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Abstract Given a continuous function f : X → R on a topological space X, its level
set f −1(a) changes continuously as the real value a changes. Consequently, the con-
nected components in the level sets appear, disappear, split and merge. The Reeb
graph of f summarizes this information into a graph structure. Previous work on
Reeb graph mainly focused on its efficient computation. In this paper, we initiate the
study of two important aspects of the Reeb graph, which can facilitate its broader
applications in shape and data analysis.

The first one is the approximation of the Reeb graph of a function on a smooth
compact manifold M without boundary. The approximation is computed from a set of
points P sampled from M. By leveraging a relation between the Reeb graph and the
so-called vertical homology group, as well as between cycles in M and in a Rips com-
plex constructed from P , we compute the H1-homology of the Reeb graph from P .
It takes O(n logn) expected time, where n is the size of the 2-skeleton of the Rips
complex. As a by-product, when M is an orientable 2-manifold, we also obtain an
efficient near-linear time (expected) algorithm for computing the rank of H1(M) from
point data. The best-known previous algorithm for this problem takes O(n3) time for
point data.

The second aspect concerns the definition and computation of the persistent Reeb
graph homology for a sequence of Reeb graphs defined on a filtered space. For a
piecewise-linear function defined on a filtration of a simplicial complex K , our al-
gorithm computes all persistent H1-homology for the Reeb graphs in O(nn3

e) time,
where n is the size of the 2-skeleton and ne is the number of edges in K .
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1 Introduction

Given a topological space X and a continuous scalar function f : X → R, the set {x ∈
X : f (x) = a} is a level set of f for some value a ∈ R. The level sets of f may have
multiple connected components. The Reeb graph of f is obtained by continuously
collapsing each connected component in the level set into a single point. Intuitively, as
a changes continuously, the connected components in the level sets appear, disappear,
split and merge; and the Reeb graph of f tracks such changes. Hence, the Reeb graph
provides a simple yet meaningful abstraction of the input scalar field. It has been used
in a range of applications in computer graphics and visualization; see, for example,
the survey [3] and references therein on applications of Reeb graph.

Our Results Most of the previous work on the Reeb graph focused on its efficient
computation. In this paper, we initiate the study of two questions related to Reeb
graphs both of which are important in shape and data analysis applications.

The first question is concerned with the approximation of the Reeb graph from
a set of points sampled from a hidden manifold. It turns out that the Reeb graph
homology is also related to the so-called vertical homology groups. These relations
enable us to develop an efficient algorithm to approximate the Reeb graph of the
manifold from its point samples.

As a by-product of our approximation result, we also obtain a near-linear time al-
gorithm that computes the first Betti number β1(M) of an orientable smooth compact
2-manifold M without boundary from its point samples. This result may be of inde-
pendent interest even though the correctness of our algorithm needs a slightly stronger
condition than the previous best-known approach for computing β1(M) from point
data. In particular, it is shown in [1] that β1(M) can be computed as the first Betti num-
ber of a certain Rips complex constructed out of the input data.1 A straightforward
computation of Betti numbers of the Rips complex using Smith normal form [23]
takes cubic time whereas our algorithm runs in near-linear expected time.

The second question we study concerns with the definition and computation of
loops in Reeb graphs which remain “persistent” as its defining domain “grows”. We
propose a definition of the persistent Reeb graph homology for a sequence of Reeb
graphs. They are computed for a function defined on a filtered space in the same spirit
as the standard persistent homology [19]. Interestingly, this problem does not seem to
be easier than computing the standard persistent homology, potentially due to the fact
that the domains in question (the sequence of Reeb graphs) do not have an inclusion
between them, as was the case for standard persistence homology.

Related Work As mentioned already, most previous work on the Reeb graph focused
on its efficient computation. Shinagawa and Kunii [26] presented the first provably
correct algorithm to compute Reeb Graphs for a triangulation of a 2-manifold in

1In fact, in [1] Attali et al. show a much stronger result: the Rips complex of a point clouds captures the
homotopy type of a compact topological space in Euclidean space under some conditions. An earlier result
of Hausmann [22] also shows that Rips complex captures the topology of an input Riemannian manifold,
but under much stronger conditions.
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Θ(m2) time where m is the number of vertices in the triangulation. Cole-McLaughlin
et al. [11] improved the running time to O(m logm). Tierny et al. [27] proposed
an algorithm that computes the Reeb graph for a 3-manifold with boundary embed-
ded in R

3 in time O(n logn + hn), where h is number of independent loops in the
Reeb graph. For a piecewise-linear function defined on an arbitrary simplicial com-
plex, a simple algorithm is proposed in [15] that runs in time O(n logn + L), where
L = Θ(nm) is the total complexity of all level sets passing through critical points.
Doraiswamy and Natarajan [16] extended the sweeping idea to compute the Reeb
graph in O(n logn(log logn)3) time from an arbitrary simplicial complex, where n

is the size of the 2-skeleton of this simplicial complex. A streaming algorithm was
presented in [25] to compute the Reeb graph for an arbitrary simplicial complex in
an incremental manner in Θ(nm) time. Recently, Harvey et al. [20] presented an ef-
ficient randomized algorithm to compute the Reeb graph for an arbitrary simplicial
complex in O(n logm) expected running time. The Reeb graph for a time-varying
function defined on a 3-dimensional space was studied in [18].

Recently a flurry of research has been initiated on estimating topological informa-
tion from point data, such as computing ranks of homology groups [8], cut locus [13],
and the shortest set of homology loops [14]. In [6], Chazal et al. initiated the study of
approximating topological attributes of scalar functions from point data, and showed
that the standard persistent diagram induced by a function can be approximated from
input points. This result was later used in [7] to produce a clustering algorithm with
theoretical guarantees. The results from [6, 7] can be used to approximate loop-free
Reeb graphs (also called contour trees) from point data, thus providing a partial so-
lution to our first question. However, it is unclear how to approximate loops in the
Reeb graph which correspond to a subset of essential loops in the input domain which
represent a subgroup of H1-homology.

2 Background and Notations

Homology A homology group of a topological space X encodes its topological con-
nectivity. We consider the simplicial homology group if X is a simplicial complex,
and consider the singular homology group otherwise, both denoted with Hp(X) for
the pth homology group. The definitions of these two homology groups can be ob-
tained from any standard book on algebraic topology. Here we single out the concepts
of p-chains and p-cycles in singular homology whose definitions are not as widely
known in computational geometry as their simplicial counterparts. See [21, 23] for
detailed discussions on this topic.

A singular p-simplex for a topological space X is a continuous map σ from the
standard p-simplex �p ⊂ R

p to X. For example, a 1-simplex σ is a continuous map
σ : [0,1] → X. A p-chain is a formal sum of singular p-simplices. A singular p-cycle
in X is a p-chain whose boundary is a zero (p − 1)-chain. Therefore, technically
speaking, a p-chain or a p-cycle for X is a formal sum of maps. In this paper we will
only deal with 1-chains and 2-chains. Let a loop refer to a continuous map S

1 → X or
a finite union of such maps. For any 1-cycle α = σ1 + · · ·+ σk , there is a correspond-
ing loop φ whose image in X coincides with the disjoint union of images σi([0,1]),
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for i ∈ [1, k] (see pp. 108–109 in [21]). We call this loop the carrier of α, and that α

is carried by loop φ. All singular 1-cycles carried by the same loop are homologous.
Hence, in the remainder of the paper, we sometimes abuse the notations slightly and
talk about a loop as if it is a 1-cycle. For example, we will say that two loops are
homologous which means that cycles carried by these two loops are homologous.

We assume that X is compact and triangulable. Its simplicial homology defined by
a triangulation identifies to its singular homology. We also assume that the homology
groups are defined over Z2 coefficients. Since Z2 is a field, Hp(X) is a vector space of
dimension p. It will be clear from the context whether we are talking about simplicial
or singular homology of X. Unless specified, we assume singular homology for X. Let
Zp(X) denote the pth cycle group in X. A continuous map Φ : X1 → X2 between two
topological spaces induces a map among its chain groups which we denote as Φ#.
Clearly, Φ# provides a map from the cycle group Zp(X1) to the cycle group Zp(X2)

which in turn induces a homomorphism Φ∗ : Hp(X1) → Hp(X2).

Horizontal and Vertical Homology Following [9], we now extend the standard ho-
mology to the so-called horizontal and vertical homology with respect to a function
f : X → R. Given a continuous function f , its level sets and interval sets are defined
by Xa := f −1(a) and XI := f −1(I ) for a ∈ R and for an open or closed interval
I ⊆ R, respectively. From now on we sometimes omit the use of f when its choice
is clear from the context.

A homology class ω ∈ Hp(X) is horizontal if there exists a discrete set of iso-
values {ai} such that ω has a pre-image under the map Hp(

⋃
i Xai

) → Hp(X) in-
duced by inclusion. The set of horizontal homology classes form a subgroup Hp(X)

of Hp(X) since the trivial homology class is horizontal, and the addition of any two
horizontal homology class is still horizontal. We call this subgroup Hp(X) the hori-
zontal homology group of X with respect to f . The vertical homology group of X with
respect to f is defined as:

H̆p(X) := Hp(X)/Hp(X), the quotient of Hp(X) with Hp(X).

The coset ω + Hp(X) for every class ω ∈ Hp(X) provides an equivalence class in
H̆p(X). We call ω a vertical homology class if ω + Hp(X) is not identity in H̆p(X). In
other words, ω �∈ Hp(X). Two homology classes ω1 and ω2 are vertically homologous
if ω1 + ω2 ∈ Hp(X).

We percolate the definitions from the homology classes to cycles. A cycle α is
horizontal if [α], the standard homology class represented by α, is a horizontal class.
Two cycles α1 and α2 are vertically homologous if [α1] and [α2] are vertically homol-
ogous. Obviously, two p-cycles α1 and α2 are vertically homologous if and only if
there is a (p + 1)-chain B such that ∂B + α1 + α2 is a horizontal cycle. See the torus
in the below figure for an example, where α2 is a horizontal cycle as it is homologous
to α3 carried by a loop contained in a connected component of a level set; while α1 is
a vertical cycle, i.e., [α1] is a vertical homology class. We say that {α1, . . . , αk} is a
set of base cycles for Hp(X) if {[α1], . . . , [αk]} form a basis for Hp(X). A set of base
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Fig. 1 (a) X is a solid torus and its Reeb graph w.r.t. the height function f is shown in (b). (c) f

is a level-set-tame function w.r.t. discrete values {c1, . . . , c6}. There is a continuous map μ : Xc ×
[0,1] → X[c3,c4] whose restriction to the open set Xc × (0,1) is a homeomorphism. In the top row, there
are three disjoint interval-components in X(c3,c4) whose closures may intersect in level sets Xc3 and Xc4

cycles for Hp(X) and H̆p(X) are defined analogously.

Finally, the range of a loop γ ⊆ X, denoted by range(γ ), is the interval [minx∈γ f (x),

maxx∈γ f (x)]. The height of this loop, height(γ ), is simply the length of range(γ ).
We extend the definitions of range and height to cycles by saying that range(α) =
range(γ ) and height(α) = height(γ ) where the cycle α ∈ Z1(X) is carried by the loop
γ . The height of a homology class ω, denoted by height(ω), is the minimal height of
any cycle in this class. Notice that the height of a horizontal class ω is not necessarily
zero since ω may be the addition of multiple height-0 horizontal classes.

Reeb Graph Given a triangulable topological space X and a continuous function
f : X → R, we say that two points x, y ∈ X are equivalent, denoted by x ∼ y, if and
only if x and y belong to the same connected component of Xa for some a ∈ R.
Consider the quotient space X∼ which is the set of equivalence classes equipped with
the quotient topology induced by this equivalence relation; X∼ is also called the Reeb
graph of X with respect to f , denoted by Rbf (X). See Fig. 1 (a) and (b) for an
example.

An alternative way to view the Reeb graph is that there is a natural continuous sur-
jection Φ : X → X∼ where Φ(x) = Φ(y) if and only if x and y come from the same
connected component of a level set of f . In this sense, Rbf (X) is obtained by contin-
uously identifying each connected component. The map Φ induces a scalar function
f̃ : Rbf (X) → R where f̃ (p) = f (x) if p = Φ(x). Since f (x) = f (y) whenever
Φ(x) = Φ(y), the function f̃ is well-defined. Since f is continuous, so is f̃ . The
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range or height of a loop in Rbf (X) is measured with respect to this function f̃ . In
this paper, we also use f to refer to f̃ for simplicity.

3 Reeb Graphs and Vertical Homology

In this section, we show that H1(Rbf (X)) and the first vertical homology group H̆1(X)

of X are isomorphic. This relation is observed for 2-manifolds in [9], but, to the best
of our knowledge, it has not been formally introduced and proved anywhere yet for
general topological spaces. We include it here for completion.

The surjection Φ : X → Rbf (X) induces a chain map Φ# from the 1-chains
of X to the 1-chains of Rbf (X) which eventually induces a homomorphism Φ∗ :
H1(X) → H1(Rbf (X)). For the horizontal subgroup H1(X), we have Φ∗(H1(X)) =
{0} ⊆ H1(Rbf (X)). Hence Φ∗ induces a well-defined homomorphism between the
quotient groups

Φ̌ : H̆1(X) = H1(X)

H1(X)
→ H1(Rbf (X))

H1(Rbf (X))
= H1

(
Rbf (X)

)
.

The right equality above follows from that H1(Rbf (X)) = {0}, which holds because
every level set of Rbf (X) consists only of a set of disjoint points. In what follows,
we show that Φ̌ is an isomorphism under some mild conditions. Intuitively, this is
not surprising as Φ maps each contour in the level set to a single point, which in turn
also collapses every horizontal cycle.

For technical reasons, we consider functions that behave nicely. Specifically, we
call a continuous function f : X → R level-set-tame if there exist finite number of
discrete values {c1, . . . , ck} so that the following holds: for any two consecutive ci

and ci+1, (i) there is a homeomorphism μi : Xc × (0,1) → X(ci ,ci+1) for an arbitrary
c ∈ (ci, ci+1); and (ii) the homeomorphism μi can be extended to a continuous map
μi : Xc ×[0,1] → X[ci ,ci+1]. In this case, we also say that f is level-set-tame w.r.t. the
set of discrete values {c1, . . . , ck}; note that the choice of cis and μis are not unique.
See Fig. 1(c) for an example. It can be shown that Morse functions on a compact
smooth manifold and piecewise-linear functions on a finite simplicial complex are
both level-set-tame functions.

First, we prove the following result, which implies that the map Φ̌ : H̆1(X) →
H1(Rbf (X)) as introduced above is injective.

Lemma 3.1 Let f : X → R be a level-set-tame function, and Φ,Φ∗ as defined before.
Then we have ker(Φ∗) = H1(X) where ker(Φ∗) denotes the kernel of Φ∗.

Proof Since Φ maps all points in the same connected component in a level set of f

into a single point, we have H1(X) ⊆ ker(Φ∗). Hence we now focus on proving the
opposite direction ker(Φ∗) ⊆ H1(X). That is, for any homology class h ∈ H1(X), if
Φ∗(h) = 0, then h ∈ H1(X). Specifically, take a loop γ ⊆ X carrying a cycle from the
class h. We will show that there exists a loop γ̂ which is contained in the union of a
discrete set of level sets and which is homologous to γ . This will then imply that h is
horizontal.
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Fig. 2 (a) Left: the interval-component μ(C) contains three through-paths and one turning-path. Middle:
the turning-path can be deformed to a path contained in the level set Xcz . Right: γC is modified so that
at most one through-path is left. (b) The image of the singular simplex σi is the through-path in this
interval-component. Its image is a singular simplex σ̃i : [0,1] → |ei | which we draw with the thin curve
slightly off |ei | for illustration purpose

Assume without loss of generality that γ is the image of a map S
1 → X; the case

when γ is a finite union of such images can be handled by applying the following
proof to each image of S

1.
Let {c1, . . . , ck} be a set of discrete values with respect to which f is level-set-

tame. Fix an arbitrary interval [cz, cz+1] and any c ∈ (cz, cz+1). By definition of a
level-set-tame function, there exists a continuous map μ : Xc × [0,1] → X[cz,cz+1]
whose restriction to the open set Xc × (0,1) is a homeomorphism onto X(cz,cz+1). The
product space Xc × [0,1] has several connected components each of which, called
a cylinder, corresponds to the product between a connected component in the level
set Xc and [0,1]. The images of all such cylinders under μ can touch each other
only in Xcz or in Xcz+1 when μ is no longer a homeomorphism. See Fig. 1(c) for an
illustration, where in this example, Xc × [0,1] has three cylinders. Let us consider a
single cylinder C = S × [0,1], where S is the corresponding connected component
in Xc. Denote by Co the open cylinder S × (0,1). We call the image μ(Co)(⊆ X) of
every open cylinder Co an interval-component of X. Note that all interval-components
of X are disjoint, and so are their images under the map Φ in the Reeb graph Rbf (X).

Next, consider γCo = γ ∩ μ(Co) and γC = γ ∩ μ(C), which are the intersections
of γ with the interval-component μ(Co) and with the closure of μ(Co), respectively.
Each connected component in γCo is a path of the following two types: a through-
path π where the two endpoints of its closure lie in Xcz and Xcz+1 , respectively; and
a turning-path π where the endpoints of its closure either lie both in Xcz or both in
Xcz+1 . The closure of a through-path or a turning-path in μ(Co) is called a through-
path or a turning-path in μ(C). It can be verified that any turning-path π with end-
points p and q can be continuously deformed to a path connecting p and q within
the same contour of a level set, using an argument similar to what we invoke be-
low. Therefore we can transform γ to another homologous loop that contains only
through-paths in γC . See Fig. 2(a) for an illustration. As such, from now on, we as-
sume that γC contains only through-paths.

Our arguments consist of two steps. In Step 1, we modify γ into another homolo-
gous loop γ ′ which contains at most one through-path within any interval-component
of X. In Step 2, we show that if Φ(γ ′) is null-homologous in Rbf (X), then γ ′ must
have no through-path in any interval-component of X, implying that γ ′ is contained
only in the level sets

⋃
i Xci

. Hence γ ′ carries a horizontal cycle and h is a horizontal
homology class.
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Fig. 3 (a) An illustration of the
cylinder C = S × [0,1], where
each horizontal slice of this
cylinder is a copy of S. (b) ŝ is
the projection of s = s1 ◦ s3 ◦ s2
from the product space onto the
slice C[1]. (c) The boundary of
the surface B ′ is s + ŝ

Step 1. In this step, we modify γC so that it contains only portions lying in the two
level sets Xcz ∪ Xcz+1 , together with at most one through-path in μ(C). See Fig. 2(a).
Specifically, suppose there are more than one through-paths in γC . Then, for any
pair of through-paths π1 and π2, we show that there exists a 2-chain B such that
∂B + π1 + π2 is contained in the two level sets Xcz and Xcz+1 . Hence, we can convert
γ to γ ′ = γ + (∂B + π1 + π2) and the intersection γ ′

C = γ ′ ∩ μ(C) has two fewer
through-paths than γC . Obviously, γ is homologous to γ ′. By continuing this process,
we cancel out all pairs of through-paths in γC till at most one through-path is left, and
the resulting loop γ ′ is homologous to γ .

We now show how to construct a 2-chain B for a pair of through-paths π1 and
π2 from γC . Let πo

1 and πo
2 denote the interiors of π1 and π2, respectively. Note

that πo
1 and πo

2 are contained in the image μ(Co) ⊆ X(cz,cz+1) of the open cylinder
Co = S × (0,1). Since the restriction of μ to the open set Co is a homeomorphism,
πo

1 and πo
2 have unique pre-images so

1 and so
2 in Co under μ. Let s1 (resp. s2) denote

the closure of so
1 (resp. so

2 ) in C , with p1 and p2 (resp. q1 and q2) being its endpoints.
See Fig. 3(a) for an illustration. Notice that μ(s1) = π1 and μ(s2) = π2 due to the
continuity of μ.

Since the cylinder C is the product space S × [0,1], every point x ∈ C can be
represented as x = (x, t), where x ∈ S is called its horizontal coordinate and t ∈ [0,1]
is its vertical coordinate (or height). We use a slice C[t] to refer to one copy of S at
height t .

Since each slice C[t] of the cylinder C is path-connected, there is a path, say s3,
that connects p1 and q1 in C[0]. Let s denote the concatenated curve s1 ◦ s3 ◦ s2;
see Fig. 3(b). Now for every point x = (x, tx) ∈ s, consider the “vertical line” lx =
{(x, t) | t ∈ [tx,1]}. That is, lx contains the images of x in each slice C[t] with t ≥ tx .
The union of lxs for all x ∈ s traces out a 2-dimensional surface B ′. The boundary of
B ′ is ∂B ′ = s ◦ ŝ where ŝ is the image of s in C[1]. See Fig. 3 (b) and (c). Through
the continuous map μ, we obtain a 2-chain B whose carrier is μ(B ′) ⊆ X[cz,cz+1] and
∂μ(B ′) = π1 ◦ μ(s3) ◦ π2 ◦ μ(ŝ). Furthermore, μ(s3) and μ(ŝ) lie in the level sets
Xcz ∪ Xcz+1 . Hence by taking γ ′ = γ + ∂μ(B ′), we have reduced a pair of through-
paths.

Now we group through-paths in γC into pairs, with at most one left unpaired. We
construct a 2-chain for every pair, and let B denote the union of all these 2-chains.
Obviously, γ ′ = γ +∂B is homologous to γ and its intersection γ ′ ∩μ(C) has at most
one through-path. By performing this procedure for all cylinders and for all intervals
[cz, cz+1], z = 1, . . . , k − 1, we obtain a loop γ̂ which is homologous to γ , and has
at most one through-path within each interval-component in X.
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Step 2. We now choose a specific 1-cycle α = ∑r
i=1 σi + ∑t

j=1 ρj carried by γ̂

that is of the following form: there are two types of singular simplex in α: a sim-
plex σi whose image in X is a through-path and a simplex ρj whose image is com-
pletely contained within a level set Xcz for some z ∈ [1, k]. Consider the image of α in
Z1(Rbf (X)), α̃ := Φ#(α) = ∑r

i=1 σ̃i +∑t
j=1 ρ̃j , with σ̃i = Φ#(σi) and ρ̃j = Φ#(ρj ).

Since the map Φ collapses each connected component in a level set to a single point,
each ρ̃j is a constant map, and hence α̃ is homologous to

∑r
i=1 σ̃i , which we still

denote as α̃ for simplicity.
Now insert a set of vertices V to Rbf (X), which is the set of points with func-

tion value f (ci ) for i ∈ [1, k]. The removal of these vertices from Rbf (X) leaves a
set of connected components. Since the function f : X → R is level-set-tame w.r.t.
{c1, . . . , ck}, each such connected component is necessarily the image of some con-
tinuous bijection g : (0,1) → Rbf (X), and we call each connected component an arc
of Rbf (X). Indeed, each such connected component is the image of some interval-
component of X under the map Φ . Since an interval-component T of X is the evo-
lution of a connected component in a level set without changing its topology, Φ(T )

is necessarily a piece of curve monotone in the function values. Also observe that by
the definition of interval-components all such arcs are disjoint. Hence we obtain a
triangulation K of Rbf (X) whose vertices are V and edges are the closures of those
arcs defined above.

By the construction of γ̂ , the image of each singular simplex σi is contained in
a different interval-component. Hence σ̃i ([0,1]) is contained within the underlying
space of a single edge e in K . The boundary of σ̃i coincides with endpoints of e

which are vertices in V . See Fig. 2(b) for an illustration. Given an edge e ∈ K , let
|e| ⊆ |K| = Rbf (X) denote the underlying space of e. Let ei ∈ K denote the edge
such that σ̃i is a map σ̃i : [0,1] → |ei |. Observe that each σ̃i is mapped to a unique
edge ei .

Finally, consider the singular cycle α̃ = ∑r
i=1 σ̃i . The carrier for this cycle is ho-

motopic to the carrier of the cycle h = ∑r
i=1(hi : [0,1] → |ei |) where hi is a homeo-

morphism. Thus the two cycles h and α̃ are homologous. Consider the simplicial cy-
cle g = ∑r

i=1 ei , and let [g] ∈ H1(K) denote the simplicial homology class it belongs
to. The class [g] identifies to [h] via the standard isomorphism between simplicial
homology groups H1(K) and the singular homology group H1(|K|) (see e.g., p. 194
of [23]). Therefore, this standard isomorphism also identifies [g] to [α̃]. On the other
hand, in simplicial homology, as there are no 2-simplices in K , g is null-homologous
if and only if g = ∅, which means that the number r of singular simplices in α̃ is
necessarily zero if α̃ is null-homologous. This implies that the loop γ̂ ⊂ X does not
contain any through-path, and is completely contained within the union of level sets⋃

z Xcz . Hence γ̂ (and thus γ ) carries a horizontal cycle and its corresponding ho-
mology class h is horizontal. In other words, if Φ∗(h) = 0 then h ∈ H1(X), implying
ker(Φ∗) ⊆ H1(X). Combining this with that H1(X) ⊆ ker(Φ∗) completes our proof. �

Theorem 3.2 Given a level-set-tame function f : X → R, let Φ̌ : H̆1(X) →
H1(Rbf (X)) be the homomorphism induced by the surjection Φ : X → Rbf (X) as
defined before. The map Φ̌ is an isomorphism. Furthermore, for any vertical homol-
ogy class ω ∈ H̆1(X), we have height(ω) = height(Φ̌(ω)).
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Proof First, for any loop γ in Rbf (X), it is easy to show that there exists a loop
(pre-image) γ̂ in X such that Φ(γ̂ ) = γ (see Claim 3.1 in the conference version
of this paper). Hence Φ∗ : H1(X) → H1(Rbf (X)) is also surjective. It then follows
that the induced quotient map Φ̌ is also surjective. The injectivity of Φ̌ follows from
Lemma 3.1. Hence Φ̌ is an isomorphism.

For the second part of the theorem, suppose α is a vertical cycle such that [α] = ω

and height(α) = height(ω), i.e., α is a thinnest cycle in the vertical homology class
ω. Let γ be the loop in Rbf (X) that carries a thinnest cycle in the homology class
Φ̌(ω) ∈ H1(Rbf (X)). We have

height(α) = height
(
Φ#(α)

) ≥ height
(
Φ̌(ω)

) = height(γ ). (1)

On the other hand, there is a loop γ̂ in X (which is a pre-image of γ under Φ) such
that Φ(γ̂ ) = γ and height(γ̂ ) = height(γ ). Let α̂ be any 1-cycle carried by γ̂ . By
Lemma 3.1, we have [α̂] = ω, as the cycle α + α̂ is mapped to a null-homologous
cycle in Rbf (X). Hence height(γ ) = height(γ̂ ) ≥ height(α). Combining this with (1)
proves that height(Φ̌(ω)) = height(ω). �

4 Approximating Reeb Graphs

Let M be a compact and smooth m-manifold without boundary embedded in R
d . The

reach ρ(M) of M is the minimal distance from any point x ∈ M to the so-called medial
axis of M. Given a point p ∈ M, let BM(p, r) denote the open geodesic ball centered at
p with radius r . Let rp be the maximal radius so that BM(p, rp) is convex in the sense
that the minimizing geodesics between any two points in BM(p, rp) is contained in
BM(p, rp). The convexity radius of M is simply ρc(M) = infp∈M rp .

A set of points P is an ε-sample2 of M if P ⊂ M and for any point x ∈ M, there
is a point p ∈ P within ε geodesic distance from x. Given P and a real r > 0, the
Čech complex Cr (P ) is a simplicial complex where a simplex σ ∈ Cr (P ) if and only
if the vertices of σ are the centers of d-balls of radius r/2 with a non-empty common
intersection. Instead of common intersection, if we only require pairwise intersec-
tion among the set of d-balls, we obtain the so-called Vietoris–Rips complex (Rips
complex for short) Rr (P ).

Overview Consider an ε-sample P ⊂ M and a function f : M → R with its value
only available at sample points in P . In what follows, we show that for an appro-
priate r , the Reeb graph of the Rips complex Rr (P ) approximates Rbf (M) both in
terms of the rank of the first homology group, and in terms of the range and the
height of cycles and homology classes. Our precise definition of approximation will
be given later. Once the Rips complex is constructed, computing its Reeb graph takes
only O(n logn) expected time [20], where n is the size of the 2-skeleton of Rr (P ).
Since f is only available at sample points in P , the approximation quality naturally

2Here ε-sample is not defined relative to reach or feature size as commonly done in reconstruction litera-
ture [12].
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Fig. 4 Maps between cycle groups

depends on how well the function f : M → R behaves. We assume that f is Lipschitz
with Lipschitz constant Lipf .

In Sect. 4.1 we first introduce some relations between cycles of M and those of
the geometric realization |Rr (P )| of the Rips complex Rr (P ). Using these relations,
in Sect. 4.2, we show that there are maps between H1(M) and H1(|Rr (P )|) that are
not only isomorphic, but also preserve the height / range of a homology class. This,
combined with Theorem 3.2, eventually leads to our approximation of Rbf (M). This
approximation result can be used to estimate the first Betti number of an orientable
2-manifold from its point samples in near-linear expected time.

4.1 Relation Between Cycles in M and |Rr (P )|

The simplicial complex Rr (P ) as defined is not necessarily embedded in R
d . Con-

sider the embedding e : Rr (P ) → �|P | of Rr (P ) into the standard simplex in R
|P |.

Let |Rr (P )| denote the underlying space of the geometric realization e(Rr (P )).
A piecewise-linear function f on Rr (P ) defines naturally a piecewise-linear function
on its geometric realization |Rr (P )| which we also denote as f . The Reeb graph of
a PL-function f on Rr (P ) is in fact the Reeb graph of f on its geometric realization
|Rr (P )|. Hence Rbf (Rr (P )) := Rbf (|Rr (P )|). Analogously, the vertical/horizontal
homology groups of Rr (P ) with respect to a PL-function f are also defined using
|Rr (P )|. In this section, we relate cycles from M and those from |Rr (P )| via (simpli-
cial) cycles of Rr (P ). We will show how to construct the maps as indicated in Fig. 4
below, such that these maps not only induce isomorphisms in the corresponding ho-
mology groups, but also preserve height and range of cycles.

A general version of the next claim which establishes an isomorphism between the
homology groups of M and those of Čech and Rips complexes is well known (see,
e.g. [24] for Čech-complexes and [22] for Rips complexes; a variant for compact
spaces was also observed by Steve Oudot (personal communications) and a much
stronger result showing that Rips complexes capturing topology of sampled shapes
is given in [1]). We include a proof of it for completeness. First, we quote a result
from [14], the map of which will be used later as well.

Proposition 4.1 (Proposition 3.3 of [14]) Let P ⊂ M be an ε-sample and r a param-

eter such that 2ε ≤ r ≤
√

3
5ρ(M). There is a homotopy equivalence θ : C 2r (P ) → M

such that θ(p) = p for any p ∈ P and θ(σ ) ⊂ M ∩ (
⋃

p∈V ert (σ ) BM(p, r)).
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Lemma 4.2 Let P ⊂ M be an ε-sample and r a parameter such that 4ε ≤ r ≤
1
2

√
3
5ρ(M). Then,

H1
(

Cr (P )
) � H1

(
Rr (P )

) � H1
(

C 2r (P )
) � H1(M).

The first two isomorphisms are induced by the natural inclusion from Cr (P ) to Rr (P )

and then to C 2r (P ). The last isomorphism is induced by the homotopy equivalence θ

from Proposition 4.1.

Proof Consider the following sequence of inclusions:

Cr (P )
i1

↪→ Rr (P )
i2
↪→ C 2r (P ).

By Proposition 3.4 [14], we know that the inclusion i = i2 ◦ i1 induces an isomor-
phism H1(Cr (P )) � H1(C 2r (P )). On the other hand, note that Cr (P ) and Rr (P )

share the same edge set, and Rr (P ) only has more triangles than Cr (P ). Hence the
inclusion i1 induces a surjective homomorphism from H1(Cr (P )) to H1(Rr (P )). It
then follows that both i1 and i2 must induce isomorphisms in the corresponding first
homology groups. �

Maps d and h# We now define maps as indicated in Fig. 4. First, given a cycle
α ∈ Z1(M), we map it to a cycle d(α) ∈ Z1(Rr (P )) using the same Decomposition
method [2] as applied in [14]. In particular, use an arbitrary, but fixed, way to break
the carrier of α into pieces where each piece has length at most r − 2ε. For each
piece with endpoints xi and xi+1, find the closest sample points pi and pi+1 from P

to xi and xi+1, respectively, and connect pi and pi+1 (which is necessarily an edge
in Rr (P ) by triangle inequality). The resulting simplicial 1-cycle in Rr (P ) is d(α).
Later in Lemma 4.3, we will show that this map d indeed takes homologous cycles
to homologous cycles, and as such induces a well-defined homomorphism d∗ at the
homology level.

We define the map h : Rr (P ) → M as the inclusion map Rr (P ) ↪→ C 2r (P ) com-
posed with the homotopy equivalence θ : C 2r (P ) → M introduced in Proposition 4.1.
The corresponding chain map h# induces a homomorphism h∗ : Hp(Rr (P )) →
Hp(M). We restrict h∗ only to the first homology group h∗ : H1(Rr (P )) → H1(M).
By Lemma 4.2, h∗ is an isomorphism.

The following lemma states that d : Z1(M) → Z1(Rr (P )) is in fact the homology-
inverse of h#. The ranges of mapped cycles are also related. We put the proof of the
following lemma in Appendix A to maintain the flow of the presentation. Given two
intervals I1 = [a, b] and I2 = [c, d], we say that I1 is oneside-δ-close to I2 if [a, b] ⊆
[c − δ, d + δ]. and I1 and I2 are δ-Hausdorff-close if the two intervals are oneside-δ-
close to each other. In the Lemma below, assume that f is a (Lipf )-Lipschitz function
on M and its values for the vertices P ⊂ M define a piecewise-linear function on
Rr (P ) which we also denote as f .
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Lemma 4.3

(i) h∗ : H1(Rr (P )) → H1(M) is an isomorphism. The map d induces an isomor-
phism d∗ : H1(M) → H1(Rr (P )) such that h∗ = (d∗)−1.

(ii) The range of the cycle d(α) ∈ Z1(Rr (P )) is oneside-(r ·Lipf )-close to the range
of α ∈ Z1(M). Similarly, the range of the cycle h#(α̂) ∈ Z1(M) is oneside-(r ·
Lipf )-close to α̂ ∈ Z1(Rr (P )).

(iii) The ranges of any homology class ω ∈ H1(M) (resp. ω̂ ∈ H1(Rr (P ))) and its im-
age d∗(ω) ∈ H1(Rr (P )) (resp. h∗(ω̂) ∈ H1(M)), are (r · Lipf )-Hausdorff-close.

Maps u and g The map u is taken as the standard map between the simplicial chain
groups of a simplicial complex and the singular chain groups of its underlying space;
see e.g., the map μ defined on p. 194 of [23].

We now define the map g : Z1(|Rr (P )|) → Z1(Rr (P )). Recall we have embedded
Rr (P ) in the standard simplex �|P | ⊂ R

|P |, and |Rr (P )| is the underlying space
of this geometric realization e(Rr (P )) of Rr (P ). In particular, Each vertex pi ∈
P is mapped to the point vi = (0, . . . ,0,1,0, . . . ,0) ∈ R

|P | with the ith position
1; and a simplex in Rr (P ) with vertices {pi0, . . . , pil } is mapped to the simplex in
R

|P | with vertices {vi0, . . . , vil }. Consider a cycle α in |Rr (P )|. The carrier of α

passes through a sequence of simplices S of e(Rr (P )); if a point in the carrier is
contained in multiple simplices, then keep the one with the minimum dimension. Let
S = {σ1, . . . , σm}. Now choose an arbitrary but fixed vertex ui for each σi , and let
pui

∈ P denote the unique pre-image of ui in Rr (P ) under the embedding map u.
Notice that for any two consecutive simplices σi and σi+1 that the carrier of α passes
through, it is necessary that either σi is face of σi+1 or σi+1 is a face of σi . Hence
either pui

= pui+1 or pui
pui+1 is an edge in Rr (P ). Therefore, we map α simply

to the cycle g(α) given by the sequence of vertices (pu1 , . . . , pum,pu1) and edges
between them. We have the following result about maps u and g.

Lemma 4.4

(i) Every cycle α in Rr (P ) is mapped to a cycle u(α) with the same range in
|Rr (P )| under u : Z1(Rr (P )) → Z1(|Rr (P )|). The map u∗ : H1(Rr (P )) →
H1(|Rr (P )|) is an isomorphism, and the ranges of any homology class ω ∈
H1(Rr (P )) and its image u∗(ω) ∈ H1(|Rr (P )|) are also the same.

(ii) Every cycle α in |Rr (P )| is mapped to a cycle g(α) in Rr (P ) whose range is
oneside-(r · Lipf )-close to that of α. The map g : Z1(|Rr (P )|) → Z1(Rr (P ))

induces an isomorphism g∗ : H1(|Rr (P )|) → H1(Rr (P )), and g∗ = (u∗)−1.
The ranges of any homology class ω̂ ∈ H1(|Rr (P )|) and its image g∗(ω̂) ∈
H1(Rr (P )) are (r · Lipf )-Hausdorff-close.

Proof For part (i) of the lemma, note that it is well known that u induces an iso-
morphism between the respective simplicial and singular homology groups (see e.g.,
Theorem 34.3 of [23]). Furthermore, since u maps each simplex to a map whose
range is its underlying space, u preserves the range of a cycle.

For part (ii) of the lemma, first observe that for any cycle α from |Rr (P )|, we have
[u ◦ g(α)] = [α]. Indeed, by the construction of g, it is easy to verify that u ◦ g(α) and
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α are homotopic. Since u induces an isomorphism from Rr (P ) to |Rr (P )|, it follows
that g maps homologous cycles in |Rr (P )| to homologous cycles in Rr (P ). Hence
g induces a well-defined homomorphism g∗ : H1(|Rr |) → H1(Rr ). Furthermore, g ◦
u(α′) = α′ for any cycle α′ ∈ Rr (P ). It follows that g∗ is the inverse of u∗ and hence
is an isomorphism.

Finally, note that for each simplex σ ∈ e(Rr (P )), the function value difference
between any two points x, y ∈ σ is bounded by r · Lipf . Let γ be the carrier of a
cycle α in |Rr (P )|. By the construction of g, for each piece γ ∩ σi of γ within the
simplex σi ∈ S, we have |f (x) − f (ui)| ≤ r · Lipf for any point x ∈ γ ∩ σi . Since
f (ui) = f (pui

), we have

[
min

i∈[1,m]f (pui
) + r · Lipf , max

i∈[1,m]
f (pui

) − r · Lipf

]

⊆ range(α) ⊆
[

min
i∈[1,m]f (pui

) − r · Lipf , max
i∈[1,m]

f (pui
) + r · Lipf

]
.

On the other hand, we have range(g(α)) ⊆ [mini∈[1,m] f (pui
),maxi∈[1,m] f (pui

)].
Hence range(g(α)) is oneside-(r · Lipf )-close to range(α). By a similar argument as
in the proof of Lemma 4.3 (iv), the closeness between the corresponding homology
classes follows. �

Combining Lemma 4.3 and 4.4, we obtain a similar result for maps between Z1(M)

and Z1(|Rr (P )|).

Theorem 4.5 Let P ⊂ M be an ε-sample and r a parameter such that 4ε ≤ r ≤
1
2

√
3
5ρ(M).

(i) There is a map ρ := u# ◦ d from Z1(M) to Z1(|Rr (P )|) that induces an iso-
morphism ρ∗ : H1(M) → H1(|Rr (P )|). The range of cycle ρ(α) is oneside-
(r · Lipf )-close to the range of α.

(ii) There is a map ξ := h# ◦ g from Z1(|Rr (P )|) to Z1(M) that induces an iso-
morphism ξ∗ : H1(|Rr (P )|) → H1(M). The range of cycle ξ(α̂) is oneside-
(2r · Lipf )-close to the range of cycle α̂.

(iii) Furthermore, ρ∗ is the inverse of ξ∗. The ranges of any homology class ω ∈
H1(M) (resp. ω̂ ∈ H1(|Rr (P )|)) and its image ρ∗(ω) ∈ H1(|Rr (P )|) (resp.
ξ∗(ω̂) ∈ H1(M)) are (2r · Lipf )-Hausdorff-close.

4.2 Rbf (M) and Rbf (Rr (P ))

We now show that under mild conditions on M, the induced isomorphisms ρ∗ and
ξ∗ as defined above in fact map horizontal classes to horizontal classes, and vertical
classes to vertical classes.

Set s = rank(H1(M)). It turns out that we can find a basis {[α1], . . . , [αs]} for the
horizontal subgroup H1(M) such that each class [αi], i ∈ [1, s], has height 0; as well
as a set of base cycles {α1, . . . , αs} corresponding to this basis with height(αi) = 0 for
any i ∈ [1, s]. Such a 0-height basis for H1(M) can be constructed by a simple greedy
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approach, where at each iteration we take a homology class with smallest height that
is independent of all the previous elements in the basis. The details can be found in
Appendix B. The corresponding set of base cycles {α1, . . . , αs} with height(αi) = 0
is called a set of 0-height base cycles for H1(M). For a horizontal homology class ω

with height 0, the span of ω is the length of the maximal interval I such that ω has a
pre-image in the level set Xa for any a ∈ I . Intuitively, this is the interval in function
values in which this homology class survives in the level sets.

Let s∗(M) denote the smallest span of any 0-height horizontal class of the input
manifold M, and t∗(M) the minimal height of any vertical class of M. We assume that
both s∗(M) and t∗(M) are positive for our input level-set-tame function on M.

Theorem 4.6 Given a level-set-tame function f on a manifold M, let r > 0 be
such that s∗(M), t∗(M) > 2r · Lipf . Let ρ∗ and ξ∗ be as defined in Theorem 4.5.

Then we have ρ∗(H1(M)) = H1(|Rr (P )|), ξ∗(H1(|Rr (P )|)) = H1(M) and H̆1(M) �
H̆1(|Rr (P )|).

Proof For simplicity, in this proof let R denote |Rr (P )|. Below we first show that
ρ∗(H1(M)) = H1(R). Consider a set of 0-height base cycles {α1, . . . , αs} for H1(M)

with s = rank(H1(M)).
Take an arbitrary αi for i ∈ [1, s], and let [a, b] denote the maximal interval3 such

that [αi] has a preimage in the level set Mc for any c ∈ [a, b]. The span of [αi] is
b − a and is at least s∗(M) > 2r · Lipf . Take a representative cycle γa from Ma and
γb from Mb of the homology class [αi]. Set Ia := [a − r · Lipf , a + r · Lipf ] and
Ib := [b − r · Lipf , b + r · Lipf ]. It follows from Theorem 4.5 that the carrier of
ρ(γa) is contained in the interval level set RIa while the carrier of ρ(γb) is contained
in RIb

. (Note that [ρ(αi)] = [ρ(γa)] = [ρ(γb)] is a non-trivial homology class in
H1(R).) Since b − a > 2r · Lipf , we have Ia ∩ Ib = ∅. A simple application of the
Mayer–Vietoris sequence provides that the homology class [ρ(αi)] has a preimage
in the level set Rc for any c ∈ [a + r · Lipf , b − r · Lipf ], which in turn implies that
[ρ(αi)] is horizontal. (A similar argument is used in [9].) Since [ρ(αi)] is horizontal
for any i ∈ [1, s], ρ∗(H1(M)) is a subgroup of H1(R).

We now show that the opposite direction H1(R) ⊆ ρ∗(H1(M)) is also true, which
would imply that ρ∗(H1(M)) = H1(R). Specifically, take a set of 0-height base cy-
cles {β1, . . . , βt } for H1(R). By Theorem 4.5, their images {ξ(β1), . . . , ξ(βt )} in
M is a set of independent cycles such that height(ξ(βi)) ≤ 2r · Lipf . Since the
minimal height of any vertical cycle in M is t∗(M) > 2r · Lipf , each ξ(βi) has
to be a horizontal homology cycle. As such, ξ∗(H1(R)) ⊆ H1(M), which means
that H1(R) = ρ∗(ξ∗(H1(R))) ⊆ ρ∗(H1(M)). It then follows that ρ∗(H1(M)) = H1(R).
Since the isomorphism ρ∗ sends H1(M) to H1(R), the induced homomorphism at the
quotient level is also an isomorphism; that is, H̆1(M) � H̆1(R). �

3Such a maximal interval can be open. We assume it is closed for simplicity. The case when it is open can
be handled similarly.
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4.3 Putting Everything Together

We say that a Reeb graph Rbf (A) δ-approximates another Reeb graph Rbg(B) if
there is an isomorphism between H1(Rbf (A)) and H1(Rbg(B)) such that the ranges
of corresponding pairs of homology classes are δ-Hausdorff-close.4 Combining The-
orems 3.2, 4.5 and 4.6, we have our first main result.

Theorem 4.7 Let f : M → R be a level-set-tame function defined on M with Lipschitz
constant Lipf . Given an ε-sample P of M, let r be a parameter such that 4ε ≤ r <

min{ 1
4ρ(M), 1

4ρc(M), t∗
2Lipf

, s∗
2Lipf

}, and Rr (P ) the Rips complex constructed from P

using radius r/2. Then Rbf (Rr (P )) is a (2r · Lipf )-approximation of Rbf (M), and
Rbf (Rr (P )) can be computed in O(n logn) expected time [20], where n is the size
of the 2-skeleton of Rr (P ).

Remark 1 Here we provide a brief discussion of why we focus only on the first
homology information of the Reeb graph, as well as the intuition behind our definition
of a δ-approximate Reeb graph.

The Reeb graph is an abstract graph and contains only the 0- and 1-dimensional
topological information. Given a Reeb graph Rbf (M), its zeroth homology simply
encodes the connected components information of M, and can be approximated from
point data easily by returning the number of connected components in an appropri-
ately constructed Rips complex in linear time.

At the same time, compared to general abstract graphs, the Reeb graph has the
extra information of the natural function f defined on it. Hence one may also ask
what the 0th persistent homology of Rbf (X) induced by f is. This turns out to be
the same as approximating the 0th persistent homology for X and can be solved using
results from [6, 7].

Therefore, the only remaining issue is to approximate the first homology of a Reeb
graph. Similar to the case for the zeroth homology, there are two aspects: (i) comput-
ing H1(Rbf (M)) itself; and (ii) computing the first persistent homology of Rbf (M)

induced by the function f . For (i), our result shows that H1(Rbf (Rr (P ))) for a cer-
tain Rips complex Rr (P ) constructed from the point samples P is isomorphic to
H1(Rbf (M)). For (ii), since every 1-cycle in a Reeb graph is essential, the standard
persistence is not able to describe them, and one has to use the extended persistence
as introduced in [9], which is determined by the range of essential cycles. Hence our
definition of the approximation also requires that ranges of corresponding homology
classes (and even cycles) are also close.

Remark 2 One can strengthen Theorem 4.7 slightly to show that if the parameter r

does not satisfy the conditions that r < t∗
2Lipf

or r < s∗
2Lipf

, then all homology classes

of H1(Rbf (M)) with height at least 2r · Lipf are preserved in H1(Rbf (Rr (P ))) (and
vice versa).

4In fact, we can also require that there is a map from Z1(Rbf (A)) → Z1(Rbf (B)) that induces an iso-
morphism from H1(Rbf (A)) → H1(Rbg(B)) where every cycle from Rbf (A) is mapped to a cycle in
Rbg(B) whose range is δ-Hausdorff-close.
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Computing β1(M) for Orientable 2-Manifolds It was shown in [11] that for a Morse
function f : M → R defined on a compact orientable surface M without boundary, one
has rank(H1(M)) = 2 · rank(H1(Rbf (M))). Hence intuitively, using Theorem 4.7, we
can compute β1(M) = rank(H1(M)) by 2 · rank(H1(Rbf (Rr (P )))) from an appropri-
ate f and a Rips Complex Rr (P ) constructed from a point sample P of M. Specif-
ically, choose a function f : M → R so that we can evaluate it at points in P . For
example, pick a base point v ∈ P and define a function fv(x) to be the Euclidean dis-
tance from x ∈ M to the base point v. Observe that the Lipschitz constant of this func-
tion fv is at most 1. Our algorithm simply computes the Reeb graph Rbfv(Rr (P ))

and returns 2 · rank(H1(Rbfv(Rr (P )))).

Corollary 4.8 Let M be an orientable smooth compact 2-manifold M without bound-
ary and P an ε-sample of M. The above algorithm computes β1(M) in O(n logn)

expected time if t∗(M) and s∗(M) are positive for the chosen function f , and the
parameters satisfy 4ε ≤ r < min{ 1

4ρ(M), 1
4ρc(M), t∗

2Lipf
, s∗

2Lipf
}.

Observe that a Morse function on an orientable 2-manifold provides positive t∗
and s∗. We remark that our algorithm produces a correct answer only under good
choices of f and r ; while previously, the best algorithm to estimate β1(M) only de-
pends on choosing r small enough. The advantage of our algorithm is its efficiency,
as the previous algorithm needs to compute the first-Betti number of the simplicial
complex Rr (P ) for certain r , which takes O(n3) time no matter what the intrinsic
dimension of M is, where n is the size of the 2-skeleton of Rr (P ).

5 Persistent Reeb Graph

Imagine that we have a set of points P sampled from a hidden space X, and f : X → R

a function whose values at points in P are available. We wish to study this function f

through its Reeb graph. A natural approach to approximate X from P is to construct
a Rips complex Rr (P ) from P . Since it is often unclear what the right value of r

should be, it is desirable to compute a series of Reeb graphs from Rips complexes
constructed with various r , and then find out which cycles in the Reeb graph persist.
This calls for computing persistent homology groups for the sequence of Reeb graphs.

Let K1 ⊆ K2 ⊆ · · · ⊆ Kn be a filtration of a simplicial complex Kn. A piecewise-
linear function f : |Kn| → R provides a PL-function for every Ki , i ∈ [1, n]. Let
Ri := Rbf (Ki) denote the Reeb graph of f defined on the geometric realization |Ki |
of Ki . Below we first show that there is a sequence of homomorphisms H1(Ri ) →
H1(Ri+1) induced by the inclusions Ki ⊂ Ki+1. We then present an algorithm to
compute the persistent homologies induced by these homomorphisms.

5.1 Persistent Reeb Graph Homology

Let Φi denote the associated quotient map from |Ki | → Ri , for any i ∈ [1, n]. Since
the canonical inclusion |Ki | ↪→ |Kj | respects the equivalence relation that defines the
quotient space Ri , the maps Φis, along with inclusions between Kj s, induce a well-
defined continuous map between the quotient spaces ξ : Ri → Rj , for any i < j . Let
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ιi denote the inclusion map from |Ki | to |Ki+1|, and ξi the induced map from Ri to
Ri+1. We have the following diagram that commutes.

|K1|
ι1

Φ1

|K2|
ι2

Φ2

· · ·
ιn−1 |Kn|

Φn

R1

ξ1

R2

ξ2 · · ·
ξn−1

Rn.

The sequence of continuous maps ξi induces the following sequence of homomor-
phisms:

H1(R1)
ξ1∗

H1(R2)
ξ2∗ · · ·

ξ(n−1)∗
H1(Rn).

Following [17], we can now define the persistent homology groups as the images
of maps ξ

i,j∗ = ξj∗ ◦ · · · ◦ ξi∗ : H1(Ri ) → H1(Rj ). In other words, the image (ξ
i,j∗ )

consists of homology classes from H1(Rj ) that also have pre-images in H1(Ri ) (i.e.,
persist from H1(Ri ) to H1(Rj )). The persistent Betti number βi,j is defined as the

rank of the persistent homology group (ξ
i,j∗ ). Set

μi,j := βi−1,j − βi,j + βi,j−1 − βi−1,j−1.

Intuitively, μi,j is the number of independent loops created upon entering Ri and
destroyed upon leaving Rj . A persistence pair (i, j) is recorded if μi,j > 0, and the
value μi,j indicates the multiplicity of this pairing.

We focus on persistent H1-homology for Ris in this paper. The persistent H0-
homology for Ris is the same as persistent H0-homology for Kis, and thus can be
easily computed by a union-find data structure in near-linear time. We also remark
that by Theorem 3.2, persistent H1-homology for Ri is isomorphic to persistent ver-
tical homology H̆1(|Ki |).5

5.2 Computation

We now present an algorithm to compute the persistent Betti number βi,j . The num-
bers μi,j and the persistence pairs can be computed easily once we have these persis-
tence Betti numbers.

Given a filtration K1 ⊆ · · · ⊆ Kn, assume Ki+1 \Ki is one simplex. Since the Reeb
graph is completely decided by the 2-skeleton of a simplicial complex, we assume
that Kis are 2-complexes. Let nv , ne and nt denote the number of vertices, edges
and triangles in Kn, and n = nv + ne + nt . Observe that the complexity of each Reeb
graph Ri , for i ∈ [1, n], is bounded by O(ne). The set of Reeb graphs Ris can be

5A priori, it is not clear how to compute the persistent one dimensional vertical homology. By maintaining
the extended persistence pairings dynamically as we change from Ki to Ki+1, we can maintain the rank
of each H̆1(Ki), but not the persistent homology between them.
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Fig. 5 (a) shows a genus-g torus with the two caps missing; g = 3 in this case. Darker color regions
indicate the two holes (missing caps) on this torus. Its Reeb graph w.r.t. the height function is shown in (b).
Now if we fill the left triangle, as shown in (c), then Θ(g) number of independent vertical homological
classes become horizontal, thus killing Θ(g) number of loops in the Reeb graph, which is shown in (d).
In other words, by adding just one simplex (a triangle), the first Betti number decreases by Θ(g)

computed in O(nnv) time using the incremental algorithm from [25]. We use this
algorithm as it can also maintain the image of each edge from Ki in Ri in O(nv)

time at each incremental step, thus providing Φi , for i ∈ [1, n].
Recall that a set of base cycles for Hp(·) is a set of cycles whose classes form

a basis of Hp(·). For the sake of exposition in this section, we abuse the notation
slightly and use a cycle to also refer to its carrier in the Reeb graph. Specifically, we
will see later that our algorithm in fact maintains the carriers of a set of base cycles for
H1(Ri ), which we also call a cycle-basis. We say that a set of cycles are independent
if the set of homology classes these cycles represent are independent.

To compute βi,j , one can construct a set of base cycles {α1, . . . , αr} for H1(Ri )

with r = rank(H1(Ri )), and check how many of their images in Rj remain inde-
pendent. A straightforward implementation of this approach takes O(n2n3

e) time.
Indeed, r = O(ne) and the complexity of each cycle αi is bounded by O(nv) (by
representing them as a sequence of vertices). Computing the images of all αis takes
O(rn2

v) = O(nen
2
v) time using the incremental algorithm from [25], and the indepen-

dence test for these r cycles takes O(rn2
e) = O(n3

e) time.Finally, there are n2 pairs of

i and j that we need to test, giving rise to O(n2n3
e) total time complexity. To improve

the time complexity, we follow the idea of the standard persistence algorithm [19]
and perform only one scan of the sequence of Reeb graphs, while maintaining a set
of base cycles at any moment during the course.

Notice that the standard persistence algorithm cannot be directly applied to the se-
quence of Reeb graphs as there are no inclusions among them. In fact, the underlying
spaces of two consecutive Reeb graphs can change dramatically. See Fig. 5 for such
an example. We also remark that there may not be an inclusion relation between Ri

and Ri+1 in either direction, that is, Ri � Ri+1 and Ri � Ri+1: see Case 3 discussed
later. Hence while it is possible to model the persistent Reeb graph homology via
zigzag persistence theory [4], the efficient algorithm to compute zigzag persistence
as developed in [5] cannot yet be applied here.

Consistent Base Cycles From now on, let G(i) denote the cycle-basis of H1(Ri )

that we maintain at the ith step. For each cycle γ ∈ G(i), we associate with it a
birth-time t(γ ), which is the earliest time (index) k ≤ i such that some pre-image
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of the homology class [γ ] under the map ξ
k,i∗ : H1(Rk) → H1(Ri ) exists. In order to

extract βi,j , we wish to maintain the following consistency condition between G(i)

and G(j): let G(i) = {α(i)
1 , α

(i)
2 , . . . , α

(i)
r } and G(j) = {α(j)

1 , . . . , α
(j)
s }. Consider the

set Ĝ of images of cycles {α(i)
l } in Rj . G(i) and G(j) are consistent if the cardinality

of Ĝ ∩ G(j) is exactly βi,j . Notice that there are always βi,j number of independent
cycles in Ĝ. However, its intersection with G(j) may have much smaller cardinality.
A sequence of cycle-bases {G(i) | i ∈ [1, n]} is consistent if the consistency condition
holds for any pair G(i) and G(j), 0 ≤ i < j ≤ n. The following claim implies that we
can read off βi,j easily from a consistent sequence of cycle-bases.

Lemma 5.1 If a sequence of cycle-bases {G(i) | i ∈ [1, n]} is consistent, then for any
1 ≤ i < j ≤ n, βi,j equals the number of cycles in G(j) whose birth-time is smaller
than or equal to i.

Proof Consider a pair of indices i < j and the corresponding cycle-basis G(i) for
H1(Ri ) and G(j) for H1(Rj ). Assume that there are k cycles in G(j) with birth-time
smaller than or equal to i. Since all these cycles are independent in Rj (and thus in
ξ i,j (Ri )), we have k ≤ βi,j . On the other hand, since G(i) and G(j) are consistent,
we have k ≥ βi,j , implying that k = βi,j . �

Algorithm Description In light of Lemma 5.1, our goal is to maintain consistent
cycle-bases at any moment. We now describe how we update the set of base cycles
as we move from Kk to Kk+1 = Kk ∪ {σ }; σ can be a 0-, 1-, or 2-simplex. Set
gi := rank(H1(Ri )) for any i ∈ [1, n]. Assume at kth step we already have consistent
{G(i) | i ∈ [1,k]}. For each cycle-basis G(i), we also maintain the birth-time of each
cycle in it. Assume cycles in G(k) = {γ1, . . . , γgk} are sorted by their birth-times. At
the beginning of the kth step, we first use the incremental algorithm from [25] to
compute the Reeb graph Rk+1 from Rk. We next need to update G(k) to G(k+1) for
Rk+1 so that G(k+1) is consistent with each G(i) for i ∈ [1,k]. There are three cases.

Case 1: σ is a vertex. A new connected component is created in Kk+1, consisting
of only σ . Similarly, a new node is created in Rk+1. The set of base 1-cycles are not
affected, and G(k+1) = G(k).

Case 2: σ = pq is an edge. Let p̂ = Φk(p) and q̂ = Φk(q) be the images of end-
points p and q of σ in the Reeb graph Rk. Adding σ to Kk creates a new edge e = p̂ q̂

in Rk+1. If p̂ and q̂ are not in the same connected component in Rk, then adding e

will only reduce the rank of H0(Rk) by 1 and does not affect H1(Rk). In that case
G(k+1) = G(k). Otherwise, p̂ and q̂ are already connected in Rk. Adding e results
in rank(H1(Rk+1)) = rank(H1(Rk)) + 1. Let γ be any cycle in Rk+1 that contains e

(which can be computed easily in linear time). All previous base cycles in G(k) will
remain independent in Rk+1, and we simply set G(k+1) = G(k) ∪ {γ }. The birth-time
for γ is k + 1.

Case 3: σ is a triangle. The first two cases are simple and similar to the cases
of standard persistence algorithm. Case 3 is much more complicated. In particular,
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unlike the standard persistence algorithm wherein adding a triangle may reduce β1

by at most 1, the rank of H1(Rk) may decrease by Θ(gk). What happens is that even
though β1(Kk) is reduced by at most 1, arbitrary number of vertical homology classes
can be converted into horizontal homology classes. An example is given in Fig. 5.

Let σ = �pqr , and let p̂ = Φk(p), q̂ = Φk(q) and r̂ = Φk(r) be the images of
the three endpoints of σ in Rk, respectively. Assume without loss of generality that
f (p) ≤ f (q) ≤ f (r), and set e1 = pq , e2 = qr and e3 = pr . First, we compute the
image of each ei in Rk, which is necessarily a monotone path (i.e., monotonic in func-
tion values) denoted by πi = Φk(ei). These images can be computed in O(nv) time
using the incremental algorithm and the data structure of [25]. By our assumption of
f (p) ≤ f (q) ≤ f (r), π1 and π2 are disjoint in their interiors, while π3 may share
subcurves with π1 and π2. Set π1,2 := π1 ◦ π2 to be the concatenation of π1 and π2,
which is still a monotone path, and note π1,2 and π3 share the same two endpoints.

Now if π1,2 and π3 coincide in Rk, the addition of triangle σ does not ensue any
change, that is, Rk+1 = Rk and G(k+1) = G(k). In this case, the vertical homology of
Kk remains the same; either σ destroys a horizontal homology class in H1(Kk), or it
creates a 2-cycle.

Otherwise, the H1-homology of the Reeb graph changes. Assume the two mono-
tone paths π1,2 and π3 form s simple loops between them (see the figure below where
s = 3). Then, with the addition of σ , each point in π3 is mapped to the corresponding
point in π1,2 with the same function value. Hence this process collapses all these s

independent loops and we have gk+1 = gk − s.

We now describe how to compute G(k+1) for this case. First, we need to compute
the image Ĝ := ξk(G(k)) of the set of base cycles G(k) in Rk+1. To do this, we need
the map ξk. Observe that ξk maps each edge in Rk either to the same edge in Rk+1,
or to a monotone path in Rk+1. The latter case can potentially happen only for edges
in the paths π1,2 and π3—in particular, for those edges in subcurves from π1,2 and
π3 that are merged together. Since both π1,2 and π3 are monotone, images of edges
from π1,2 and π3 can be computed in O(|π1,2| + |π3|) = O(nv) time by merging the
sorted lists of vertices in π1,2 and π3. Hence we can compute the map ξk in O(nv)

time.
Once ξk is computed, given a simple cycle γ from Rk, we can compute its image

in Rk+1 in O(nv) time. This is because (i) there are O(nv) number of edges in γ ;
and (ii) the total size of the images of edges from γ in Rk+1 has an upper bound
|γ | + |ξk(π1,2)| + |ξk(π3)| = O(nv). The set of cycles Ĝ := ξk(G(k)) in Rk+1 can
then be computed in O(nvgk) time. Let Ĝ = {γ̂1, . . . , γ̂gk}.
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The remaining task is to construct G(k+1) that is consistent with G(i) for any i ≤ k.
One needs gk+1 = rank(ξ

k,k+1∗ ) independent cycles from Ĝ to make G(k+1) consis-
tent with G(k). To this end, we perform the following two steps.

(S1) We represent each cycle in Ĝ as a linear combination of cycles in a basis for the
graph Rk+1.

(S2) We check the dependency of cycles in Ĝ in order of their birth-times, and re-
move redundant cycles to obtain G(k+1).

Step (S1) Since Rk+1 is a graph, we compute a canonical basis of cycles, B =
{α1, . . . , αgk+1}, in the following standard way. Construct an arbitrary spanning tree T

of Rk+1. Let E = {e1, . . . , egk+1} denote the set of non-tree edges in Rk+1. Each edge
ei = pq ∈ E creates a canonical cycle that concatenates edge ei with the two unique
paths in T from p and q to their common ancestor. We set αi to be this canonical
cycle created by ei . Obviously, each ei appears exactly once among all cycles in B .
Given a cycle γ ∈ Ĝ, we need to find coefficients cis such that γ = ∑gk+1

i=1 ciαi , where
each ci is either 0 or 1. Since ei appears only in αi , we have ci equal the number of
times ei appears in γ modulo 2. Since γ is a simple curve, ci is 1 if ei ∈ γ and 0
otherwise. Hence all cis for i ∈ [1,gk+1] can be computed in O(nv) time for one
curve γ . Computing the coefficients of all cycles in Ĝ takes O(nvgk) time.

Step (S2) Recall that cycles in G(k) = {γ1, . . . , γgk} are sorted by increasing or-
der of their birth-times. Note that the birth-time of the cycle γ̂i ∈ Ĝ, which is the
image of the cycle γi ∈ G(k) in Rk+1, may be smaller than the birth-time of γi . Now
represent cycles in Ĝ with respect to the canonical basis B = {α1, . . . , αgk+1} in a
matrix M , where the ith column of M , denoted by colM [i], contains the coordinates
of γ̂i under basis B; that is, γ̂i = ∑gk+1

j=1 colM [i][j ]αj . Obviously, the matrix M has
size gk × gk+1.

Next, we perform a left-to-right reduction of matrix M , which is the same as the
reduction of the adjacency matrix used in the standard persistence algorithm [10, 19].
In particular, the only operation that one can use is to add a column to another one on
its right. For a column colM [i], let its low-row index denote the largest index j such
that colM [i][j ] = 1. At the end of the reduction, each column is either empty or has
a unique low-row index; that is, no other column can have the same low-row index
as this one. We set G(k+1) as the subset of Ĝ whose corresponding columns in the
reduced matrix M ′ is not all zeros. The reduction takes time O(gk+1g2

k). Intuitively,
the consistency of G(k+1) with each G(i) for i ∈ [1,k] follows from the left-to-right
reduction. It guarantees that if a set of cycles in Ĝ are dependent, then only those
created earlier (i.e., with smaller birth-time) will be kept.

Lemma 5.2 G(k+1) as constructed above provides a basis of H1(Rk+1). Further-
more, if {G(1), . . . ,G(k)} is consistent, so is {G(1), . . . ,G(k+1)}.

Proof Let M ′ denote the reduced matrix of M . Recall that Ĝ = {γ̂1, . . . , γ̂gk} contains
the images of cycles from G(k) in Rk+1. Set Ĝi = {γ̂1, . . . , γ̂i}, and let G′

i be the set of
cycles from Ĝi whose corresponding column in the reduced matrix M ′ is non-empty
(i.e., not all zeros). In other words, G′

i = Ĝi ∩ G(k+1) is the intersection between Ĝi

and the set G(k+1) constructed by our algorithm. By induction on i, it is easy to show
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that for any i ∈ [1,gk], cycles in G′
i generate the same subgroup of H1(Rk+1) as Ĝi .

It then follows that, in the end, cycles in G(k+1) = G′
gk

are all independent in Rk+1

and |G(k+1)| equals the rank of the homology group generated by cycles in Ĝ, which
is βk,k+1 = gk+1. This proves the first part of the claim.

For the second part of the claim, first note that G(k+1) is consistent with G(k)

as Ĝ ∩ G(k+1) = G(k+1) and has cardinality gk+1. Now consider an arbitrary G(i)

with i < k. Since {G(1), . . . ,G(k)} are consistent,and cycles {γ1, . . . , γgk} in G(k) are
sorted by their birth-times, it follows from Lemma 5.1 that the first s = βi,k number of
cycles Gs = {γ1, . . . , γs} from G(k) are images of cycles from G(i). Hence the image
of cycles from G(i) in Rk+1 are exactly the cycles in Ĝs , and classes of cycles in Ĝs

generate the persistent homology group ξ
i,k+1∗ (H1(Rbf (Ki))). On the other hand, as

mentioned above, classes of cycles in G′
s = Ĝs ∩ G(k+1) generate the same subgroup

of H1(Rk+1) as Ĝs . Since cycles in G′
s are independent, G′

s has rank βi,k+1, implying
that G(k+1) is consistent with G(i), for any i ∈ [1,k]. The second part of the claim
then follows. �

Finally, for our algorithm to continue into the next iteration, we also need to main-
tain the birth-times for each cycle in G(k+1). This is achieved by the following claim.

Claim 5.3 Let G(k+1) = {γ̂I1, . . . , γ̂Igk+1
}, where Iis are the set of indices of non-zero

columns in the reduced matrix M ′. Then the birth-time of γ̂Ii
equals the birth-time of

γIi
for any i ∈ [1,gk+1].

Proof Recall that G(k+1) contains the set of cycles γ̂Ii
where {Ii} is the set of in-

dices of non-zero columns from the reduced matrix M ′. Given a cycle α ∈ G(i),
let birthtime(α) denote the birth-time of α. Assume that one of the cycles, say
γ̂m ∈ G(k+1), has a birth-time that is different from that of γm ∈ G(k). Set t :=
birthtime(γ̂m). Since γ̂m = ξk(γm), we have t ≤ birthtime(γm). Since the two birth-
times are different, t must be strictly smaller than the birth-time of γm.

Furthermore, there exists a cycle α ∈ Rt such that its image α1 := ξ t,k(α) in Rk is
not homologous to γm, while its image α2 := ξ t,k+1(α) in Rk+1 is γ̂m. On the other
hand, α1 can be uniquely written as a linear combination of a subset of cycles from
G(k), say α1 = γJ1 + · · · + γJr . It is easy to verify that the birth-time of each γJi

is
at most t . Since t < birthtime(γm), it follows that all indices Jis are strictly smaller
than m (as cycles in G(k) are sorted by their birth-times). However, this is not possible
since the resulting mth column will be all zero at the time when we reduce the mth
column to construct G(k+1) as γ̂m = ∑

i γ̂Ji
. Hence the cycle γ̂m cannot be chosen as

a base cycle in G(k+1) reaching a contradiction. It follows that t = birthtime(γm), or
more generally, birthtime(γ̂Ii

) = birthtime(γIi
) for every index Ii of non-zero column

in the reduced matrix M ′. �

Putting everything together, we conclude with the following main result.

Theorem 5.4 Given a filtration K1 ⊂ · · · ⊂ Kn of a simplicial complex Kn with
a piecewise-linear function f : Kn → R, we can compute all persistent first Betti
numbers for the induced sequence of Reeb graphs Rbf (Ki)s in O(

∑n
i=1(nvgi +
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g3
i )) = O(nn3

e) time, where nv and ne are the number of vertices and edges in Kn,
respectively, n is the size of 2-skeleton of Kn, and gi is the first Betti number of the
Reeb graph Rbf (Ki).

6 Conclusions and Discussions

In this paper, we present a simple and efficient algorithm to approximate the Reeb
graph Rbf (M) of a map f : M → R from point data sampled from a smooth and
compact manifold M. Given that Reeb graph is an abstract graph with a function
defined on it, we only approximate its topology together with the range information
for each loop in it. It will be interesting to see whether the Reeb graph we compute
from the point data is also geometrically close to some specific embedding of the
Reeb graph Rbf (M) in the hidden domain M. To this end, our results in Sect. 4.1 on
mappings between cycles can be useful.

We also study how to compute the “persistence” of loops in a Reeb graph by
measuring their life time as the defining domain grows. An immediate question is to
see whether the time complexity can be further improved to match that of the standard
persistence algorithm in the worst case.

Finally, it will be interesting to explore whether one can leverage the simple struc-
ture and efficient computation of the Reeb graph to retrieve topological information
for various spaces efficiently. For example, given a 3-manifold with a function f de-
fined on it, its vertical H1-homology is already encoded in the Reeb graph and can
thus be computed in near-linear time. Can we retrieve the horizontal H1-homology
efficiently by tracking the level sets of f , or by defining another function that is
somewhat “orthogonal” to f ?
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Appendix A: Proof for Lemma 4.3

Proof of Claim (i) Lemma 4.2 implies that h# induces an isomorphism h∗ :
H1(Rr (P )) → H1(M). We now prove the second part of claim (i).

First, we show the following two results: (C-1) given a cycle α from Z1(M), [α] =
[h#(d(α))]; and (C-2) given a cycle α̂ ∈ Z1(Rr (P )), we have [α̂] = [d(h#(α̂))]. Note
that cycles in Z1(Rr (P )) are simplicial cycles, while cycles in Z1(M) are singular
cycles.

These two results (C-1) and (C-2) imply that d maps homologous cycles from
Z1(M) to homologous cycles in Z1(Rr (P )). Hence it indeed induces a homomor-
phism d∗ : H1(M) → H1(Rr (P )). Furthermore, these two results mean that d∗ is the
inverse of the map h∗. Since h∗ is an isomorphism, so is d∗. This proves Claim (i) of
the lemma.

Proof of (C-1) We show that given a cycle α from Z1(M), [α] = [h#(d(α))]. Let
γ ⊆ M be the carrier of α. To map α to d(α), suppose that its carrier γ is broken into
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k pieces as described earlier using the Decomposition method. For the ith piece with
endpoints xi and xi+1, let pi and pi+1 be their closest point in P , respectively; recall
that d(α) is the concatenation of all edges pipi+1 for i ∈ [1, k].

Now consider the cycle h#(d(α)) in M: its carrier γ ′ is the concatenation of
h(pipi+1) ⊂ M for all i ∈ [1, k]. By Proposition 3.3 of [14], each curve h(pipi+1)

has endpoints pi and pi+1, and it is contained in the union of the two Euclidean balls
of radius r centered at pi and at pi+1. Since pi and pi+1 are within r Euclidean dis-
tance, h(pipi+1) is contained in the Euclidean balls of radius 2r centered at pi and
at pi+1. Notice that the geodesic distance and the Euclidean distance between two
points x, y ∈ M approximate each other when x and y are close enough (see e.g.,
Proposition 1.2 from [14]). It follows that when r is smaller than ρ(M)/4, h(pipi+1)

is contained in both geodesic balls of radius 3r centered at pi ∈ M and pi+1 ∈ M.
Let γ [xi, xi+1] denote the subcurve of γ from xi to xi+1. Since the length of

γ [xi, xi+1] is less than r by construction, the curve γ [xi, xi+1] is contained in
the geodesic balls of radius r centered at xi and xi+1. This implies that the curve
γ [xi, xi+1] is contained in the geodesic tubular neighborhood

Tubr

(
πg(xi, xi+1)

) := {
y ∈ M | d(

y,πg(xi, xi+1)
) ≤ r

}

where πg(x, y) denote a minimizing geodesic between two points x, y ∈ M. By
Proposition 3.7 of [14], Tubr (πg(xi, xi+1)) is contractible and hence γ [xi, xi+1] is
homotopy equivalent to πg(xi, xi+1).

On the other hand, due to the sampling condition, the geodesic distances between
xi and pi , and between xi+1 and pi+1, are both bounded by r . Combining this with
the fact that h(pipi+1) lies within the geodesic balls of radius 3r centered at both
pi and pi+1, we see that any point in h(pipi+1) is within geodesic distance 4r to
both xi and to xi+1. Hence h(pipi+1) lies within the geodesic tubular neighborhood
Tub4r (πg(xi, xi+1)). Again by Proposition 3.7 of [14], when r ≤ ρc(M)/4, the curve
πg(xi,pi) ◦ h(pipi+1) ◦ πg(pi+1, xi+1) is homotopy equivalent to πg(xi, xi+1) and
thus homotopy equivalent to γ [xi, xi+1]. In fact, one can find a homotopy hi that
keeps pi and pi+1 on the geodesics πg(xi,pi) and πg(xi+1,pi+1), respectively, so
that two maps hi and hi+1, for i ∈ [1, k − 1], are consistent in mapping the com-
mon endpoints xi+1. Therefore, we can combine all such hi ’s to obtain a homotopy
between γ ′ (which is the carrier of h#(d(α))) and γ (which is the carrier of α). It
follows that [h# ◦ d(α)] = [α]. �

Proof of (C-2) We now show that given any (simplicial) cycle α̂ ∈ Z1(Rr (P )), we
have [α̂] = [d ◦ h#(α̂)]. First, consider the image γ = h(α̂) of α̂ in M; γ is the carrier
of the cycle h#(α̂) ∈ Z1(M). By construction, γ is the concatenation of h(e)s for every
edge e = pq in the simplicial cycle α̂. By Proposition 3.3 in [14], each curve h(e)

is contained inside M ∩ (Br(p) ∪ Br(q)). Hence, for any point x ∈ h(e), its geodesic
distance to p and to q is bounded by 3r .

Now consider mapping the cycle h#(α̂) carried by γ back to Rr (P ) using the
decomposition method described earlier. Consider the set of breaking points xi ’s in
the subcurve h(e) ⊂ γ —assume for simplicity that the endpoints of h(e), that is, p

and q , are also break points. Each break point xi in h(e) will be mapped to its nearest
point pi ∈ P and the geodesic distance between xi and pi is at most r . Hence pi is
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within 3r + r = 4r geodesic distance to both endpoints p and q of the edge e ⊂ α̂.
This means that both pip and piq are edges in the Rips complex R4r (P ). Hence the
concatenation of arcs pipi+1 is homotopy equivalent to the edge e in the simplicial
complex R4r (P ). Combining this homotopy equivalent map for every edge e ∈ α̂,
we find that d(h#(α̂)) is homotopy equivalent, and thus homologous, to α̂ in R4r (P ).
Finally, since the inclusion map from Rr (P ) to R4r (P ) induces an isomorphism in
the first homology groups when r is small, we see that d(h#(α̂)) is homologous to α̂

in Rr (P ) as well. Thus [α̂] = [d(h#(α̂))]. �

Proof of Claim (ii) Claim (ii) follows easily from the constructions of d and h. In
particular, consider a cycle α ∈ Z1(M) and d(α) ∈ Z1(Rr (P )). (The case for α̂ from
Z1(Rr (P )) and h#(α̂) from Z1(M) can be similarly argued.) Let γ ⊂ M be the carrier
of α. The Decomposition method breaks γ into k pieces γ (xi, xi+1)s, for i ∈ [0, k].
Each piece γ (xi, xi+1) is mapped to the edge pipi+1 where pi is the closest point of
xi in P . Since P is an ε-sample of M, and since the length of γ (xi, xi+1) is at most
r − 2ε, any point x in γ (xi, xi+1) is within r geodesic distance to the point pi ∈ M.
Hence by the Lipschitz condition of f , we have |f (xi)−f (pi)| ≤ r ·Lipf . It follows
that

[
min

i∈[0,k]f (pi) + r · Lipf , max
i∈[0,k]

f (pi) − r · Lipf

]
⊆ range(γ ) = range(α)

⊆
[

min
i∈[0,k]f (pi) − r · Lipf , max

i∈[0,k]
f (pi) + r · Lipf

]
.

On the other hand, note that under Z2 coefficient, range(d(α)) ⊆ [mini∈[0,k] f (pi),

maxi∈[0,k] f (pi)] (and it can be much smaller than this interval). It then follows that
range(d(α)) is oneside-(r · Lipf )-close to range(α). �

Proof of Claim (iii) Consider any homology class ω ∈ H1(M). By Claim (ii) we
see that the range of d∗(ω) is oneside-(r · Lipf )-close to the range of ω: indeed,
choose the thinnest cycle α of ω, we have range(d(α)) is oneside-(r · Lipf )-close
to range(α) = range(ω). Since range(d∗(ω)) ⊆ range(d(α)), range(d∗(ω)) is also
oneside-(r · Lipf )-close to range(ω).

Now map d∗(ω) back to H1(M), we find that the range of h∗(d∗(ω)) is also
oneside-(r · Lipf )-close to the range of d∗(ω) by Claim (ii). Since h∗(d∗(ω)) = ω,
the ranges of ω and d∗(ω) are (r · Lipf )-Hausdorff-close.

The statement for ω̂ and h∗(ω̂) can be argued similarly. �

Appendix B: Existence of a Set of 0-Height Basis for H1(M)

Recall that s = rank(H1(M)). We now show how to construct a basis {h1, . . . , hs} for
the horizontal subgroup H1(M) ⊂ H1(M) such that height(hi) = 0 for any i ∈ [1, s].

Suppose we have already constructed a partial basis Hk−1 := {h1, . . . , hk−1}, each
of which has 0-height. Our goal is to find a 0-height class hk that is independent
of elements in Hk−1. In particular, let h be any horizontal homology class that is
independent of Hk−1. By definition, we can find a representative cycle γ = ∑r

i=1 γi
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of h such that each γi is contained in a distinct level set of M. Take γ1: if [γ1] is
independent of Hk−1, then simply set hk = [γ1]. Otherwise, consider the cycle γ ′ =∑r

i=2 and obviously [γ ′] is necessarily independent of classes in Hk−1. Now set h

to be γ ′ and repeat the above process. Either we terminate when some γi which is
independent of classes in Hk−1, in which case we set hk = [γi] which is of height
zero. Or the process ends when h can be represented by a cycle γ which itself is
contained in a level set. In this case, set hk = h, which is again of height 0.

Perform the above procedure for s rounds. In the end, Hs gives the desired 0-height
basis for H1(M). Note that by this construction, we also obtain a corresponding set of
0-height base cycles for H1(M).
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