a0) = (ã−k+1, . . . , ã0) of the free variables.

In an instance, the “signs” for the square root operations are fixed in contrast to the
underlying GSP Γ . Definitions 1 and 2 imply that, in an instance, the values of the
divisor variables of the division operations and the values of the radicand variables
of the root operations are non-zero, and for K = R, the values of the radicands are
positive. Due to square root instructions, the fiber of a point might contain more than
one instance. Thus, we might have more than one instance that lies above a fixed
position of the free variables.

Example 1 The expression
√

z2 − 1 can be described by the GSP Γ :

Γ : z ← FREE

v1 ← z · z
v2 ← v1 − 1

v3 ← √v2 ; described by v2
3 = v2 and v2

>�= 0.

If K = C then (0, 0,−1,±i) are instances of Γ, whereas (1, 1, 0, 0) is not an instance
since 0 is not a valid input for the square root operation. The instances (0, 0,−1,±i)
lie above the point z = 0. For K = R, none of the three tuples is an instance.

Critical Points We discuss the notion of critical points. In the algebraic model, a
critical point occurs if we take the square root of zero or if we divide by zero in the
computation of an instance of a GSP. For the square root operation, we have the same
situation as for the intersection of a line and a circle in the geometric situation. If the
radicand is not zero, we always have two possible values for the output. Only if the
radicand is zero, the two solutions coincide. This causes problems since we consider
dynamic constructions, where we keep track of the motions of all objects. A division
by zero cannot be executed. It arises in the case of the intersection of two parallel lines,
for example. We use the definition of a critical point from [9] which is less restricitve
than the definition from [7]. Before we give the definition, we introduce the notion of
an m-head of a GSP Γ. As before, let K be one of the fields R or C.

Definition 3 [9, Def. 3.2.1] m-Head Γ (m) of a GSP Γ

Let Γ be a GSP with k free variables z−k+1,. . ., z0 and n dependent ones v1,. . .,vn,

let m ∈ {1, 2, . . . , n}. We call the GSP that arises from Γ by cutting off the variables
vm+1, vm+2, . . . , vn the m-head Γ (m) of Γ .

123

226 Discrete Comput Geom (2013) 49:221–246

If A = (a−k+1, . . . , a0, a1, . . . , am, . . . , an) is an instance of Γ, then A(m) :=
(a−k+1, . . . , a0, a1, . . . , am) is an instance of Γ (m), we call A(m) the m-head of the
instance A.

Definition 3 implies that Γ (m) has k free variables z+k−1, . . . , z0 like Γ, and m
dependent variables v1, v2, . . . , vm . Each dependent variable of Γ (m) is defined by
the same operation as the corresponding dependent variable of Γ .

Definition 4 [9, Def. 3.2.2] m -Critical Point of a GSP Γ

Let Γ be a GSP with k free variables z−k+1, . . . , z0, and n dependent ones
v1, . . . , vn . Let m ∈ {1, . . . , n}, and let C̃ = (c−k+1, . . . , c0, c1, . . . , cm−1) ∈
K

k+m−1 be an instance of Γ (m−1) that cannot be extended to an instance of Γ (m).

That is, there is no cm ∈ K such that (c−k+1, . . . , cm−1, cm) is an instance of Γ (m).
Then, C̃ is called an m-critical point of Γ, and the variable vm causes the m-critical
point C̃ .

Definition 5 [9, Def. 3.2.3] Critical Point of Γ

A point C = (c−k+1, . . . , c0, c1, c2, . . . , cn) is a critical point of a GSP Γ with
k free variables and n dependent ones if there is an m ∈ {1, 2, . . . , n} such that the
(m−1)-head C (m−1) of C is an m-critical point of Γ. All critical points with the same
(m − 1)-head are identified, because the values cm, . . . , cn are arbitrary.

Definition 6 [9, Def. 3.2.4] Critical Value of Γ

Let Γ be a GSP with k free variables z−k+1, . . . , z0 and n dependent ones. Let
c−k+1, . . . , c0 ∈ K be values of the free variables z−k+1, . . . , z0. If (c−k+1, . . . , c0)

∈ K
k can be extended to a critical point of Γ, then (c−k+1, . . . , c0) is called a critical

value of Γ. Otherwise, (c−k+1, . . . , c0) is called a regular value of Γ .

We observe that the set of critical values of Γ is obtained by projecting the set of
critical points to the k coordinates of the free variables. Hence, the set of critical points
of a GSP Γ is finite if and only if the set of critical values of Γ is finite [9, Lem. 3.2.5].
If the GSP Γ has just one free variable z and if K = C, then the set of critical
points is either finite or each point can be extended to a critical point [9, Lem. 3.2.9].
Consequentely, along a polynomial path of the free variables, we either have at most a
finite number of critical points, or every point on the path can be extended to a critical
point [9, Lem. 3.2.10, Cor. 3.2.11].

Example 2 In Example 1, (±1, 0, 0) are the 3-critical points, (±1, 0, 0, 0) are the

critical points, and ±1 are the critical values. We describe
√

z −√z2 by the GSP Γ1.

Γ1 : z ← FREE
v1 ← z · z // v1 = z2

v2 ← √v1 // v2 =
√

z2 = ±z
v3 ← z − v2 // v3 = z −√z2

v4 ← √v3 // v4 =
√

z −√z2

Here, every value for z can be extended to a critical point: (z, z2, z, 0) ∈ C
4 is an

instance of the 3-head Γ
(3)

1 of Γ1 for every z ∈ C. It cannot be extended to an instance

123

Discrete Comput Geom (2013) 49:221–246 227

of Γ
(4)

1 = Γ1. Thus, the set of critical values is the complex plane C. However, if we
choose v2 = −z, then (z, z2, z,±√2z) are instances of Γ1 for all z ∈ C with z �= 0.

Continuity and the Tracing Problem In Dynamic Geometry, we are dealing with
dynamic constructions: If a free point is moved in a continuous way, the whole con-
struction should follow continuously. Whenever the free points move on continuous
paths, the dependent elements have to move on continuous paths as well (as long as
no critical points lie on the paths). This concept is formalized in the notion of contin-
uous evaluations defined by Kortenkamp and Richter-Gebert in [22]. As before, we
consider the algebraic situation.

Definition 7 [9, Def. 3.3.1] Continuous Evaluation
Let Γ be a GSP having k free variables and n-dependent elements; without loss of

generality, let the first k variables z−k+1, . . . , z0 be the free variables and v1, . . . , vn be
the dependent ones. Furthermore, for each free variable zl , we are given a continuous
path pl(t) : [0, 1] → K. A continuous evaluation of the GSP Γ under the movement
{pl(t)} is an assignment of continuous functions vi (t) : [0, 1] → K to the dependent
variables, i.e., for each dependent variable vi , there is a function vi (t) such that for
all t ∈ [0, 1] the point

(
p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)

)
is an instance of the

GSP Γ .

If a GSP Γ contains √_-operations, the values of the dependent variables are
determined by the values of the free variables up to a number of binary choices
that correspond to the two branches of the√_-function. The definition of continuous
evaluation ensures that we always choose the “right” branch and do not jump from one
branch to the other one. Continuous evaluations are unique as discussed in [7,9] using
the theory of coverings. If a starting instance is fixed (i.e. values for v1(0), . . . , vn(0))
and if we do not hit a critical point, then there is exactly one continuous evaluation for
the given motion starting at this starting instance. If the GSP has one free variable z,
only, then the path vl(t) of a dependent variable vl in a continuous evaluation along a
path p(t) is essentially a lifting of p(t) to the covering space of the Riemann surface
of the algebraic function that belongs to vl; see [9, Sect. 8.5] for a detailed derivation.

We come back to the drag mode in a Dynamic Geometry System: Here, we are
given a starting configuration, which is an instance of the underlying GSP Γ, and a
continuous path of the free points. The resulting motion of the entire construction is
the continuous evaluation that is implicitly defined by the GSP Γ, the starting instance,
and the path of the free variables. The task is to trace this continuous evaluation, and
we call this problem the Tracing Problem from Dynamic Geometry [7,9,22]. Let Γ

be a GSP with k free and n-dependent variables.

Problem 1 Tracing Problem
A GSP Γ with k free and n-dependent variables, a starting instance A =

(z A, vA) ∈ K
k × K

n , a final instance B = (zB, vB) ∈ K
k × K

n of Γ, and
continuous paths p−k+1, . . . p0 : [0, 1] → K of the free variables of Γ with
(p−k+1(0), . . . , p0(0)) = z A and (p−k+1(1), . . . , p0(1)) = zB are given. We assume
that the resulting continuous evaluation starting at A exists. Does this continuous
evaluation end at the given instance B?

123

228 Discrete Comput Geom (2013) 49:221–246

In [22], Kortenkamp and Richter-Gebert show by a reduction of 3-SAT that the
Tracing Problem is NP-hard; it is decidable for piecewise polynomial paths [7,9].
The Tracing Problem is formulated as a decision problem. To solve this problem,
we “just” have to decide whether the unique continuous evaluation under the given
movement p−k+1, . . . , p0 and the instance A ends at B. In many applications like the
drag mode in a Dynamic Geometry Software, we are interested in the entire contin-
uous evaluation, as well. In addition to the final instance, we have to determine the
values of the dependent variables at some intermediate times t ∈ (0, 1). Recall that
critical points of a GSP Γ cannot be instances and that, in a continuous evaluation,
we have an instance at each time t ∈ [0, 1]. Thus, critical points on the motion are
excluded in advance by the requirement that the corresponding continuous evaluation
exists.

The Derivative of a GSP with Respect to Time For the Tracing Problem, we are
given a GSP Γ, paths p−k+1, . . . , p0 of the free variables, and a starting instance A.

They define the corresponding continuous evaluation (v1(t), . . . , vn(t)) implicitly if
it exists. The aim of this section is to define the derivative Γ̇ of the GSP Γ, which
implicitly describes the derivative (v̇1(t), . . . , v̇n(t)) of the continuous evaluation
(v1(t), . . . , vn(t)) with respect to time; see [8] and [9, Sect. 3.5]. We assume that
the paths p−k+1, . . . , p0 of the free variables of Γ are continuously differentiable.
Before explaining the general case, we look at an example.

Example 3 We consider the GSP Γ from Example 1 describing
√

z2−1. If z moves
on p(t), then the dependent variables become functions in t. By the chain rule, we get
the derivatives v̇1(t), v̇2(t), and v̇3(t) of these functions with respect to time.

z ← FREE \\z = p(t), ż = ṗ(t)
v1 ← z · z \\v1 = z2, v̇1(t) = 2p(t) ṗ(t) = 2zż
v2 ← v1 − 1 \\v2 = z2 − 1, v̇2(t) = v̇1(t)
v3 ← √v2 \\v3 =

√
z2 − 1, v̇3(t) = v̇2(t)

2v3(t)
= v̇2

2v3

Hence, the derivative (ṗ(t), v̇1(t), v̇2(t), v̇3(t)) with respect to time of the continuous
evaluation (p(t), v1(t), v2(t), v3(t)) is implicitly defined by the GSP Γ, the path p(t),
the instance A, and the variables ż, v̇1, v̇2, v̇3. For the definition of v̇1 and v̇3, the
variables z and v3 of the GSP Γ are needed. These observations immediately lead to
Definition 8 and Lemma 1.

Definition 8 Derivative GSP Γ̇ of a GSP Γ with respect to time
Let Γ be a GSP with k free variables z−k+1, . . . , z0 and n-dependent variables

v1, . . . , vn . Then the derivative GSP Γ̇ consists of 2k free variables ż−k+1, . . . ,

ż0, z−k+1, . . . , z0 and at most 6n-dependent ones including v̇1, . . . , v̇n and v1, . . . , vn

according to the operations of Γ. The operations of Γ̇ are defined as follows:

123

Discrete Comput Geom (2013) 49:221–246 229

We observe that the derivative GSP Γ̇ contains all variables of the GSP Γ. The variables
v̇a describe the “derivatives” of the variables va of Γ. The variables v

(1)
a , . . . , v

(4)
a are

auxiliary variables, they are needed to translate the differentiation rules to a GSP. They
are not important for our applications and will be omitted.

Lemma 1 Let A be an instance of a GSP Γ and ȧ−k+1, . . . , ȧ0 be values for the free
variables żk+1, . . . , ż0 of Γ̇ . Then A and ȧ−k+1, . . . , ȧ0 define a unique instance Ȧ
of Γ̇ .

Let p−k+1, . . . , p0 be continuously differentiable paths of the free variables
z−k+1, . . . , z0 of Γ, and let A = (

p−k+1(0), . . . , p0(0), a1, . . . , an
)

be an instance
of Γ. There is a continuous evaluation of Γ along the paths p−k+1, . . . , p0 start-
ing at A if and only if there is a continuous evaluation of Γ̇ along the paths
ṗ−k+1, . . . , ṗ0, p−k+1, . . . , p0 starting at Ȧ with ȧl = ṗ(0); l = −k + 1, . . . , 0.

Let v̇i (t) be the path of the variable v̇i in a continuous evaluation of Γ̇ . Then the
path v̇i (t) is the derivative of vi (t) with respect to time, i = 1, . . . , n.

GSPs and Interval Arithmetic Formally, we can use interval arithmetic in GSPs. We
define the interval-GSP Γint induced by a GSP Γ. Here, the variables take intervals
as values and the operations are performed in interval arithmetic; see [8] and [9,
Sect. 3.6]. Interval arithmetic is a computation model for self-validated numerics
and uses intervals as approximate values. The “correct” value is contained in the
corresponding interval. In self-validated numerics, computation models are discussed,
in which approximate results are automatically provided with guaranteed error bounds
[25, Chap. 1].

We consider real and complex interval arithmetic [1]. As complex intervals we
choose closed circles {c; r}with r ≥ 0 and c ∈ C or axis parallel rectangles A = A1+
i A2. Here, A1 and A2 are real closed intervals. In rectangular arithmetic, the operations
+, −, ·, / are defined in a similar way as the operations on C. For circular arithmetic,
we choose the centered multiplication {a; ra} · {b; rb} = {a · b ; |a|rb + |b|ra + rarb}
[1,21]. We denote the set of real intervals by I(R), the set of rectangular intervals
by R(C), and the set of circular intervals by K(C). Let I(K) ∈ {I(R), R(C), K(C)}.
The mentioned interval arithmetics fulfill the inclusion monotonicity property [1],
which is crucial for our algorithm:

123

230 Discrete Comput Geom (2013) 49:221–246

Theorem 1 Let A(1), A(2), B(1), B(2) ∈ I(K) with A(1) ⊂ B(1) and A(2) ⊂ B(2).

Then we have A(1) ◦ A(2) ⊂ B(1) ◦ B(2) for all operations ◦ ∈ {+,−, ·, :}.
We define a square root operation on the set of intervals. The root operation

on I(R) is defined for intervals A = [a1, a2] with a1 > 0 by
√

A = [√
a1,
√

a2
]

or
√

A = [−√a2,−√a1
]
. We assign to each rectangle A ∈ R(C) with 0 /∈ A the

smallest rectangle in R(C) containing {√a | a ∈ A}. Here, √_ is a branch of the

square root function that is defined on A. In fact, the square root
√

A of a rectangle
A = [a1, a2] + i[b1, b2] �� 0 is the smallest axis parallel rectangle containing the five
points

√
a1 + ib1,

√
a1 + ib2,

√
a2 + ib1,

√
a2 + ib2, and

√
x . Here, x is the point

of A with the smallest distance to the origin [9, Sect. A.2.1]. As in [20,21], we define√
A := {√a ; √|a| − √|a| − ra} for a circular interval A = {a; ra} with 0 /∈ A.

In [20], the case 0 ∈ A is discussed as well. These root operations fulfill the inclu-
sion monotonicity property. If A ⊂ B for two intervals A and B, then

√
A ⊂ √B

holds if the same branch of the root function is chosen. Furthermore, 0 /∈ A implies√
A∩(−√A) = ∅. We mention that the distributive law does not hold for the presented

interval arithmetics.
There are many other range-based models that seem to be useful for our algorithms,

as well. The investigation of these models is an interesting future project. In affine
arithmetic, quantities are represented by affine forms [6,25]. The advantage over inter-
val arithmetic is that linear dependencies between quantities can be handled, and the
computed ranges are usually smaller than in interval arithmetic. However, affine arith-
metic has higher computational costs, is more complicated, and needs more space in
memory. Primarily, affine arithmetic is defined for real quantities (K = R); in [14],
complex affine arithmetic is defined for rectangular ranges by deviding a complex
quantity into its real and imaginary part; see [9, Sect. 6.7] for a discussion of the
usage of affine arithmetic in the context of Dynamic Geometry. In Taylor models, the
quantities are represented by higher order polynomials [19]. The Hermite-Obreschkoff
method can deal with algebraic functions as explained in [18].

Definition 9 Interval-GSP Γint
Let Γ be a GSP over K ∈ {R, C} having the free variables z−k+1, . . . , z0 and the

dependent variables v1, . . . , vn . Then, Γint is a GSP-like structure over I(K) with k
free variables Z−k+1, . . . , Z0 and n-dependent variables V1, . . . , Vn . Every dependent
variable Vi of Γint, i ∈ {1, . . . , n}, is defined by the interval operation that corresponds
to the operation defining the variable vi of Γ :

We also use the notion of an instance in the context of interval arithmetic: An
instance of Γint is an assignment of (real or complex) intervals to all variables of Γint
such that all relations given by Γint are fulfilled. We assume that the divisor intervals of
the division operations and the radicand intervals of the root operations do not contain

123

Discrete Comput Geom (2013) 49:221–246 231

0. We can estimate the range of a continuous evaluation with an instance of Γint as the
following lemmas for K ∈ {R, C} show.

Lemma 2 [9, Lem. 3.6.3, 3.6.4] Let va be a dependent variable of a GSP Γ that
is defined by the variables vb and vc of Γ. Let vb and vc be composed by one of the
operations+,−, ·, / or√_. Let A = (a−k+1, . . . , a0, a1, . . . , an) be an instance of Γ,

and let p−k+1, . . . , p0 be paths of the free variables of Γ such that the corresponding
continuous evaluation v1(t), . . . , vn(t) exists. Let Ib and Ic be intervals in K with
vb([t1, t2]) ⊂ Ib and vc([t1, t2]) ⊂ Ic. Then, an interval Ia with va([t1, t2]) ⊂ Ia can
be computed in the following way:

Let p−k+1, . . . , p0 : [0, 1] → K be paths of the free variables of Γ, and let
A = (a−k+1, . . . , an) be a starting instance such that the corresponding continuous
evaluation (v1(t), . . . , vn(t)) exists. Let Γint be the interval-GSP induced by Γ, and let
(I−k+1, . . . , I0, I1, . . . , In) be an instance of Γint with ai ∈ Ii for i = −k + 1, . . . , n
and pl([0, 1]) ⊂ Il for l = −k+1, . . . , 0. Then vi ([0, 1]) ⊂ Ii holds for i = 1, . . . , n.

Example 4 For interval-GSPs, we have to consider interval dependency [12, p. 4]. We
describe the polynomial f (x) = x2 − x = x(x − 1) by two GSPs Γ and Γ̃ :

Γ : z ← FREE Γ̃ : z̃ ← FREE
v1 ← z − 1 ṽ1 ← z̃ · z̃
v2 ← z · v1 // v2 = z(z − 1) ṽ2 ← ṽ1 − z̃ // ṽ2 = z̃2 − z̃

Let A = (a0, a1, a2) be an instance of Γ, and let Ã = (ã0, ã1, ã2) be an instance
of Γ̃ . Then a0 = ã0 implies a2 = ã2. Now, let Aint = (I0, I1, I2) be an instance of
the interval-GSP Γint of Γ, and let Ãint = (Ĩ0, Ĩ1, Ĩ2) be an instance of the interval-
GSP Γ̃int of Γ̃ . We show that I0 = Ĩ0 does not imply I2 = Ĩ2. We consider the interval
[0, 1] and the corresponding instances of Γint and of Γ̃int; although I0 = Ĩ0 = [0, 1],
we have I2 �= Ĩ2:

Γint : I0= [0, 1] Γ̃int : Ĩ0= [0, 1]
I1= I0 − 1= [0, 1]−1 = [−1, 0] Ĩ1= Ĩ0 · Ĩ0 = [0, 1] · [0, 1] = [0, 1]
I2= I0 · I1 = [0, 1] · [−1, 0]= [−1, 0] Ĩ2= Ĩ1− Ĩ0= [0, 1] − [0, 1]= [−1, 1]

3 The Tracing Problem and Continuation Methods

We can solve the Tracing Problem numerically using continuation methods. Continu-
ation Methods are a well-established and useful field of modern mathematics; in [2],

123

232 Discrete Comput Geom (2013) 49:221–246

Allgower and Georg give an overview. Homotopy continuation methods have success-
fully been applied to solve polynomial systems of equations and have lead to the new
area Numerical Algebraic Geometry [24]. Here, the homotopies are chosen such that no
singularities occur along the solution curves and every isolated solution of multiplic-
ity m is reached by exactly m paths. These paths are traced using numerical methods.
In [11], a robust algorithm to trace curves that are implicitly defined by algebraic
equations is given. The algorithm is based on interval analysis. We show that a con-
tinuous evaluation is an implicit curve defined by the function H : Rk+n+1 → R

k+n

that depends on the GSP Γ and on the paths of the free variables of Γ. Based on the
general ideas of continuation methods and on the function H, we develop a numerical
solution that captures the particular structure of the Tracing Problem. In the process,
we maintain the parametrization of the given paths of the free variables. We follow
the presentation from [9, Chap. 5].

Continuous Evaluations as Implicit Curves We discuss how a continuous evaluation
along paths p−k+1(t), . . . , p0(t) of the k free variables z−k+1, . . . , z0 of a GSP Γ over
a field K ∈ {R, C} is given as an implicit curve of a function H : Kk+n×[0, 1] → K

k+n

where n is the number of dependent variables. Hence, we assume that the paths pl(t)
of the free variables zl are continuously differentiable. To define the function H,

we assign to every dependent variable a = v j of Γ a multivariate polynomial
Pa =Pv j :

The polynomials Pa are polynomials in at most three variables; we have Pa = 0
if and only if the relation that defines the dependent variable a is fulfilled. Using the
polynomials Pa =Pv j , we define the functions

F = F(Γ) : K
k+n → K

k+n,

(z−k+1, . . . , z0, v1, . . . , vn) �→ (z−k+1, . . . , z0,Pv1 , . . . ,Pvn)

and H = H(Γ, p−k+1(t), . . . , p0(t)) : K
k+n × [0, 1] → K

k+n, (z−k+1, . . . , z0,

v1, . . . , vn, t) �→ F(z−k+1, . . . , z0, v1, . . . , vn) − (p−k+1(t), . . . , p0(t), 0 . . . , 0),

where pl(t) is the path of the free variable zl . We observe that a point (a−k+1, . . . , a0,

a1, . . . , an) ∈ K
k+n fulfills the relations of Γ if and only if F(a−k+1, . . . , a0, a1,

. . . , an)−(a−k+1, . . . , a0, 0, . . . , 0) = (0, . . . , 0). Similarly, if a tuple of paths (v1(t),

. . . , vn(t)) is a continuous evaluation along the given paths p−k+1(t), . . . , p0(t) of
the free variables z−k+1, . . . , z0, then H(p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t), t) =
(0, . . . , 0).

123

Discrete Comput Geom (2013) 49:221–246 233

Lemma 3 [9, Lem. 5.1.1] Let Γ be a GSP over K ∈ {R, C} with k free variables
and n-dependent ones.

1. A point (a−k+1, . . . , an) ∈ K
k+n is an instance of the GSP Γ if and only if

F(a−k+1, . . . , an)−(a−k+1, . . . , a0, 0, . . . , 0) = 0 and det F ′(a−k+1, . . . , an) �=
0 hold.

2. If a point (a−k+1, . . . , an) ∈ K
k+n is a critical point of the GSP Γ, then

det F ′(a−k+1, . . . , an) = 0 holds. A point (a−k+1, . . . , an) ∈ K
k+n is an

m-critical point of the GSP Γ if and only if det F(Γ (m))′(a−k+1, . . . , am) =
0, det F(Γ (m−1))′(a−k+1, . . . , am−1) �= 0 and F(Γ (m−1))(a−k+1, . . . , am−1) −
(a−k+1, . . . , a0, 0, . . . , 0) = 0 hold where Γ (m) and Γ (m−1) are the m-head and
the (m − 1)-head of Γ .

3. Let p−k+1(t), . . . , p0(t) be paths of the free variables z−k+1, . . . , z0 of the GSP
Γ that are continuously differentiable on a neighborhood U[0,1] of the time inter-
val [0, 1]. Let A = (a−k+1 = p−k+1(0), . . . , a0 = p0(0), a1, . . . , an) be an
instance of Γ. If det F ′(A) = det ∂ H

∂ A �= 0, then the corresponding continuous
evaluation (v1(t), . . . , vn(t)) exists locally, i.e., there is an ε > 0 such that the
paths v j (t) are defined for t ∈ (−ε, ε). Moreover, the paths v j (t) are continuously
differentiable over (−ε, ε); j = 1, . . . , n.

Proof We consider the Jacobian F ′(a−k+1, . . . , an) of F in the point (a−k+1, . . . , an).

Since a GSP only uses variables defined before, this (k + n) × (k + n)-matrix
is a lower triangular matrix. The rows that belong to a dependent variable have
at most three nonzero entries. The entries of the diagonal are 1 for the free vari-
ables zl , the entries of the diagonal for the dependent variables a = v j are the partial

derivatives
∂Pv j
∂v j
= ∂Pa

∂a . Hence, det F ′(a−k+1, . . . , an) = ∂Pv1
∂v1
· · · · · ∂Pvn

∂vn
, and

det F ′(a−k+1, . . . , an) = 0 holds if and only if a root variable or the divisor variable
of a division variable is zero. By construction of F, a tuple (a−k+1, . . . , an) fulfills
all relations of Γ if and only if F(a−k+1, . . . , an) − (a−k+1, . . . , a0, 0, . . . , 0) = 0
holds. Since a tuple (a−k+1, . . . , an) is an instance of Γ if and only if all relations
given by Γ are fulfilled and no division by zero and no root of zero occur, Part 1 is
proven.

Part 2 can be shown using the same arguments; Part 3 is a consequence of the
implicit function theorem. Since A is an instance at t = 0, we have H(A, 0) = 0.

We summarize the consequences of the implicit function theorem: There is an open
interval J ⊂ U[0,1] with 0 ∈ J and a continuously differentiable curve α : J → K

k+n

with the following properties:

1. α(0) = A, i.e., α(0) is the given starting instance A.
2. H(α(t), t) = 0 holds for all t ∈ J, hence α(t) fulfills all relations of the GSP Γ .
3. det F ′(α(t)) = det

(
∂ H
∂ A (α(t), t)

) �= 0 holds for all t ∈ J ; this implies that
the (k + n)× (k + n + 1)-matrix H ′(α(t), t) has full rank k + n for all t ∈ J .

Combining Properties 1–3 show that the curve α(t) is the wanted continuous evalu-
ation (p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)). Deriving the equation H(α(t), t) = 0

123

234 Discrete Comput Geom (2013) 49:221–246

from 2 leads to H ′(α(t), t) · (α̇(t), 1)t = 0, and (α̇(t), 1) is a nonzero vector of
the kernel of H ′(α(t), t). Since the rank of H ′(α(t), t) is k + n, the vector (α̇(t), 1)

spans this kernel. Using these observations, we can describe the curve α(t) and hence
the continuous evaluation (v1(t), . . . , vn(t)) by the following initial value problem:
Let (u(t), 1) = (u, 1) ∈ ker H ′(α(t), t), then α is described by α̇ = u, ṫ = 1, and
α(0) = A, t (0) = 0. It remains to show that u(t) is a continuous function. To see
this, we consider the tangent vector τ(M) ∈ R

k+n+1 of an (k + n) × (k + n + 1)-
matrix M with rank(M) = k + n; see [2, Def. 2.1.7, p. 9]; if K = C then
τ(M) ∈ C

k+n ×R =̂ R
2(k+n)+1. The vector τ(M) is the unique vector satisfy-

ing the conditions Mτ = 0, ‖τ‖ = 1, and det

(
M
τ t

)
> 0. By [2, Lem. 2.1.8],

the function M �→ τ(M) is smooth. Thus, the function u(t) can be described
by (u(t), 1) = τ(H ′(α(t), t))/τk+n+1, where τk+n+1 is the last entry of the vec-
tor τ(H ′(α(t), t)). Since ker(H ′(α(t), t) is spanned by (α̇, 1), we have τk+n+1 �= 0,
and u(t) is a continuous function.

The previous observation shows that the Tracing Problem can be interpreted as
an initial value problem that has the corresponding continuous evaluation as solution
curve. In addition, this fact implies the existence and uniqueness of continuous evalu-
ations. The approach via initial value problems illuminates the Tracing Problem from
the viewpoint of Dynamical Systems.

About Numerical Solutions for the Tracing Problem Various numerical methods have
been developed to trace implicitly defined curves [2,10,11,24] and to solve initial
value problems [10] that could be used to solve the Tracing Problem from Dynamic
Geometry. We adapt a generic Predictor–Corrector method to the Tracing Problem. The
resulting method is an increment-and-fix path following method since the continuation
parameter t remains fixed in the corrector step [24, p. 10]. Allgower and Georg give a
well-founded introduction to Predictor–Corrector methods in [2]. They investigate a
general situation where H : RN+1 → R

N is a smooth function and the starting point u0
is a regular value [2, Sect. 2.2]. The aim is to trace the curve β : R ⊃ J → R

N+1

with β(0) = u0 and H(β(s)) = 0 for all s ∈ J as long as we have rank(H ′(β(s))
= N and β ′(s) �= 0.

In our context of Dynamic Geometry, the paths pl(t) of the free variables zl are part
of the definition of the function H : Rk+n ×[0, 1] → R

k+n . The paths pl(t) are para-
metrized curves with respect to the time t, and their parametrization induces a parame-
trization of the solution curve β(t) = (α(t), t) as seen above. Recall that the curve α(t)
is the desired continuous evaluation (p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)). To har-
monize the notations, we set N := k + n.

The aim of Predictor–Corrector methods in general is to determine iteratively a
sequence of points U1, U2, U3, · · · ∈ R

N+1 beginning at a starting point U0 alongside
the curve β that fulfill a certain tolerance criterion like ‖H(Ui)‖ ≤ ε for some ε > 0.

If ε is chosen small enough, we can expect that the points Ui are close to the solution
curveβ.We assume that the pointsUi are regular points of the function H.For everyUi ,

we have a unique maximal solution curve βi : R ⊃ J → R
k+n+1 = R

N+1 of the initial
value problem β̇ = τ(H ′(β)), β(0) = Ui . To obtain a new point Ui+1, we first make a
predictor step; see Fig. 2. Like Allgower and Georg in [2], we choose an Euler predictor

123

Discrete Comput Geom (2013) 49:221–246 235

Fig. 2 The predictor point Vi+1
and the corrector point Ui+1 are
shown

Vi+1 := Ui + hτ(H ′(Ui)), where h > 0 represents a step length and τ(H ′(Ui)) is
the tangent vector [2, Def. 2.1.7] defined on page 13. The vector τ(H ′(Ui)) has unit
length and is tangent to the curve βi in the point Ui . The second step is called cor-
rector step. Starting with the predictor point Vi+1, the closest point Wi+1 on the
solution curve β is approximated. This process leads to the point Ui+1. Since we
have H(β) = 0, we could use Newton-like methods for this purpose, and we expect
a rapid convergence [2, Sect. 2.2]; see Fig. 2. The Predictor–Corrector continuation
method for approximating β consists of repeatedly performing predictor and corrector
steps. We adapt the general predictor and corrector steps to the Tracing Problem from
Dynamic Geometry and to the function H from page 12. Let A0 := A = (a−k+1 =
p−k+1(0), . . . , a0 = p0(0), a1 . . . , an) be the starting instance that is specified in the
Tracing Problem. We choose U0 := (A0, 0) ∈ R

N+1 as starting point. We interpret
the last coordinate of a computed point Ui ∈ R

N+1 as time and get Ui = (Ai , ti)
with Ai ∈ R

N = R
k+n . If a computed point Ui lies on the solution curve β, then we

have H(Ui) = 0. By construction of the function H, we have H(Ai , ti) = H(Ui) = 0
if and only if Ai = (ai,−k+1, . . . , ai,0, ai,1, . . . , ai,n) is an instance of the under-
lying GSP Γ with ai,−k+1 = p−k+1(ti), . . . , ai,0 = p0(ti). Since this observa-
tion holds for all points in R

N+1 = R
k+n×R, the last coordinate of the solution

curve β represents the time and we have shown β(t) = (α(t), t). In addition, we
have α(t) = (p−k+1(t), . . . , p0(t), v1(t), . . . , vn(t)), where (v1(t), . . . , vn(t)) is the
wanted continuous evaluation.

To keep track of the parametrization induced by the paths pl(t) of the free variables
of Γ, we choose the derivative β̇(t) = (α̇(t), 1) of β(t) = (α(t), t) at time ti as
tangent vector in the predictor step. To determine α̇(ti), we recall α(t)= (p−k+1(t),
. . . , p0(t), v1(t),. . ., vn(t)), where (v1(t), . . . , vn(t)) is the wanted continuous eval-
uation. Thus, to determine α̇(ti) we compute the derivatives ṗl(ti) of the paths pl

and the derivative (v̇1(ti), . . . , v̇n(ti)) of the continuous evaluation (v1(t), . . . , vn(t))
at time ti . We assume that the derivatives ṗl(t) of the paths pl of the free vari-
ables zl are known. Since Ai is an instance at time ti , we can efficiently determine
(v̇1(ti), . . . , v̇n(ti)) using the derivative GSP Γ̇ defined on page 8.

We consider the resulting predictor point Vi+1 = (Ai , ti) + hβ̇(ti)=: (Ãi+1, ti+1)

with ti+1 := ti + h. If the step length h is chosen sufficiently small, we can expect
that the predictor point Vi+1 = (Ãi+1, ti+1) is sufficiently close to the point β(ti+1)

on the solution curve β. This implies that the point Ãi+1 is sufficiently close to the
instance Ai+1 = (p−k+1(ti+1), . . . , p0(ti+1), v1(ti+1), . . . , vn(ti+1))= α(ti+1) lying
on the wanted continuous evaluation (p−k+1(t),. . ., p0(t), v1(t),. . ., vn(t)).

123

236 Discrete Comput Geom (2013) 49:221–246

Now, we present a discrete corrector step that uses the special structure of GSPs.
After the predictor step, we consider the time ti+1 = ti + h, where h is the step
length. The positions of the free variables zl of the GSP Γ at time ti+1 are given by
their paths pl;we have zl = pl(ti+1) for l = −k+1, . . . , 0. Following the operations
of Γ, we can determine all instances at the position (p−k+1(ti+1), . . . , p0(ti+1)). For the
corrector point Ui+1 = (Ai+1, ti+1), we choose the instance Ai+1, which is “closest”
to the point Ãi+1 of the predictor point Vi+1 = (Ãi+1, ti+1). We determine the instance
Ai+1 = (ai+1,−k+1 = p−k+1(ti+1), . . . , ai+1,0 = p0(ti+1), ai+1,1, . . . , ai+1,n) clos-
est to Ãi+1 = (ãi+1,−k+1, . . . , ãi+1,0, ãi+1,1, . . . , ãi+1,n) coordinatewise starting
with the dependent variable v1: The coordinate ai+1,1 is the output of v1 that is closest
to ãi+1,1. Using the position (ai+1,−k+1 = p−k+1(ti+1), . . . , ai+1,0 = p0(ti+1)) and
the coordinate ai+1,1, we compute the output ai+1,2 of the dependent variable v2 that
is closest to ãi+1,2. We give the general formula of this iterative procedure: assume
the coordinates ãi+1,1, . . . , ãi+1, j−1 of the dependent variables v1, . . . ,v j−1 are deter-
mined. Using the position (ai+1,−k+1 = p−k+1(ti+1), . . . , ai+1,0 = p0(ti+1)) and the
coordinates ai+1,1, . . . , ai+1, j−1, we can compute the output ai+1, j of the dependent
variable v j that is closest to ãi+1, j . This algorithm runs in O(n) time in the real RAM-
model, where n is the number of dependent variables of Γ, if the position (ai+1,−k+1=
p−k+1(ti+1), . . . , ai+1,0 = p0(ti+1)) is known. If we do not assume exact computa-
tion, we have to take rounding errors into account even in the predictor step.

The main disadvantage of the presented Predictor–Corrector method is that there is
no guarantee for the correctness of the computed solutions. If the chosen step length h
in the predictor step is too large, the corrector point might jump to a wrong path
of the dependent variables. To overcome this problem, we develop the algorithms of
Sect. 4, they are based on a step length adaptation that guarantees the correctness of
the solution curve. Critical points are surrounded by a detour; see Sect. 5.

Kearfott and Xing [13] give a continuation method that is based on interval arith-
metic and guarantees the correctness of the solution. They use a so-called Gauss-
Seidel-Sweep and consider boxes containing the solution curve. Their aim is to shrink
the boxes in order to achieve that a box contains a single solution. This approach
seems not to be efficient for solving the Tracing Problem: here, we first determine a
box that contains at least one solution curve. Afterwards, we decrease the step length
and separate the solution curve from the other solution candidates; see Sect. 4.

Blum, Cucker, Shub, and Smale [3, Sect. 14.3] investigate the complexity of homo-
topy continuation methods. They consider functions over C and combine the predictor
and the corrector step in one single step. They estimate the number of Newton steps
needed to follow the correct solution curve. As in [2], the solution curve is parame-
trized by arc length. The discussed estimates are based on a condition number, which
might be difficult to determine. However, we do not know how to use this method to
solve the Tracing Problem from Dynamic Geometry.

4 Reliable Algorithms for the Tracing Problem

We describe a reliable algorithm for the Tracing Problem for GSPs over R or C

that is based on interval arithmetic [8,9]. We assume that there are no critical points
on the paths p−k+1, . . . , p0 of the free variables z−k+1, . . . , z0, the treatment of

123

Discrete Comput Geom (2013) 49:221–246 237

critical points is discussed in Sect. 5. Furthermore, we restrict ourselves to linear paths
p−k+1, . . . , p0 which simplifies Step 2 of Algorithm 1. The used interval arithmetic
has to fulfill the inclusion monotonicity property. Algorithm 2 traces the continuous
evaluation v1(t), . . . , vn(t) stepwise. For each step, a proper step length h0 is deter-
mined in advance. To achieve this aim, we assign to each variable of Γ an interval that
contains the range of the corresponding coordinate-path of the continuous evaluation.
Algorithm 1 performs a single tracing step, Algorithm 2 uses Algorithm 1 and traces
the whole continuous evaluation as long as there occur no critical points. Algorithm 1
can be extended by an improved steplength adaptation using the derivative GSP Γ̇ ;
see [9, Sect. 6.3]. The given algorithm is robust as shown in [9, Sect. 6.5]; the problem
of overestimation is discussed in [9, Sect. 6.4]. The extension of the algorithms to
GSPs with cubic and higher roots is addressed in [9, Sect. 6.6].

Before we give the algorithm, we describe the main idea of our reliable algorithm
for the Tracing Problem. Recall that we have to deal with the ambiguity due to the
root function and with critical points, which are caused by a division by zero or a root
of zero. Thus, the operations division and root need a special treatment. We explain
how to determine the step length of a single tracing step.

Division Let vm = d1/d2, d1, d2 ∈ {z−k+1, . . . , z0, v1, . . . , vm−1}, be a division
operation, and let d1(t), d2(t) : [0, 1] → K be the paths of the variables d1 and d2 in
the continuous evaluation. To simplify the description, we assume that the paths d1(t)
and d2(t) do not contain critical points, i.e., there is no t ∈ [0, 1] for that

√
0 or _/0

occurs in the computation of d1(t) and d2(t). To execute the division vm = d1/d2
properly over a time interval [t1, t2] ⊂ [0, 1], we have to ensure that the path d2(t)
does not pass through 0 ∈ C. If the image d2([t1, t2]) of d2(t) is contained in an
interval I with 0 /∈ I, then the path d2(t) has no zeros in [t1, t2]. We choose t2 small
enough.

Root Let vm = √r with r ∈ {z−k+1, . . . , z0, v1, . . . , vm−1} be a root instruction.
Let r(t) : [0, 1] → C and vm(t) : [0, 1] → C be the paths of the variables r and vm

in the continuous evaluation. To point out the main ideas, we assume that v := vm is
defined by the first root-instruction of the GSP Γ and that the path r(t) does not contain
critical points itself, i.e., there is no t ∈ [0, 1] such that

√
0 or _/0 occurs in the com-

putation of r(t). We describe the first step and determine a step length h for this step.
The main challenge is to resolve the ambiguity of the root-function.

Observation We can “walk” on the paths r(t) and v(t) = vm(t) as long as we
can “determine the right final instance”. The difficulty is that we do not know these
paths since they are implicitly given by the GSP Γ and the starting instance A.

Instead, we can compute all possible instances at a fixed time t̃, i.e., all instances C =
(p−k+1(t̃), . . . , p0(t̃), c1, . . . , cm) having p−k+1(t̃), . . . , p0(t̃) as values for the free
variables z−k+1, . . . , z0. From these instances, we have to detect the one that lies on
the continuous evaluation at time t̃, which is (p−k+1(t̃), . . . , p0(t̃), v1(t̃), . . . , vm(t̃)).
We achieve this by choosing t0 ∈ [0, 1] with the property

∀t ∈ [0, t0] : |vm(t)− am | < |vm(t)− (−am)|. (1)

Here, am is the value of the variable vm in the starting instance A. The unique value
bm ∈ {±√r(t0)} with |bm − am | < |bm + am | is the mth coordinate of the continuous

123

238 Discrete Comput Geom (2013) 49:221–246

Fig. 3 The left figure shows the path v(t) := vm (t), the bisector of am = v(0) and −am , and the point
v(t0). On the right hand side, the path r(t) of the radicand and the ray l is shown

evaluation at time t0, and h = t0 is a proper step length for the first root-instruction of
the first step. Condition (1) means that vm(t) has to stay in the half plane of C that is
defined by the bisector of am and−am and that contains am; see left of Fig. 3. This is
equivalent to the requirement that the path r|[0,t0](t) does not intersect the ray l starting

in 0 ∈ C and passing through the point −r(0) = −a2
m; see right of Fig. 3.

If we choose t0 ∈ [0, 1] such that the path r(t) : [0, t0] → K stays in a rectangular
or circular complex interval that does not contain 0 ∈ C, then the path r|[0,t0](t)
cannot intersect the ray l. Consequently, it does not pass through 0 ∈ C, and hence,
it does not cause a critical point. By reparametrization, we can deal with arbitrary
time intervals [t1, t2] as well. The same construction can be done over the field of real
numbers R. We summarize the previous observations and note that Lemma 4 directly
generalizes to higher order roots; see [9, Sect. 6.6].

Lemma 4 [9, Lem. 6.1.1, Cor. 6.1.2] Radicand Lemma
Let r : [0, 1] → C

∗ = C \ {0} be a continuous path and r0 := r(0) its starting
point. Let v : [0, 1] → C

∗ be the unique continuous path with (v(t))2 = r(t) for
all t ∈ [0, 1] and v(0) = v0 for a given v0 ∈ {±√r0}. Let l be the ray that starts
in 0 ∈ C and passes through −r0. If r does not intersect the ray l, then we have

Fig. 4 Algorithm 1 is visualized with an example. The paths of the free variables z−1 and z0 are p−1(t) =
4t + 9 and p0(t) = (−2+ i)t, t0 = 0. If the interval of a radicand or divisor variable contains zero, then
the algorithm is restarted with a smaller step length. Here, we use circular interval arithmetic

123

Discrete Comput Geom (2013) 49:221–246 239

|v(t)− v0| < |v(t)+ v0| at any time t ∈ [0, 1]. The endpoint v(1) is the unique point
v1 ∈ {±√r(1)} with |v1−v0| < |v1+v0|. Moreover, if the path r stays in a rectangle
or circle that does not contain 0 ∈ C, then |v(t) − v0| < |v(t) + v0| holds for all
t ∈ [0, 1].

If there is no critical point on the paths p−k+1, . . . , p0, then we have exactly one
continuous evaluation v1(t), . . . , vn(t) starting at a given instance A. We trace this
continuous evaluation stepwise. The previous considerations lead to an algorithm for
a single tracing step; see Fig. 4 for an example.

Algorithm 1 [9, Sect. 6.2]

This algorithm is based on the Radicand Lemma 4. If 0 /∈ Ic and vd = √vc in Step 5,
then we have |vd(t)−ad | < |vd(t)+ad | for all t ∈ [t0, t0+h]. Since bd = vd(t0+h),

the coordinate bd is uniquely defined by the corresponding condition in Step 5. The
inequality |bd − ad | < |bd + ad | could be checked using separation bounds [5]. The
square root Id = √Ic is uniquely determined by the condition bd ∈ √Ic. This fact
holds since

√
Ic ∩ −√Ic = ∅ if 0 /∈ Ic. Equivalently, we could require ad ∈ √Ic.

We use the inclusion monotonicity property of the chosen interval arithmetic to
show that Algorithm 1 terminates. For this reason, the intervals Il in Step 2 must be

123

240 Discrete Comput Geom (2013) 49:221–246

constructed such that the inclusion monotonicity property holds; see [9, p. 75]. If this
condition is fulfilled, then Algorithm 1 also works for nonlinear paths pl . Close to a
critical point, the step length computed by Algorithm 1 becomes arbitrary small. At a
critical point, 0 = vc ∈ Ic holds. Only if 0 /∈ Ic the algorithm continues with the next
variable in Step 5. In Sect. 5, we discuss how critical points can be treated.

Lemma 5 Algorithm 1 terminates, and the correct final instance B after the step of
length h is computed.

Proof The continuity of the functions+, −, ·, :, and√_ combined with an inductive
argument implies that for every division or square root operation there are finitely
many restarts in Step 5; see [9, p. 75]. Hence, Algorithm 1 terminates.

Algorithm 2 [9, Sect. 6.2] Trace this continuous evaluation stepwise using Algo-
rithm 1. In the process, the final instance of a previous step is the starting instance of
the next step.

Note that Algorithm 2 does not terminate if there is a critical point on the traced
continuous evaluation. In this situation, the step length computed by Algorithm 1 in
Algorithm 2 becomes arbitrary small before the critical point is reached.

Theorem 2 Algorithm 2 terminates and computes the correct final instance B as long
as no critical points occur.

Proof Using Lemmas 2 and 4, we can show B = (p−k+1(t0 + h), . . . , p0(t0+h),

v1(t0 + h), . . . , vn(t0 + h)). The functions pl(t), vi (t) and +,−, ·, :,√_ are contin-
uous on a compact set. Thus, they attain their minimum and maximum, and they are
uniformly continuous. Therefore, there is a lower bound h0 > 0 for the step length
[9, p. 77].

Step Length Adaptation Algorithm 1 does not give an indication for a “good” choice
for the step length h, the number of restarts in Step 5 is not known in advance. We
supplement Algorithm 1 such that there is at most one restart for every division or root
operation. This improvement uses the derivative GSP Γ̇ . A detailed derivation is given
in [9, Sect. 6.3]. As in Step 4 of Algorithm 1, we consider a division or root variable vd

and its radicant or divisor vc ∈ {z−k+1, . . . , vd−1} and its path vc(t) in the continuous
evaluation. The time interval is [t0, t0 + h]. Let İc be an interval with v̇c(t) ∈ İc

for all t ∈ [t0, t0 + h]. The mean value theorem implies vc(t) ∈ ac + (t − t0) İc

where ac = vc(t0) is the coordinate of vc in the starting instance A; see Fig. 5.
If 0 ∈ İc, then vc(t) ∈ ac + h İc for all t ∈ [t0, t0 + h], and we set Ic := ac + h İc.

If 0 /∈ İc, we know vc(t) ∈ ac + (t − t0) İc ⊂ ac + Th İc where Th is the smallest
interval in the used interval arithmetic that contains the real interval [0, h]. In this
case, we set Ic := ac + Th İc. We consider the cone C with apex (t0, ac) and base
(t0+ h, Ic) = {(to + h, z)| z ∈ Ic}; the graph of vc(t) is contained in C. If C does not
intersect the t axis, then the path vc(t) does not pass through zero, and the variable vd

does not cause a critical point. Otherwise, let t ′ ∈ (t0, t0 + h] be the earliest time for
which C intersects the t-axis. Then, h := 2

3 (t ′ − t0) is a suitable step length; see Fig. 5.

123

Discrete Comput Geom (2013) 49:221–246 241

Fig. 5 The cone C and the definition of t ′ are shown for I(R) on the left and for K(C) on the right

The interval İi can be computed by the interval derivative GSP Γ̇int. The needed
interval operations can be executed since 0 ∈ Ic holds if and only if the cone C
intersects the t axis. Hence, a division or root operation is executed only if the divisor
or radicant interval does not contain 0. Since we use an interval arithmetic with the
inclusion monotonicity property, every division or root variable causes at most one
adaptation for the step length.

5 Detection and Treatment of Critical Points

The detection and treatment of critical points in the tracing process described in Sect. 4
is discussed. A division or root variable causes a critical point if the path vc(t) of its
divisor or radicand passes through zero. After detecting a zero of vc(t) in the time
interval [t0, t0+h], we omit the critical point by a detour in the complex plane [15,17].
We remark that a similar idea is used for solving polynomial systems of equations via
homotopy methods [24]. Here, a randomly chosen complex parameter is used in the
homotopy to avoid singularities along the solution paths. A crucial observation is that
the instance reached after a detour around a critical point depends on the detour itself.

Detection of Critical Points An m-critical point occurs at time t̃ ∈[t0, t0+h] if vc(t̃)=0.
In this situation, we have 0 = vc(t̃) ∈ vc([t0, t0+ h]) ⊂ Ic. The inclusion vc([t0, t0+
h]) ⊂ Ic holds by construction of the interval Ic. Algorithm 1 proceeds only if 0 /∈ Ic.

In this way is guaranteed that no m-critical point occurs in the step of length h at
starting time t0. Otherwise, Algorithm 1 is restarted with a smaller step length. Thus,
a first indication of a critical point is that the step length computed by Algorithm 1
becomes arbitrarily small. Hence, we should stop Algorithm 2 if a suitable lower
bound for the step length is reached. How to choose hl properly and in advance is still
an open problem. In practice, hl could depend on the computational accuracy.

We investigate the zeros of the path vc(t) of a radicand or divisor variable vc in
a continuous evaluation of Γ. We consider linear or circular paths pl of the free
variables zl of Γ. These paths can be extended to analytic functions p̂l : U[0,1] → C

on a neighborhood U[0,1] ⊂ C of the time interval [0, 1] ⊂ R. Let (v1(t), . . . , vn(t))
be a continuous evaluation of Γ along the paths pl . If the neighborhood U[0,1] is
chosen small enough, then the paths v j (t) : [0, 1] → K can be extended to analytic
functions v̂ j : U[0,1] → C, as well [9, Sect. 8.6.1]. The identity theorem from complex
analysis implies that the functions v̂ j are either constantly zero or their zeros form a

123

242 Discrete Comput Geom (2013) 49:221–246

discrete subset of U[0,1]. Since the time interval [0, 1] is compact, a path v j (t) in a
continuous evaluation is either constantly zero or has a finite number of zeros.

If Γ is a GSP over C, then the real part Re(v j (t)) and the imaginary part Im(v j (t))
of v j (t) are either constantly zero on the interval [0, 1] ⊂ R or have a finite num-
ber of zeros in [0, 1]; see [9, Lem. 7.1.1]. In the starting instance A at time t0, we
have vc(t0) �= 0 for every radicand or divisor variable. Otherwise, A would be a crit-
ical point and not an instance. Thus, for K = R, we can exclude the case vc(t) ≡ 0.

For K = C, at least one of the two functions Re(vc(t)) or Im(vc(t)) has at most a finite
number of zeros in the time interval [0, 1], and we can apply the same case distinction
as in the real situation.

We consider the product acbc = vc(t0)vc(t0 + h), where bc is the value of the
variable vc in the final instance B of the current step. By the intermediate value
theorem, if acbc < 0, then the continuous function vc(t) has a zero in the time
interval [t0, t0 + h].

The path vc(t) might have a zero although vc(t0)vc(t0 + h) > 0 holds. Then, vc(t)
has a local extremum at a time t̃ ∈ [t0, t0 + h], and v̇c(t̃) = 0 and 0 ∈ {v̇c(t) | t ∈
[t0, t0 + h]} ⊂ İc hold. Note that 0 ∈ İc does not imply 0 ∈ {v̇c(t) | t ∈ [t0, t0 + h]}.
Thus, if 0 ∈ İc, then the function vc(t) might have a local extremum in the time
interval [t0, t0 + h]. In this situation, the path vc(t) could have a zero in the time
interval [t0, t0 + h] although the condition vc(t0)vc(t0 + h) < 0 fails. We propose to
bisect the time interval [t0, t0+h] into the two subintervals [t0, t0+ h

2] and [t0+ h
2 , t0+h]

and to proceed with each subinterval separately. Depending on the step length h, which
is the length of the time interval [t0, t0 + h], it might be important to approximate the
zero of vc(t) causing the critical point. A first possibility is to use Algorithm 1. The
algorithm could be used backwards, as well. As usual, let ac be the coordinate of vc

in the starting instance A, and bc the value of vc in the final instance B of the current
step; bc has already been computed since vc is the radicand or divisor variable of the
current (critical) variable vm . We apply Algorithm 1 to the path vc(1 − t) at starting
time t0 + h and starting point bc. A second possibility for the approximation of the
zero of vc(t) is to use a Newton-Iteration. This is possible since we can determine
the first derivative v̇c(t) of vc(t) by differentiating the GSP Γ as in Definition 8
and by considering the corresponding value of v̇c(t) in the instance of Γ̇ at a fixed
time t .

If an m-critical point is found, we can determine the multiplicity of the zero of its
radicand or divisor vc. For this purpose, we have to compute higher order derivatives
of the GSP Γ. This computation is possible since the derivative Γ̇ of a GSP Γ is again
a GSP. The corresponding instance of the GSP Γ̇ can be determined using Lemma 1.
Hence, we have to derive the GSP Γ and to determine the corresponding instances (so
far as possible, i.e., the m − 1-head) at this point until the corresponding coordinate
of vc that describes its μth derivative differs from zero. Then, μ−1 is the multiplicity
of the zero of vc that causes the m-critical point.

Treatment of Critical Points After the detection of a critical point, we have to deal
with it. We choose Kortenkamp’s and Richter-Gebert’s approach [15,17] of detouring
around degeneracies in the complex plane, which is used in the Dynamic Geometry

123

Discrete Comput Geom (2013) 49:221–246 243

Fig. 6 The construction of the
buffer zone is illustrated. The
dotted circles are candidates for
the interval I : they do not
intersect the buffer zone

Software Cinderella [23]. This approach leads to a locally and globally consistent
treatment of critical points; see [15, Sect. 6.3] and [9, Sects. 1.3, 7.3].

As in our algorithms (Algorithms 1 and 2), we assume that the given paths of the free
variables of the GSP Γ are linear paths p = pl with range C, for example p : [0, 1] →
C, t �→ a+ t (b−a) for fixed a, b ∈ C. Hence, p describes the line segment between
a and b. Clearly, if and only if a, b ∈ R, then the range of p is contained in R. For
simplicity, we use the time interval [0, 1].

If a candidate critical point is detected in the time interval [0, 1], we replace the
line segment ab between a and b by the right semi circle in the complex plane C

having the line segment ab as diameter [15]. In [9, Sect. 7.2], the necessary changes
to Algorithms 1 and 2 are discussed, as well.

Since Algorithms 1 and 2 become quite inefficient if the starting instance is chosen
close to a critical point, we propose to use a buffer zone around a critical point; see
Fig. 6 and [8,9]. We define the intervals I = Il and I = İl such that they do not
hit this buffer zone. This approach ensures that the intervals Il and İl have a larger
distance to the critical point. For this reason, we expect that 0 ∈ Ic in Steps 4 and 5 of
Algorithm 1 occurs more rarely. Hence, we expect that the number of restarts in Step 5
of Algorithm 1 is reduced that way. To sum up, the buffer zone enlarges the detour pl

around the critical point, but therefore the step length h might become larger.
An open problem is to determine whether a path pt “catches” a singularity. One

possibility for this could be to determine whether a complex time interval contains
a critical point. This could be done with an Interval Newton Method [9, Sect. 7.4,
Sect. A.5].

Consequences of Detouring If we trace a detour around a candidate critical point,
then the final instance depends on the detour. Thus, the choice of the detour heavily
influences the properties of the Dynamic Geometry System.

Let Γ be a GSP with one free variable. In most applications in Dynamic Geometry,
the restriction to GSPs with only one free variable is not a serious constraint for
solving the Tracing Problem. Here, the paths pl of the free variables zl of a GSP Γ

are usually linear paths and can be described by a GSP Γl having the time t as single
free variable. Since we consider complex detours, we assume that Γ is a GSP over C.

At a critical point, a division by zero or a root of zero occurs; see Definition 5. We
have seen in Sect. 2, p. 6, that critical points of Γ are either isolated or form an entire
connected component of the configuration space. An isolated critical point might lead

123

244 Discrete Comput Geom (2013) 49:221–246

Fig. 7 The path p(t) together
with the path p1(t) does not
catch one of the points
z0, z1, z2; the path p(t) with
the path p2(t) catches z1
and z2; the path p(t) with the
path p3(t) catches z0 and z1

to a removable singularity, a pole, or a branch point. Since the dependent variables of
a GSP Γ describe algebraic functions, we can exclude essential singularities.

Algorithm 2 proceeds stepwise. In each step, Algorithm 1 computes the final
instance coordinate by coordinate. Thus, we consider the paths v j (t) of the depen-
dent variables v j separately. Doing this, we have to keep in mind that the described
effects might accumulate: At a certain time t̃, two (or even more) dependent variables
could cause a critical point simultaneously. In Kortenkamp’s and Richter-Gebert’s
approach [15,17] described on page 22, critical points are avoided by modifying the
paths pl of the free variables. This change of the paths pl induces a simultaneous
modification of all paths v j (t) of the dependent variables in the continuous evaluation
[9, Sect. 7.2].

To investigate the influences of detouring around critical points, we explain when
a modified path “catches” a critical point; see Fig. 7 and [9, Sect. 7.3]. We assume
that v j is a dependent variable that is defined by a root or division operation. Let vc

be the radicand or divisor variable of v j . Let vc(t) be the path of vc in the continuous
evaluation induced by the (polynomial) path p(t) of the free variable, let ac = vc(0)

and bc = vc(1) be the coordinates of vc in the starting and final instances. Let v̂c(z) be
the algebraic function of vc induced by the (polynomial) path p(t) of the free variable.
The zeros z0, . . . , zkc of v̂c are the critical points caused by the variable v j . Let ṽc(t)
be another path with ṽc(0) = ac and ṽc(1) = bc. Let U ⊂ C be a simply connected
open subset that contains the images of the paths vc(t) and ṽc(t). We say that the
path ṽc(t) catches a critical point if the closed path vc(t) − ṽc(t) obtained by first
following vc(t) and afterwards following ṽc(t) backwards is not null-homotopic in
the set U \ {z0, . . . , zkc }; see Fig. 7. A closed path is null-homotopic if it is homotopic
to a constant path.

If we surround a critical point that leads to a removable singularity of a depen-
dent variable v j without catching other singularities of this variable, then the final
position b j of v j does not depend on the chosen path. This fact is a consequence of
Cauchy’s integral theorem.

If we surround a critical point that leads to a pole z0 of the function v̂ j , then the
final point b j depends on the chosen detour. Let two paths ṽc and ˜̃vc from ac to bc

lead to the final values b̃ j and ˜̃b j of the variable v j . Then the difference b̃ j − ˜̃b j of the
two final positions depends on the winding number of the concatenated path−˜̃vc+ ṽc

around the point z0 and on the residue of the function v̂′j in the point z0. This is a
consequence of the residue theorem.

123

Discrete Comput Geom (2013) 49:221–246 245

If we surround a critical point that leads to a branch point, then following a detour
results in a change of the sheets of the corresponding Riemann Surface. This change
of the sheets depends on the choice of the modified path. Thus, the final point b j of
the variable v j depends on the chosen detour.

6 Conclusion and Future Work

We gave a numerical solution for the Tracing Problem based on numerical continuation
methods. By computing the derivative of a GSP, we can exploit the special structure
of the Tracing Problem successfully. Moreover, we developed a reliable algorithm for
the Tracing Problem from Dynamic Geometry. This algorithm uses interval arithmetic
to guarantee the correctness by detecting (potential) critical points in advance and by
handling the ambiguity of the root function, which is an advantage over our numerical
approach. The problem of interval dependency leads to an overestimation of the range
of the considered paths and thus to an underestimation of the step length. For dealing
with critical points, we adapted the approach by Kortenkamp and Richter-Gebert [17,
15] and surrounded (potential) critical points by circular detours. An implementation
is planned to verify the practical relevance.

Acknowledgments We would like to thank Ulrich Kortenkamp, Helmut Alt, and Dominique Michelucci
for fruitful discussions and helpful ideas.

References

1. Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung, Reihe Informatik, vol. 12. Bibli-
ographisches Institut. In: An English Translation Appeared in 1983, Academic Press, New York (1974)

2. Allgower, E.L., Georg, K.: Numerical Continuation Methods. Springer, Heidelberg (1990)
3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York

(1998)
4. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Springer, Berlin (1997)
5. Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separation bound for real algebraic

expressions. In: European Symposium on Algorithms 2001, LNCS, vol. 2161, pp. 254–265 (2001)
6. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithm. 37,

147–158 (2004)
7. Denner-Broser, B.: On the decidability of tracing problems in dynamic geometry. In: Automated

Deduction in Geometry 2004, LNAI, vol. 3763, pp. 111–129. Springer, Heidelberg (2006)
8. Denner-Broser, B.: An algorithm for the tracing problem using interval analysis. In: ACM Symposium

on Applied Computing 2008; Session Geometric Constraints and Reasoning, pp. 1832–1837 (2008)
9. Denner-Broser, B.: Tracing-problems in dynamic geometry. Ph.D. thesis, Freie Universität, Berlin

(2008)
10. Deuflhard, P.: Newton Methods for Nonlinear Problems, Springer Series in Computational Mathemat-

ics, vol. 35. Springer, Berlin (2004)
11. Faudot, D., Michelucci, D.: A new robust algorithm to trace curves. Reliab. Comput. 13, 309–324

(2007)
12. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dor-

drecht (1996)
13. Kearfott, R.B., Xing, Z.: An interval step control for continuation methods. SIAM J. Numer. Anal.

3(3), 892–914 (1994)
14. Ko, K., Sakkalis, T., Patrikalakis, N.: A reliable algorithm for computing the topological degree of a

mapping in R
2. Appl. Math. Comput. 196(2), 666–678 (2007)

15. Kortenkamp, U.: Foundations of dynamic geometry. Ph.D. thesis, ETH, Zürich (1999)

123

246 Discrete Comput Geom (2013) 49:221–246

16. Kortenkamp, U., Richter-Gebert, J.: Decision complexity in Dynamic Geometry. In: Automated Deduc-
tion in Geometry, Workshop 2000, vol. 2061, pp. 193–199 (2001)

17. Kortenkamp, U., Richter-Gebert, J.: A dynamic setup for elementary geometry. In: Multimedia Tools
in Communicating Mathematics. Springer, Lisboa (2002)

18. Nedialkov, N., Kreinovich, V., Starks, S.: Interval arithmetic, affine arithmetic, taylor series methods:
Why, what next? Numer. Algorithm. 37(1–4), 325–336 (2004)

19. Neumaier, A.: Taylor forms: use and limits. Reliab. Comput. 9, 43–79 (2003)
20. Petković, L., Petković, M.: On the k-th root in circular arithmetic. Computing 33, 27–35 (1984)
21. Petković, M., Petković, L.: Complex Interval Arithmetic and Its Applications. Wiley, Berlin (1998)
22. Richter-Gebert, J., Kortenkamp, U.: Complexity issues in dynamic geometry. In: Foundations of Com-

putational Mathematics, Proceedings of the SMALEFEST 2000 World Scientific, Hongkong (2002)
23. Richter-Gebert, J. Kortenkamp, U.: The Cinderella. 2 Manual: Working with The Interactive Geometry

Software. Springer, Berlin (2012). http://www.cinderella.de
24. Sommese, A.J., Verschelde, J., Wampler, W.C.: Introduction to numerical algebraic geometry. In:

Solving Polynomial Equations, Algorithms and Computation in Mathematics, vol. 14. Springer, Berlin
(2005)

25. Stolfi, J., de Figueiredo, L.H.: Self-validated numerical methods and applications. In: Brazilian Math-
ematics Colloquium Monograph, IMPA, Rio de Janeiro, Brazil. http://www.ic.unicamp.br/~stolfi/
EXPORT/bibliography/stolfi.html (1997)

123

http://www.cinderella.de
http://www.ic.unicamp.br/~stolfi/EXPORT/bibliography/stolfi.html
http://www.ic.unicamp.br/~stolfi/EXPORT/bibliography/stolfi.html

	About Tracing Problems in Dynamic Geometry
	Abstract
	1 Introduction
	2 Some Basic Concepts from Dynamic Geometry
	3 The Tracing Problem and Continuation Methods
	4 Reliable Algorithms for the Tracing Problem
	5 Detection and Treatment of Critical Points
	6 Conclusion and Future Work
	Acknowledgments
	References

