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Abstract We study the expected value of support functions of random polytopes in
a certain direction, where the random polytope is given by independent random vec-
tors uniformly distributed in an isotropic convex body. All results are obtained using
probabilistic estimates in terms of Orlicz norms that were not used in this connection
before.
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1 Introduction and Notation

The study of random polytopes began with Sylvester and the famous four-point prob-
lem nearly 150 years ago. This problem asks for the probability that the convex hull
of four randomly chosen points in a planar region forms a four-sided polygon and
its solution depends on the probability distribution of the random points. It was the
starting point for an extensive study. In their groundbreaking work [30] from 1963,
Rényi and Sulanke continued it, studying expectations of various basic functionals of
random polytopes. Important quantities are expectations, variances and distributions
of those functionals, and their study combines convex geometry, as well as geometric
analysis and geometric probability (see also [2, 29]).

In the last 30 years a tremendous effort was made to explore properties of random
polytopes as they gained more and more importance due to many important applica-
tions and connections to various other fields. Those can be found not only in statistics
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(extreme points of random samples) and convex geometry (approximation of convex
sets), but also in computer science in the analysis of the average complexity of al-
gorithms [22] and optimization [5], and even in biology [33]. In 1989, Milman and
Pajor revealed a deep connection to functional analysis, proving that the expected
volume of a certain random simplex is closely related to the isotropic constant of a
convex set. In fact, this is a fundamental quantity in convex geometry and the local
theory of Banach spaces [17].

Since Gluskin’s result [8], random polytopes are known to provide many examples
of convex bodies (and related normed spaces) with a “pathologically bad” behavior
of various parameters of a linear and geometric nature (see for instance the survey
[16] and references therein). Consequently, they were also a natural candidate for
a potential counterexample for the hyperplane conjecture. The isotropic constant of
certain classes of random polytopes has been studied in [1, 7] and [12], showing that
they do not provide a counterexample for the hyperplane conjecture.

Some other recent developments in the study of random polytopes can be found
in [7] or [21], where the authors studied the relation between some parameters of a
random polytope in an isotropic convex body and the isotropic constant of the body.
Their results provide sharp estimates whenever nltd < N < eV for some & > 0.
Howeyver, their method does not cover the case where N ~ n, and it seems that a new
approach is needed. Therefore, our paper serves this purpose, providing a new tool in
the study of random polytopes where results are obtained for the range n < N < evn,
More precisely, we will estimate the expected value of support functions of random
polytopes for a fixed direction, using a representation of this parameter via Orlicz
norms.

Even though the motivation is of a geometrical nature, the tools we use are mainly
probabilistic and analytical, involving Orlicz norms and therefore spaces which natu-
rally appear in Banach space theory. It is interesting that those spaces, as we will see,
also naturally appear in the study of certain parameters of random polytopes. Hence,
this interplay between convex geometry and classical Orlicz spaces is attractive both
from the analytical and from the geometrical point of view.

Before stating the exact results, and to allow a better understanding, we start with
some basic definitions before we go into detail. A convex body K C R” is a com-
pact convex set with non-empty interior. It is called symmetric if —x € K whenever
x € K. We will denote its volume (or Lebesgue measure) by | - |. A convex body
is said to be in isotropic position if it has volume 1 and satisfies the following two
conditions:

— Jx xdx =0 (center of mass at 0),
— [x(x,0)2dx =L% Vo € S"71,

where L is a constant independent of 6, which is called the isotropic constant of K.
Here, (-, -) denotes the standard scalar product in R".

We will use the notation a ~ b to express that there exist two positive absolute
constants ¢y, ¢z such that c;ja < b < cpa and use a ~ b in case the constants depend
on some constant § > 0. Similarly, we write a < b if there exists a positive absolute
constant ¢ such that a < cb. The letters ¢, c’, C,C’, cy, c2, ... will denote positive
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absolute constants whose values may change from line to line. We will write C () if
the constant depends on some parameter r > 0.

Let K be a convex body, and # € S”~! a unit vector. The support function of K in
the direction @ is defined by Ak () = max{(x, #) : x € K}. The mean width of K is

w(K) = /SH hi (0)du(0),

where d 1 denotes the uniform probability measure on "~

Given an isotropic convex body K, let us consider the random polytope Ky =
conv{£Xy,...,£Xy}, where Xi,..., Xy are independent random vectors uni-
formly distributed in K. It is known (see for instance [7] or [20]) that the expected
value of the mean width of K is bounded from above by

Ew(Ky) < CLg+/logN,

where C is a positive absolute constant. In [7] the authors showed that if N < g s

1
Knl\7 [N
E >CL log —.
(|B§|> = TRy OR,

As a consequence, they obtained

Ew(Ky) ~s Lg+/logN

if the number of random points defining K verifies nltd < N < eV , 8 >0 acon-
stant.

Now, let us be more precise and outline what we will prove and study in the fol-
lowing. First of all, by Fubini’s theorem, the expected value of the mean width of Ky
is the average on §"~! of the expected value of the support function of Ky in the
direction 6:

Ew(KN)zE,/an hKN(G)dM=/; . Ehgy©)d. (1)

Initially, in this paper we are interested in estimating Eh g, (0) =Emax;<;<n [{X;, 0)]
for a fixed direction # € §”~!, but we will also derive “high probability” (in the set of
directions) results. In order to do so, we establish a completely new approach apply-
ing probabilistic estimates in connection with Orlicz norms. Those were first studied
by Kwapien and Schiitt in the discrete case in [14] and [15] and later extended by
Gordon, Litvak, Schiitt and Werner in [9] and [10] (for recent developments, see
also [24, 25] and [26]). Using this method to estimate support functions of random
polytopes is interesting in itself and introduces a new tool in convex geometry.

As we will see, the expected value of the mean width of a random polytope in (1)
is equivalent to an average of Orlicz norms, i.e.,

Ew(KN)N/ |, D, dn®).
sn—1
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This, in fact, is not just a nice representation, but a very interesting observation, which
bears information concerning the expected value of the mean width, worth to be stud-
ied in more detail. Notice that averages of Orlicz norms naturally appear in func-
tional analysis when studying symmetric subspaces of the classical Banach space L
(see [3, 14, 23], just to mention a few). To be more precise, as shown in [14], every
finite-dimensional symmetric subspace of L is C-isomorphic to an average of Orlicz
spaces (see [28] for the corresponding result for rearrangement invariant spaces).

In Sect. 2 we will introduce the aforementioned Orlicz norm method that we will
use throughout this paper to prove estimates for support functions of random poly-
topes.

In Sect. 3, with this approach, denoting by e; the canonical basis vectors in R",
we first compute Eh g, (e;) when the isotropic convex body in which Ky lies is the

. . . B . .
normalized ¢, ball, i.e., in D}, = —F. Namely, using these ideas, we prove the
B |7
following:
Theorem 1 Let X1, ..., Xy be independent random vectors uniformly distributed

in DZ, I<p<oo,withn <N < ec/”, and Ky = conv{xX1,...,£Xn}. Then, for
all j=1,...,n,

1
Ehk, (e;) :Elrfniz;xN |(Xi,ej)| ~ (logN)?.

Many properties of random variables distributed in ¢}, balls have already been
studied, see for instance [4, 31] and [32].

By rotational invariance in the Euclidean case, we obtain the same estimate for
the expected value of the mean width of a random polytope in D!, under milder
conditions on the number of points N:

Corollary 2 Let X1, ..., Xy be independent random vectors uniformly distributed
in D5, withn < N <e¢", and let Ky =conv{£Xy,...,£Xy}. Then

Ew(Ky) ~+/logN.

In Sect. 4 we will use our approach to give a general upper bound for Eh g, (6)
when K is symmetric and under some smoothness conditions on the function i (¢) =

|[K N {{x,0)= t}|ﬁ. This general case will include the case when K = D:}, with
2<p<oocandf =e;.

As proved in [21], the expected value of the intrinsic volumes (in particular the
mean width) of Ky are minimized when K = D} . Thus, we have Ew(Ky) 2 +/log N
and Ew(Ky) ~ Lg+/Tog N for those bodies with the isotropic constant bounded. We
prove the existence of directions such that the expected value of the support func-
tion in these directions is bounded from above by a constant times L g +/log N and,
respectively, bounded from below by a constant times Lx /log N. In fact, as a con-
sequence, we estimate the measure of the set of directions verifying such estimates.
It is stated in the following corollary. Notice that the constant L g appears explicitly
also in the lower bound.
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Corollary 3 Let n < N < eV, K be an isotropic convex body in R", and
let X1,...,XN be independent random variables uniformly distributed on K.
Let Ky = conv{£Xy,...,£XnN}. For every r > 0, there exist positive constants
C(r),Ci(r), Co(r) such that

Ehk, (6) < C1(r)Lg+/logN,
Ehk,(0) > Co(r)Lg+/log N

1 C(r){/logN
ded()Ni,g

for a set of directions with measure greater than 1 — respectively.

All the estimates we prove using our approach hold whenn < N < eV Thus, our
method might provide a tool to prove Ew(Ky) ~ Lk +/Iog N for this range of N and
hence close the gap mentioned in [7], where the authors’ result was restricted to the
case n!t < N < e\/ﬁ, 8 > 0, and constants depending on &.

2 Preliminaries

A convex function M : [0, co) — [0, o0) where M(0) =0 and M(t) >0 fort > 0
is called an Orlicz function. If there is a #y > 0 such that for all ¢+ < r9, we have
M (t) =0, then M is called a degenerated Orlicz function. The dual function M* of
an Orlicz function M is given by the Legendre transform

M*(x) = sup (xt—M(t)).

te[0,00)

Again, M* is an Orlicz function, and M** = M. For instance, taking M(t) =
%t”, p > 1, the dual function is given by M*(t) = #t”* with # + % = 1. The
n-dimensional Orlicz space £}, is R" equipped with the norm

||x||M:inf{,0 >0:XH:M<M) < 1}.

i=1 P
In case M(t) =tP, 1< p < oo, we just have ||-||; = ||-|| ,. For a detailed and thor-
ough introduction to the theory of Orlicz spaces, we refer the reader to [13] and [27].

In [10] the authors obtained the following result:

Theorem 4 ([10, Lemma 5.2]) Let X1, ..., Xn be iid random variables with finite
first moments. For all s > 0, let

S
M(s)=// |X1|dPdt.
0 J{l<ixyp

Then, for all x = ()cl-)lN:1 eRNV,

E max |x; Xi| ~ |lx|la.
I<i<N
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Obviously, the function

M(s):// |X1|dPdt )
0 J{l<ixyp

is non-negative and convex, since f{ 1oix)) | X| dP is increasing in ¢. Furthermore, we
1<

have M (0) =0 and M is continuous. One can easily show that this Orlicz function
M can also be written in the following way:

N 1 1 o0
M(s)zf <?]P>(|X| > ;) +/ P(1X| Zu)du) dt.
0 1

t

As a corollary, we obtain the following result, which is the one we use to estimate
the support functions of random polytopes.

Corollary 5 Let X1, ..., Xy be iid random vectors in R", and let K y = conv{:X|,
L EXn). Let 6 € S" ! and

N
Mg(s):f/ |(X1,0)|dPdt.
0 J{l<ix1.0))

1 1
Ehg, (6) ~inf{s >0:M9<;> < N}

Then

3 Random Polytopes in Normalized (’;,-Balls

In this section we consider random polytopes Ky = conv{+X1,..., =Xy}, where
X1,..., Xy are independent random vectors uniformly distributed in the normalized
¢, ball D)) = - Let us recall that the volume of By, equals
\B"I”
17| = a1+ ))"
P ra+% "’

. e B 1
and so, using Stirling’s formula, we have that |B;’,|1/” ~ 1 and =2 — ~n?.
nﬁ

We are going to estimate E/ g, (e;) using the Orlicz norm approach introduced in
Sect. 2. In order to do so, we need to compute the Orlicz function M introduced in
Corollary 5. We are doing this in the following.

Lemma 6 Let 1 < p <o00,and M : [0, 00) — [0, 00) be the function

M(s) = My, (s) = /f (s e))| d dr.
{xED x.ei) = l

t
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Then, if s < s
Byl
pr—1 cos—L(s|BA )T i gy 285043
M(l) _ 4 |By ™| / p (sin@)” 7 40
S pin—1+p) |B;l;| 0 (0089)37%
42-p) BT
n—1+ 22
p( P) |B1||Bn|
1 p
cos™!(s|B|m) 2 sin@
x/ _me
0 (cos@)' T
1
|B;|_” 1 r n=l
x/ 5 P (1= |BZ|Fr1’) » " drde. 3)
(cos@)F\B;’,l’i
Also, if s < T
By
_ [}
u(5)- 2 1Byl (= sPIBp ) 7
s (n—=14+p)(n—1+2p) |B} (sP|B[';|fT))2_%

~ 12(p— 1) 1B
pin—1+4+p)(n—1+2p) |By]

_ 1P n—1
cos ™! (s|BA|m) 2 (sin9)217+5
X ——df
0

(cos@)s_%

__ 8@=pp-D L
pin—1+2p)(n—1+p) |Bz||32|¥

IR
cos (s|Bp\n)2 sin@
x/ —
0 (cos®)' T
IB”\’% 1
P _ i n—l.9
x/ s rTEP(L— B P) T drde. )
(cosH)PlBl';\’ﬁ

Proof The (n — 1)-dimensional volume |DZ N {(x, ej) =1t}| equals

—1 1
|B B

n—1
|Bn| (1 — |BZ|,D/”IP) P 1[_|B;1)‘—1/n’|3g|71/n](t).
P
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By Fubini’s theorem we have that if s > | B”|!/"

B BY) By "o/
r(1—1Bp|? r!’) v drdi
nl/n

M(s) =2 )
|B” 1||B”|n FARS
|B | /n l/n/ |Bn|p/nrp) o drdt.
Otherwise M is 0. Integration by parts yields
(2-r(1 — “—"?;Jﬁ’l)%ﬂ

1

|Bn—1||Bn|; s

M(s)zzpipp/ 1[ ;
|Brl|Byln Jiggin n—l+p

A (1= B2 frm) 7 !
2—pyr'? . dr|dt.
+,/1 ( pr n—1+p r

t

Now, making the change of variables
1
|B,|" 2 dt 212 sinf
=(cosf)r — |Bp| —
do p (COSQ)H

~

we obtain
i1l s BB o 2n e
4 [B, | feos GBI (sing)” P
M(s) = . deo
pn—1+p) |Bj| Jo (0059)3_5
42— p) 1B
n—1+ p=2
»( p) |B1||B1)|
cos_l(s_l\Bgln)Z sin@
< / _snf
0 (cos@)HF
1
|Bj|~n =1
x/ L, (=B e) T s,
(cose)ﬁlB;',\’ﬁ
Therefore,
1 lislgnmyg . 2n=ly3
M(l>: 4 |B;l? | [eos (s|By|m)2 (sin6)* 7 "
s pn—1+p) Bl Jo (0089)3_5
42-p) BT

+
n—1+ £
p( p) |B1||B1|
@Springer
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-1 n 1L
cos™ (s|Bp|m) 2 sin @
x/ —7
0 (cos®)' T

1

o) PR (1—1By|"rP) 7 " drde

cos@) P |Bp| ™

if s < 1 + and O otherwise, which is the expression in (3). The first term in the
|Bh|H
previous sum equals

-1

4 n
4 |BZ_1| /cosl(slen)2 (Sin0)27+3(0059)
pi—1+p) 1B Jo (cos®)* 7

do,

and integration by parts yields that this equals
-1
2 1B,
—1
pln—1+p)(*=+2) |Bjl
= ~1s1B ) S s n—1
0

1 2
(sP|B[") 7 p (cos§) s

The integral inside the second term equals

1
Byl ) n-l
/ PP (L= B r) T
(

2 _1
cosf) P |Bl",\ n

1
Byl 2-2 1 N |
=/ e PpP— (1 — |BZ|Frp) [
(

2 1
cosf) P \B;l’ﬁ

and, integrating by parts, this equals

n—1 —
1 ((sin6)27+4|31';|2”,1 2
— P 4
P +2)[By (cos®)* ™7
1
|B'§rﬁ n—1
—2p-1 | ", (1 - |Bl';|%rp)7+2d,->,
(cosO) P |By|™ 7
and so, the second term above equals
_ i 2 n—1
42—p) By oo GBI (sing)® 7
p(n—1+2p)(n—1+p) |B}1)| 0 (0059)5—%
-1
82—p)(p—1) |B, |

-2
n

Cp—1+2p)n—1+p) |B;’,||Bg|2p
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P
2

1

cos™ ' (s|B|m) sin@
x/ _me

0 (cos®)' T

1
|B;l)|7ﬁ n—1
_ 2 \t=lyn

xf s PP =B arP) T P dr de.

(cosG)F\BgF?l

Thus, adding the two terms we have that if s < 1

)

1
‘B/’“n
- p n=ly9
M(l) = 2 |BE=Y (1 —sP|BEw) 7 *
s (n—1+p)n—1+2p) |By (sl’IB;',ﬁ)z_%
1P e
12(p = 1) B, fCOS_I(SBZ'"V (sing)>7 +3 a9
pn—1+4p)n—1+2p) |BA Jo (cose)S—%
82—p)(p—1) B2
p(n —1 +2p)(n —1 —|—p) |B;||BZ|21)’;2
—1 i 2
cos™(sIByI™) 2 sinf@
<), PN
0 (cos®)'
[Bp|~ 7 i t
X/ ’ 2 . rlfzp(l — |BZ|IErp) [ +2drd9,
(cos@) P |Br|~n
which is the expression in (4). .

Now we are going to prove Theorem 1. It will be a consequence of the next two
propositions, where we will prove the upper and lower bound for Ei g, (e;) respec-
tively.

Proposition 7 For everyn, N € N, withn < N, and every 1 < p < 0o, we have that
if X1, ..., Xn are independent random vectors uniformly distributed in DZ, then

1
Elrsnig}(Xi,ej)IS(logN)"

forallj=1,...,n.

Remark 1 Notice that for p = 2, this result is similar to the analogous one for Gaus-
sian random vectors.

Proof If p >2 and s < —+, the second term in the expression of M (%) given by
|B1| 7
(3) is negative, and so

deé.

_ n 1 P 2(n—1
M(1> B 4 |BZ_1| /cos l(s|Bp\rz)2 (sin@) "7 )13
0

s) = pn—1+p) |B (cos®)
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Integration by parts gives

M(l> 4By [ (sing) 52 ool
P =T+ PIBIL G 2)cos0)> 7 lo
S B .t 2(n— 1)+1
(np ) 42 peos 1(SIB,,\”)2 (sin®) !
T - do
2-2Jo r
- (cos@) ’
n—1
2ABy A=stBH T
= (p—l)(n—1+P)|B"| (SIB;H%)’)_1
2|Bn! = I
e D,
(p =D =1+ p)BY| (5| Ba|n)r—!
1
Take 50 = —— 1 min{a(n_erp)(lOg N),1}7, a > 0 to be specified later. Since

ﬁ 1By |
|B”| n < 5, there exists a constant ¢ such that

1
M( 1) 2|Bn | 1 e LAO|B"‘pn 1+P‘
(P—l)(n—1+P)|B"I(so|3n|n)p 1

Take o = % If the minimum in the definition of s is %, then trivially we have

1
E max \(X,-,el)’ < ;
1<i<N | B2 |n

)4

If not, then
1 2|Bn—l|e—logN
Ml — )<
0

(p— 1D — 14 p)IBiI(L:= - log N)' 7" o

Since |Br~!|/|Bp| ~n'/?, we get

1 Cnl/p 1
M| — )< ; ;
0/ pAn—1+4p)7 (ogN)' 7N

C 1 1

= < —

1 1 —
P21+ 257 (dogN)' PN N

when N > Ny for some sufficiently large Ny € N. Altogether, for p > 2, we obtain

C . P 7
EhKN(e,)_E max |(X,,e])| —min} | ——— J(logN), 1} ,
|Bz|; n—1+p

@ Springer



Discrete Comput Geom (2013) 49:558-588 569

where C is an absolute positive constant. This minimum is 1 if and only if log N >

1.
Cl ~Cnr.Since n — 1 <
|By |7

1+ %. In this case the upper bound we obtain is

1 1
plog N, we have that the upper bound Crnr < C(log N) 7. If the minimum is not 1,
since |BI’; I% ~ L , we also obtain an upper bound of the order (log N) P
n I’

If p € [1, 2], we use that in the representation of M (;) given by (4) only the first
term is positive and so

p n=l
M(l) 5 2 B2 (1 —sP By 7
)7 =1+ —T+2p) 1Bl (opipnyiy>

_ P
2 |11 " log(1=s B} T)

C (n—14p)n—1+2p) | B3| (S|BZ|%)211—1

1
Take sg = — minf{o( (logN),1}7, a > 0 to be specified later. Since

)
21’\B"|n n—1+2p

r .
sé’ |B;’, n < 7, there exists a constant such that

M(i) - 2 |BZill 1 e—CYO\BnP’ n— l+2p
so) ~ (m—14+p)(n—1+2p) |B}] (SO|B;|%)2P4

Take o = % If the minimum in the definition of s is %, then trivially we have

1

E max }(Xi,el)} <

1<i<N |B;’)|%
If not, then
1 2¢logN 1By~ 1
M —)S 2p—1
m—14+pn—-14+2p) |Bl’;| (1 logN) >

Since |B;_1|/|B;| ~nl/P and p €[1,2], we get

1 C 1
M) i e =N
0 (logN)“ PN

when N > Ny for some sufficiently large Ng € N. Altogether, for 1 < p <2, we
obtain

1
C log N » 1
Ehg, (e) =E max [(X;,e)| < — min{ e, 1}' < C(logN)7,
1<i<N |B" | " n
P
where C is an absolute positive constant. O
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In order to prove the lower bound for Eh g (¢;), we need the two following tech-
nical results:

Lemma 8 Let o, B € R\ {—1}. Then we have

sin®t1 (@) cosPT1(O) a+p+2
oa+1 a+1

/ sin®(0) cos? (6) d = / sin®*2(9) cos? () db.

Proof We consider [ sin®*2(6) cos? (0) d6. Integration by parts yields

sin®t1 (@) cosP (@) a+1
B+1 B+1

Since cos?T2(9) = cos? (6)(1 — sin®(9)), we obtain

f sin®2(0) cos? (0) do = — / sin® () cos? T2 (9) do.

/ sin®*t2(0) cos? (6) d6

_sin?™ (@) cosTHO) a1
B B+1 B+1

/ sin®T2(6) cos? (6) do.

/ sin® () cos? (6) do

a+1
B+1

Thus,

a+pB+2
B+1
_sin®TH @) cosPT1O) o+ 1
B B+1 B+1

/ sin®*2(9) cos? (0) do

/ sin®(9) cos? (0) do,

and so

sin®t1(6) cosPT1(9)
a+1
a+B+2
Lot
a+1

/ sin®(0) cos? (6) do =

/ sin®*2(9) cos? () db. N
As a corollary, we obtain the kth iteration of Lemma 8.

Corollary 9 Let o, 8 € R\ {—1}. Then, for any k € N, we have

/ sin®(0) cos? (0) dO
soa+1 B+1
_ sin (0) cosPT(0) a+pB+2 Gine 3 @) cosP+1(9)
a+1 (a+1D(a+3)

(@+B+2)(@+p+4)

ca+5 B+1
@1 D@t D@L sin®* ™ (@) cos” T (0) +
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@+B+2D) @+ B+2K) - imes -
T et @tk O ©) cos™(6)
@+B+42)-(a+B+2k+2)

@+ (a+2k+1)

sin®t2+2(9) cos? (9) d6.

We will now prove the lower estimate.

Proposition 10 There exists a positive absolute constant ¢’ such that for every
/

n,N e N,withn <N <e", and every 1 < p < 0o, we have that if X1,..., Xy

are independent random vectors uniformly distributed on DZ, then

1
E max }(X,-,ej)’ Z (logN)»
1<i<N
forallj=1,...,n.
Proof We start with the case 1 < p <2 where we use the recursion formula. Since

1 < p <2, using the representation of M in (3), we have that

r
2

1
! 4 By peosTi6TIERIM) net 2_
M(;> - pn—1+p) |£”| / " (sing)> T T (cos0) 7 do.
- T Jo

UsingCorollary9witha:27”—%+3and,3:%—3,wehave —-1<B8+1<0,
and for any k € N, we get

1 4 B! 9)p+1 2
M(—) . 1B, I[(cos ) {(Sine)a+l+ﬂ(sin9)a+3+_._
s p(n—1+p) |Bj a+1 a+3

(a+B+2)---(a+p+2k) . 9)a+2k+1}

cos™ (s1B1m) %)
(sin .
(¢+3)---(¢+2k+1) 0

Since B+ 1= %(1 — p), we get

<> 4 1B
M(-)=> 1
s/ P =14D) |Brj(a+ 1)(s| By 7))~

a+pB+2
o—+3

(1 3 sp|BZ|§)u+22kHi|

a+3
2

x[(l—s”|B;’,|%)a_;1+ (1_sP|Bz|§) 4.

(x+B+2) - (x+ B+2k)
(@+3)---(@+2k+1)

a+2k+1

BN (1 —sP| B %) 3
N 4 1B slﬂ?
pn=1+Pp) B+ 1)(s|B2|n)P~!

1-8 1-8 1-8
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(-5 -79) ()
a-+3 a+5 oa+2k+1

a+2k+1

ak+1) BRIV — 5P| BB (1 1B )k
~ pn—1 Lot U a+2k+1/) "
POt =14P) Byl + 1)(s|B| )P o +2k+

So this yields
- 2otlygd
V(2)o 2 g oy
B -1+ n—1 1ip-1 n=1 '
pn p) |B3I("5E +2)(s|By|n) - tk+1

N

If we choose k = n and take into account that 1 < p <2, we get

_ n—Il+4np P n%
s B3l (1 — 142p)(s| By |myr=!

1 1
We take sg = Mwitb y a constant to be chosen later. Then, since N < e", we

|BplnnP

! 1By~ e~C1vloeN C’
M(—) >C—L - > -
0 Bl = 1+42p) ()7 Nav(ylogh)' T

obtain

Choosing y small enough, so that c;y < 1, we get

1 1
Ml —)>—
so) — N

if N > Ny for some Ny € N large enough. Therefore, there exists an absolute positive
constant ¢ such that

1
E max |(X;,e;)| > c(logN)?.
1<i<N

Now, let us consider the easier case where p = 1. In this case, we have

M<l>= 2 |B?_1|(1—S|Bil|%)n+l.
s) nm+1) |B]| s|BI |

If we now choose sy = o log N, where « is a constant to be chosen later, we obtain
1 C
Ml—)>——,
so/) ~ N%logN
and so, choosing « a constant small enough so that ca < 1, we obtain that
1 1
Ml—)=>—
so) — N
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whenever N > Ny. Therefore, if p = 1, there exists an absolute positive constant ¢
such that

E max |(Xl~,ej)| > c(logN).
1<i<N

Now, let us treat the case 2 < p. We will assume that p — 1 < c@, where « is a
constant that will be determined later, and c is an absolute constant small enough. We

will also assume that p < N % We have seen that the second term in (3) equals

42-p) 1B, /COS_](S'BZ'W (sin0)> 7 *3 do
pln—=1+42p)n—=1+p) Byl Jo (cos0)° 7
-1
___8@=-p-D B2
- — 2p-2
pn—1+2p)(n—1+p) B 1By
1 17
cos™ ' (s|By|m)2 siné
Xf iz
0 (cos®)'Tr
|By|I~n ) t
X/ T P BEer) T P ar e,
(cos@) P |By|™n

and so if p > 2, the second term in the expression (3) defining M (%) is greater than
or equal to

— n N n=1
42— p) |B;—1| cos™!(s|Bj|7m)2 (sin@)z o +5
—F——dé.
0

p(n—1+2p)n—1+p) |B (cos0)" 2
Integration by parts yields that this quantity equals

42— p) 1B
pin—1+4+p)(n—1+2p) |Bj]

p n=lis n—1 _1 iz pnel 3
(1—sP|B*| =) » 20l 4 peosTIGIBRIMZ (6ing)2 s
X ( L 'd / ¥d9>.
0

1 - 2 _2
@=2)sIBpl2r=t 4= (cos6)* 7

Thus, putting this together with the first term, we have that if p > 2,

— nlB n=1
<1)> 12(p — 1) By~ oo GIBIIME (sing)’ ”1+3d9
s) " pCp—Dm—1+p) |B}l Jo (0059)3—%
1 p . n=lys
2(p —2) BAY) (1 —sP|BLIT) 7

=11 +2p)Q@p 1) BRI (s|jaye-!
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Using integration by parts, the first term in the previous expression equals

—1 2 o=l
6 |B, " | (1 —sP[Bp|n)

2p—-D@m—1+p) |B (s|B;;|%)p—1

deé.

L p e
12 |BZI|/COS_I(S'BZ'">2 (sing)> 7 !
pCp =D 1Bl Jo (cos®) 7

Using the recursion formula in Corollary 9, we obtain that for any k € N, this quantity
equals

1 p on=lyg
6 |B, | (1 —sP|B,[m) 7
@p—D®m—1+p) |Bjl (S|BZ|%)p—l
6 Bn—l el
_ By |(s|B”|%)(1 —sP|B|T) T +
@p—D@m—-1+p) |Bjl b P
6(25 +2) i 1 pyn=l_n
B . i1 f;n (s1ByI7) (1 =57 Bpln) 7
2p—Dm—1+pQ2==-+4) |B}
n n ~1
6(2p +2)(2p +4) |BZ |

S @p-D-1+pREL+H2EL 1+ 6) 1B

n—1
X(S|B;|%)(1_SP|B;|5)7+3_...
n n ... — -1
B 624 +2)(2% +4)--- (2% +2k —2) |B11
Q2p =D =1+ p)QL +H 251 +6)--- 251 +2k) By

x (s1Bp17) (1= 5P|y %) 7+

6% +2)2% +4)--- 21 +2k -5 +20)  |BL
Qp—Dn—1+ p)(z% +4)(2§ +6)--- (2% +2k) |B}

_ 17 —1
cos I(SlBgln)Z (Sin9)2”7+2k+1(0059)
X
0

5 do.
-2
(cosB)”™ »

Estimating the cosine in the denominator inside the integral by the value at its extreme
point, we obtain that this quantity is greater than

6 1By~ 1
Q2p =D —1+p) Bjl (5|Br|i)r-!

NN 2 pyi=lgg
x ((1—s1’|B;|n) PP B (1 —sP B ) T
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(2%—{—2)
- n—1
(27 +4)
n n
. 25 +2@5+4 pipniZ (1 pian Ey L3
n—1 n=1 sPIBy I (1= s IBI")
(27 + 4)(27 +6)
n n n
B (2;+2)(2;+4)---(2;+2k—2)
n—1 n—1 —1
(27 +4)(27 +6)"'(2n7+2k)
n n n n
B (2; +2)(25 +4)---(25 +2k—2)(2; + 2k)
Q=L+ 4251 4+6)--- 251 +2k+2)

P A=)
sl’|B;|n(1—s1’|B;|n) »

L D u_i_k
sP|B, | (1 —sp|B7,|n) P

_2

22 42m . .
£ < 1, this expression is

Since for every m, we have that —— =1—- == <
27 +2m+2 27+2m+2

greater than

61B11|(1 _Sp|BZ|§)%+k+1
1
Q2p — 1)(n— 1+ p)|B}|(s| B[ )P~
n n L n
) <1 Q54D +A 25 +2k-D)(25 +2k))

n—1
6 B2V (1 —sP (Bl 7 T
>
~ Qp-D(n—1+p) |Bp (s| B |n)p-!
1 k
(- i=am) )
n—1+k+Dp
-1 N !
_ 6 1By~ (1—sP|Bp|n) » (l_eklogﬂf%))‘
2p—Dn—1+p) |Byl (s] B[ )P~
Hence,
n—1
M(l) . 6 |BIY (1 —sP|Bh[n) 7 T
s) = Qp—=1n—1+p) |Bj (S|BZ|%)p71

—_pl
% (1 _ Klosdl n71+(k+1)p))

-1 ponzlyy
B 2(p—2) |B, " | (1 —sP[Bp|n) P
(n—14p)(n—1+2p)2p—1) |Bj| (s|Bg|%)2P*‘
n—1
1 |B27' (1 —sP BTy 7
@Cp—=Dn—=1+p) By (s|B;;|%)P*1
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576
(6(1 _ sp|Bn| )k 1(1 _ eklog(l—%))
_ 2(p—2) )
(n—1+2p)(sP|B1| ™)
We take
1
p P 1
s0= %(logN)F
|Bj|nn»
Then,
2(p—2) 2 2.1
(n—1+2p)(sy1BaT) ~ (1— —+2p)oz10gN alogN
21 we have

if n > ng. On the other hand, choosing k so thatk + 1 = =Dz’

6( Pan| )k 1(1_eklog(l_%))
- ap=DloghN
n

2n p—1
—o——1)log\ 1 - ——5——=—
—Dalog N p 2
((P ) log ) ( n— 1+p lalo’;N)>7

>6

2n 2i S
a(p—DlogN ((p—l)ortllogN_l)lOg( i P2 )
(1 —e p—1 alogN )

> 6e~! (1 —e
where the last inequality holds because of our assumptions on p. This last quantity is

greater than
p—l 2 - (p— l)alogN

2n -
7( p—Da 1) _ 1y
(p—DalogN alogN
Jarlog n=l p— lotlogN> 6e 1(1 — e e = 12alogN)

c -1 —
> 66 (1 —e i(llogl\; > w
- ~ aloghN

6e_1<1 —e

if N > Ny. Taking ¢ small enough so that 6e~1(1 —¢) > 2.1, we have that
C

M<i> = - 7 = 1 2°
o pzNCl“(otlogN)Z_F NCI“+7(a10gN)2_F

. . 1 .
since we are assuming that p < N#. Taking « such that cjo + % < 1, we obtain

1 1
Ml —)>—
so) — N

if N > N; and n > ng for some ng, N1 big enough. Therefore,

N7 L
E max |(X,,el | C log — >C(logN)»,
pZ

1<i<N

where N > Ny, and C is a positive absolute constant.
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Now we consider the case p > c@ or p > N'/4 In that case we choose

1
SO:—l'
2|Bp|n
Then
1 BE||BLLs 2BYE BRI et
() [ 1
S0 |B | |Bj|m
|Bn 1||Bn|— 2|B”\n |B| " p n—1
>0 0p 125" / |B"|zr1’) P drdt
B3| CAL: ’

1 1 n—1
\BI([BE (BT . o 1\ 1 1 \7
=2 (—1")-(1—3—)”
1Byl Jhsyim \3jggpn 1IN ()P

B! =t n=1
2i| P |<1— 31 )[ ZC]I’[%EP
42 |B;’,| (E)p

1 — n—1
>Cinre p3/2P

We want the latter expression to be greater or equal to N1, i.e.,

1 _ n—1 1
Cinre rGR7 > —

N’

which is equivalent to

1 n—
log N +1log(Cy) + —log(n) = co——.
p p(z)P

To obtain this, it is enough to show

—1

logN > ¢
p(%)

and since p > c@ and N < e, to obtain the latter inequality, it is enough to have

n—1
logN > 2 =
p(3)¢
But
n—1 n—1 log N
0~ = 1T S <logN
p(j)c/ C@(z)c’ C(é)c’
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if ¢’ is small enough. So we obtain the estimate. If p > N4, we immediately obtain
L nol 1
Cinre ~rG27 >C > —
N

for N > Ny. Therefore, in these two cases, we obtain the estimate

1 1
~nv 2 (logN)».

EhKN(ej)~ T O

|B1|

Remark 2 In the case p = oo it is very easy to check that

1 /2 1
1 1 I+ —+/%+ 72
inf{s>0:M<—><—}: N al NZNI,

s) N 2

and so Ehg, (ej) ~ 1.

4 General Results

Using our approach, we will now prove more general bounds for symmetric isotropic
convex bodies. In the first theorem we assume some mild technical conditions which
are verified by the E’I’] balls (p > 2). In this way we recover the upper estimates proved
in the previous section.

Since Ehg, (0) ~ inf{s > 0: M@(%) < ﬁ}, it seems natural to study for which

value of s
1 1
Mol — | du@) = —.
‘/L;'nfl 9<S) M( ) N

As one could expect, this value of s is of the order L +/log N. As a consequence of
Chebychev’s inequality, we will obtain probability estimates for the set of directions

verifying Eh g, (0) < CLg+/logN or Ehg, (0) > CLg/logN .

Theorem 11 Let K be a symmetric and isotropic convex body, n < N, 0 € sn—1
and X1,..., XN be independent random vectors uniformly distributed in K. De-

fine h(t) = |K N {{x,0) = t}|ﬁ. Assume that h is twice differentiable and that
W () #0 for all t € (0, hg (9)). Assume also that —h'(t)/t is increasing and that
h(hg (0)) = 0. Then,

E max |(X;,0)| < Ch'(h(O)(l —alOgN>>,

1<i<N n

where «, C, a > C are positive absolute constants.

Proof First of all, notice that % is a concave function. Then, using Theorem 4, we get

1 ; h (6) o rhe®
M<—> :f 2/ rh(r)”_ldrdt:2/ / B (rh(r)" Y dr dr.
s i 1 1 Ji W (r)

IFZQ) 7 hg® © 1
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Integration by parts yields
1 1
1 ¢ dnd h@" hx ©) W) —rh'r)
M<§) :2/; D / / M T
K@ Tk @

Since h'(t) — th”(t) > 0, we have

1

L 1yl
M(l> szfs _ ’h(’l) dr
Ky 1 nh’(;)

74Q)
2 [MxO pu)n 2 (%O B (wyh(u)"
=—— du=—-— —————du
nJ uh’(u) nJs uh'(u)?
Again we use integration by parts and get
1 2h(s)"+! 2 kO b @)t () + 2uh” (u))
M|l-) < - du
nn+ Dsh'(s)2 nn+1) uZh’ (u)3
2sh(s)"H!

~ n(n+ Ds2h/(s)?°

Furthermore, since we have 4'(t) — th” (r) > 0, we get
N N
—sh'(s) =|sh'(s)| =/ —h' (1) —th"(t)dt > —2/ W (t)dt =2(h(0) — h(s)).
0 0

Thus,

h(s)
(1> - sh(s)"! se" V10250 | K M 9L h(s)?
— =< 2 = .
$) 7 2+ DS 1) 20+ D(1 - 1)’ h(0)2

Choosing

so=h"" (h(O)(l - aloiN)),

we have that there exists a positive constant ¢ such that
i
M l <c so| K NO~| '
50 Ne12g2(log N)?
Since K is isotropic, so < (n + 1) L. Therefore,
1 nLg|K NG+
M|—)<C—FFF——.
50 Ne1?g2(log N)?

By Hensley’s result (see [11]), Lx ~ and because n < N, we have

1
KneL|’

1 CN C
M(—) < = :
so) ~ Ne?gZ(logN)2  Nc*—lg2(log N)?2
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Taking o so that cia > 2, we have M(%) < % for N > Ny for some Ny € N big
enough. g

With the method, introduced in Sect. 2, we are also able to prove the following
general result, which will lead us to estimates of the support function for some direc-
tions of random polytopes in symmetric isotropic convex bodies:

Theorem 12 Letn < N < eV , K be a symmetric isotropic convex body in R", and
let X1, ..., XN be independent random variables uniformly distributed in K. Then,

1 1
Mo ——— ) au®) < —,
/SH 9<C1LK4/_logN> wO) =y

and

1 1
My| —————= ) du@) > —,
oo o e 5

where C1, Cy are positive absolute constants.
Consequently, if s is chosen such that

1 1
Mp| = )du®) =—,
/SH 9<§> (@) N
then s ~ Lk +/logN.

In order to prove this theorem, we need the following proposition:

Proposition 13 Let K be a symmetric convex body in R" of volume 1. Let s > 0,
0 € S"L and My be the Orlicz function associated to the random variable (X, 0),
where X is uniformly distributed in K. Then,

1
/ Me(—) an®) = [ M<9,el>(”x”2)dx, )
gn—1 S K S

where Mg ¢,y is the Orlicz function associated to the random variable (0, e1) with 0
uniformly distributed on S"~'. For any s < || x||2,

—1 s
llxll2 2wy—y [ (BR) sin”y
M(é),el)( =— dy, (6)
0

s nwy cos?y

and 0 otherwise.

Proof Using the definition of My, we obtain

1
/ M(;(—) du(®)
Sn—l S

1
=./ / / ﬂ{l(x9)|>1}(x’evf)|<X,9)|dxdth(9)
sn=1Jo JK Ay
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// / l0y= 1 (X5 6, t)| (x,0) |du(9)dtdx
Snl t

I\XHz

o S T

where the last equality is obtained by the change of variable t = T ;l\lz

o)=L }(x 6,u)

< >'d,u(9)dudx,
llxlla”

rotational invariance of $"~!,

1 llxl2
/ Me(—) 4w ®) = [ Mo (— d
sn—1 S K S
Now, let us compute Mg .,). For any s > 1, otherwise the function is 0, we have
Mg ar)(s) = f / dp@)dr
§7=1N{(er.0)>1}

s -1 _ 1 n=3
:2/ 7(’1 JWn 1/ r(l—rz) 2 drdt
1 nwp i
n—1

2 _ s 1 2
_ ZWnl / <1 - —2) dt.
nw, J t

The change of variables % =cos y yields

1,1
2wy, —1 /CDS ) sin” y
M s) = dy.
(0.e1)(8) A cos2y ¥ 0

Given that the expected mean width of Ky is minimized when K = D}, it is nat-

ural to expect that given s, the average f gn—1 My (%) du(0) would also be minimized
when K = Dj. We prove it, using this representation, in the following:

Corollary 14 Let K be a symmetric convex body in R" of volume 1, and let s > 0.

Then
1 1 1
/ Me(-) an®)= [ MD;,9<—) dp(®) = Mpy ., (—)
sn—1 S sn—1 S S

where M DLo denotes the Orlicz function associated to D .

Proof By (5) and the facts that Mg .,y is increasing and |K | = | D5| = 1 we have that
if r, is the radius of D3,

1 llx1l2
Mol = |du@) = | Mpey| — )d
sn—1 S K S
llxl2 llx1l2
2/ M<a,e1>< )d +/ M<9,e.><—>dx
KND} s K\Dj} S
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2
llxll2 r
=/ M<9,e1>< dx + |DI\K | Mg )| =
KND} s s
lx1l2 lx12
Z/ M<9’31><— dx + Mgen| — dx
KND} s DI\K $
llx|l2 1
2/ M<9,e1><— dx = Mpyol < )du®.
Dg S Snfl S

Now, we give the proof of Theorem 12:

Proof By (6), if ||x||2 > s, we have

—1 s
Ixlla) _ 2wn1 [ (R sin” y
M<e,e1>(—s l— 5—dy
n Jo cos“y

Integration by parts yields

llxll2
M<e,e1>< 5

2w, [ (siny)"!
N cosy

COSfl( ”".”2 ”\”2 2
—(n— 1)/ (siny)*~ dyi|

0

n—1 —1 s
2wu1 [ l1x]l2 s\ 2 cosT(mR) L,
= s |: . 1— ||x||% —(n— 1)/0 (siny)" " “dy |.

We start with the upper bound where we will use Paouris’ result about the concentra-
tion of mass on isotropic convex bodies from [18]. First of all, we have

n—1
2 _ 2wa—t [Ix]l2 2\ T
M(Q,q)( < 1 1-— 3 .
s nw, s HE
From (5) and since M<9,el)(”xS”2) =0fors > ||x]2, we get
1 dwai xla (, s2\'T
/ Mg(—) du(0) </ u (1 - 2) dx
sn—1 s K\sB} NWn S llx115
_n=l 52
/ 2w}’l 1 ||x”2 2 H»’CH% dx
K\sBj NWp §

2w ||x|| o5l
/ <Wn—-1 2, Ea w13 gy

nwy

nwy
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We choose sg = \/aLg+/log N, with « > 0 a constant to be chosen later. Then, if
N < g )

clran 2
1 2wn . ~ K fog ¥
Mo — ” du(d) < 7L W llx]l2e 2 dx
sn= K
cran 2
2wy 1 - ]HruLzK eN
= [xll2e ™2 dx
VaLgTogN L/ kny JuLg By
2
7z‘lmlL2K ogN
+f e % ax]
K\y/nLx B
<2wn 1 1 V\/jlla‘K +nLg e—élx/_)’
n oLk /TogN
- C y ﬁ
~ Ja/logN % Newr

C y n 1
\/_«/logN Cl— Nev—1 ]

We choose y > 0 such that c;y — % > 1 and then o > 0 so that Cyl—‘; > 1. Then,

1 C y 1
Mo( — Jdu©) = o+ <
L. 9(80) “”—Jw—logzv[N;—z Nw;]

foereﬁ and N > Ny.

To prove the lower bound, we use the recursion formula (9). For ||x||> > s and any
keN,

llx1l2
M<9,e1><T>
n+1 n+3
2w 2 - 3 2 e
L 2wl [(1_ Sz) +(1_ >(1_ 52) L
nw, s(n+1) llx I3 n+3 llx 115
n+2k+l
() () ()]
n+3 n+2k+1 ||x||2

z|~

k 2 n+2k+1
an 1IIXI|2(k+1)< > (1_ s ) e
= nw, sn4+1) +2k+1 llx113
Taking k = n, we have
3n+1
Ixl2\ _ 2wa—i lIx[l2 3 " s2\
M(g,el)( > i 1-— 1-— —
s nw, S n+2k+1 x5

2 3n+1

Cw,—1 ||Ix ) 2
_ Cuni | ||2<1_ 2)
nw, s Ix13
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Thus,

2 3n+1

1 Cw,— :
/ Mg(—)du(e)z/ W 1IIXI|2<1_ s 2)
sn—1 S K\SB; nwy N ”x”z

2 3n+1
>/ Cw,1 ||x||2(1_ s ) 2
~ oy nw, s x5

2
> / Clnc —”x'be_cw”iT% dx.
K\2sBj 1Wn s

Take 51 = +/BLk+/Iog N, 8 > 0 a constant to be chosen later. Then

ﬂL%( log N
2
W gy

f M@(i> dﬂ(9)>/ Cwn-i Ixll2 eicw
gn—1 51 ~ Jr\ayBLeyiogNB; MWa /BLk+/TogN

Using the small ball probability result proved in [19], we get that there exists a con-
stant ¢s > O such that

1
’K\CS\/ELKBQI > 5

for N < e". Therefore,

ﬁLz log N
/ Cwy—y el e ”f;H%g B
K\2/BLg/TogNB; 1Wn VBLk+/logN
2 0,
Cwur lxlly —en™EE
z e W gy
K\csy/nLg By NWn VBLk/TogN
>LefcsﬂlogN|K\c5ﬁLKBg|
~ VBVIogN
C//
P
~ NP /B logN’

where the inequality before the last one holds because ||x||% > cgnL%(. We take 8
small enough, so that c¢8 < 1 and 24/B+/Tog N < c54/n. Then

c’ 1
- 0 0>
NesB /B/logN — N
for N > Ny and N < ¢". Hence,
/ mo( L) a ©) > !
gn—1 o S1 # - N D

Obviously, the theorem implies that there are directions 6, 6> € $"~! such that
the expectation of the support function in those directions is bounded from above and
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below respectively by a constant times L g 1/Iog N. In Corollary 3 we give estimates
for the measure of the set of directions verifying such estimates. However, we do not
think that the estimate we give for the measure of the set of directions verifying the
lower bound is optimal.

Proof of Corollary 3 To prove that the upper bound is true for most directions, we

proceed as in the proof of Theorem 12. We choose sg like there and «, y so that

ciy — % >2(r +1) and ";—g‘ > 2(r + 1) and obtain

1 1
My — <—.
\/;*n—] o (S()) d/"(’(g) - N}’+1

Then, by Chebychev’s inequality,

! >/ My (2 d(9)>1 0es M, ! !
— — — : —|>—=1.
N = o POy J R = N N5 N

Thus,

and so

1
{0 e S" ' Ehg, (@) < C1(r)Lgy/logN} > 1 — n

To prove the probability estimate for the lower bound, we can assume that r < 1. We
proceed as in Theorem 12. We choose s; like there and take B small enough so that

c6B < r. We obtain
/ M ! du®) !
— > —.
sn—1 0 S1 ’ N’

Then, for any decreasing, positive and concave function f, we get

(], 2)ow) (1)

Using Jensen’s inequality, from this we obtain

()= ()
Ao () ()
((iplpes ()1

Thus,

@ Springer



586 Discrete Comput Geom (2013) 49:558-588

and therefore,

1 1 (&)
965"‘1:M<—>z }21— N2
”{ ’ £

This means that
[ (&)
f&)

ufo e S i Ehg, (@) = cs1} > 1 —

We choose f(t) = —at + amaxyggn1 Mg(i), a > 0. Then

f(3) | —wr +maxgeqt My(5))

G =+ maxgeg Mp(h)
and thus

fG) - %

f(%)  maxgegn M@(%) - %

From Holder’s inequality we obtain

1

1 s

M9<_>=/1/ \(x,0)|dx dt
s1 0 JKN{x.0)=1)
1
5/1/|(x,9)|dxdt
0 K

1

ST L
5[ : LKd[:—K_
0 S1

Because of our choice of 51, we get

Ah<i)§_fﬁii
51/ logN
Therefore,
LI wow  C0)VIgN.
& eV
This yields

C(r)/logN
N ’

ul{6 € "1 Ehg, (8) = C2(r)Lg/logN} > 0
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