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Abstract We construct oriented matroids of rank 3 on 13 points whose realization
spaces are disconnected. They are defined on smaller point-sets than the known ex-
amples with this property. Moreover, we construct one on 13 points whose realization
space is a connected but non-irreducible semialgebraic variety.
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1 Oriented Matroids and Matrices

Throughout this section, we fix positive integers r and n.
Let X = (x1, . . . , xn) ∈ R

rn be a real (r, n) matrix of rank r , and E = {1, . . . , n} be
the set of labels of the columns of X. For such a matrix X, a map XX can be defined
as

XX : Er → {−1,0,+1}, XX(i1, . . . , ir ) := sgn det(xi1, . . . , xir ).

The map XX is called the chirotope of X. The chirotope XX encodes the information
regarding the combinatorial type, which is called the oriented matroid of X. In this
case, the oriented matroid determined by XX is of rank r on E.

We note some properties which the chirotope XX of a matrix X satisfies.

1. XX is not identically zero.
2. XX is alternating, i.e. XX(iσ(1), . . . , iσ (r)) = sgn(σ )XX(i1, . . . , ir ) for all i1, . . . ,

ir ∈ E and all permutations σ .
3. For all i1, . . . , ir , j1, . . . , jr ∈ E such that XX(jk, i2, . . . , ir ) · XX(j1, . . . , jk−1, i1,

jk+1, . . . , jr ) ≥ 0 for k = 1, . . . , r , we have XX(i1, . . . , ir ) · XX(j1, . . . , jr ) ≥ 0.
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The third property follows from the identity

det(x1, . . . , xr ) · det(y1, . . . , yr )

=
r∑

k=1

det(yk, x2, . . . , xr ) · det(y1, . . . , yk−1, x1, yk+1, . . . , yr ),

for all x1, . . . , xr , y1, . . . , yr ∈ R
r .

Generally, an oriented matroid of rank r on E (n points) is defined by a map
χ : Er → {−1,0,+1}, which satisfies the above three properties ([1]). The map χ is
also called the chirotope of an oriented matroid. We use the notation M(E,χ) for an
oriented matroid which is on the set E and is defined by the chirotope χ .

An oriented matroid M(E,χ) is called realizable or constructible, if there exists
a matrix X such that χ = XX . Not all oriented matroids are realizable, but we do not
consider the non-realizable case in this paper.

Definition 1.1 A realization of an oriented matroid M = M(E,χ) is a matrix X

such that XX = χ or XX = −χ .

Two realizations X,X′ of M are called linearly equivalent, if there exists a linear
transformation A ∈ GL(r,R) such that X′ = AX. Here we have the equation XX′ =
sgn(detA) · XX .

Definition 1.2 The realization space R(M) of an oriented matroid M is the set of
all linearly equivalent classes of realizations of M, in the quotient topology induced
from R

rn.

Our motivation is as follows: In 1956, Ringel asked whether the realization spaces
R(M) are necessarily connected [6]. It is known that every oriented matroid on
less than nine points has a contractible realization space. In 1988, Mnëv showed
that R(M) can be homotopy equivalent to an arbitrary semialgebraic variety [3].
His result implies that they can have arbitrary complicated topological types. In par-
ticular, there exist oriented matroids with disconnected realization spaces. Suvorov
and Richter-Gebert constructed such examples of oriented matroids of rank 3 on 14
points, in 1988 and in 1996, respectively [5, 7]. However, it is unknown which is the
smallest number of points on which oriented matroids can have disconnected realiza-
tion spaces. See [1] for more historical comments.

One of the main results of this paper is the following.

Theorem 1.3 There exist oriented matroids of rank 3 on 13 points whose realization
spaces are disconnected.

Let d and p be positive integers. The solution of a finite number of polynomial
equations and polynomial strict inequalities with integer coefficients on R

d is called
an elementary semialgebraic set.

Let f1, . . . , fp ∈ Z[v1, . . . , vd ] be polynomial functions on R
d , and V ⊂ R

d be an
elementary semialgebraic set. For a p-tuple ε = (ε1, . . . , εp) ∈ {−,0,+}p , let

Vε := {
v ∈ V | sgn

(
fi(v)

) = εi for i = 1, . . . , p
}
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denote the corresponding subset of V . The collection of the elementary semialgebraic
sets (Vε)ε∈{−,0,+}p is called a partition of V .

In the case r = 3, a triple (i, j, k) ∈ E3 is called a basis of χ if χ(i, j, k) �= 0. Let
B = (i, j, k) be a basis of χ such that χ(B) = +1. The realization space of an ori-
ented matroid M = M(E,χ) of rank 3 can be given by an elementary semialgebraic
set

R(M,B) := {
X ∈ R

3n | xi = e1, xj = e2, xk = e3, XX = χ
}
,

where e1, e2, e3 are the fundamental vectors of R
3. For another choice of basis B ′

of χ , we have a rational isomorphism between R(M,B) and R(M,B ′). Therefore,
realization spaces of oriented matroids are semialgebraic varieties.

The universal partition theorem states that, for every partition (Vε)ε∈{−,0,+}p of
R

d , there exists a family of oriented matroids (Mε)ε∈{−,0,+}p such that the collec-
tion of their realization spaces with a common basis (R(Mε,B))ε∈{−,0,+}p is stably
equivalent to the family (Vε)ε∈{−,0,+}p . See [2] or [4] for universal partition theorems.

We construct three oriented matroids Mε with ε ∈ {−,0,+} of rank 3 on 13
points, whose chirotopes differ by a sign on a certain triple. These oriented matroids
present a partial oriented matroid with the sign of a single base non-fixed, whose re-
alization space is partitioned by fixing the sign of this base. The two spaces R(M−)

and R(M+) are disconnected, and R(M0), which is a wall between the two, is
connected but non-irreducible. So we also have the following.

Theorem 1.4 There exists an oriented matroid of rank 3 on 13 points whose realiza-
tion space is connected but non-irreducible.

Remark 1.5 An oriented matroid M(E,χ) is called uniform if it satisfies χ(i1, . . . ,

ir ) �= 0 for all i1 < · · · < ir ∈ E. Suvorov’s example on 14 points is uniform, and the
examples which we construct are non-uniform. It is still unknown whether there ex-
ists a uniform oriented matroid on less than 14 points with a disconnected realization
space.

2 Construction of the Examples

Throughout this section, we set E = {1, . . . ,13}.
Let X(s, t, u) be a real (3,13) matrix with three parameters s, t, u ∈ R given by

X(s, t, u)

:= (x1, . . . , x13)

=
⎛

⎝
1 0 0 1 s s 0 1 1
0 1 0 1 0 1 t t u

0 0 1 1 1 1 1 1 0

st s + t − u − st + su s + t − st − s2u s(t − u + su)

t t − u + su t t − u + su

1 − su 1 − u + su 1 − su 1 − u + su

⎞

⎠ .
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This is a consequence of the computation of the following construction sequence.
Both operations “∨” and “∧” can be computed in terms of the standard cross product
“×” in R

3. The whole construction depends only on the choice of the three parame-
ters s, t, u ∈ R. We have

x1 = t (1,0,0), x2 = t (0,1,0),

x3 = t (0,0,1), x4 = t (1,1,1),

x5 = s · x1 + x3,

x6 = (x1 ∨ x4) ∧ (x2 ∨ x5),

x7 = t · x2 + x3,

x8 = (x1 ∨ x7) ∧ (x2 ∨ x4),

x9 = u · x2 + x1,

x10 = (x7 ∨ x9) ∧ (x3 ∨ x6),

x11 = (x4 ∨ x5) ∧ (x8 ∨ x9),

x12 = (x1 ∨ x10) ∧ (x4 ∨ x5),

x13 = (x3 ∨ x6) ∧ (x1 ∨ x11).

We set X0 = X( 1
2 , 1

2 , 1
3 ). The chirotope χε is the alternating map such that

χε(i, j, k) =
{

ε if (i, j, k) = (9,12,13),
XX0(i, j, k) otherwise,

for all (i, j, k) ∈ E3(i < j < k),

where ε ∈ {−,0,+}.
The oriented matroid which we will study is Mε := M(E,χε).

Remark 2.1 We can replace X0 with X( 1
2 , 1

2 , u′) where u′ is chosen from R\{−1,0,
1
2 ,1, 3

2 ,2,3}. We will study the case 0 < u′ < 1
2 . If we choose u′ otherwise, we can

get other oriented matroids with disconnected realization spaces.

In the construction sequence, we need no assumption on the collinearity of
x9, x12, x13. Hence every realization of Mε is linearly equivalent to a matrix
X(s, t, u) for certain s, t, u, up to multiplication on each column with positive scalar.

Moreover, we have the rational isomorphism

R∗(χε
) × (0,∞)12 ∼= R

(
Mε

)
,

where R∗(χε) := {(s, t, u) ∈ R
3 | XX(s,t,u) = χε}. Thus we have only to prove that

the set R∗(χε) is disconnected (resp. non-irreducible) to show that the realization
space R(Mε) is disconnected (resp. non-irreducible).

The equation XX(s,t,u) = χε means that

sgn det(xi, xj , xk) = χε(i, j, k), for all (i, j, k) ∈ E3. (1)
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Fig. 1 Column vectors of X0

We write some of them which give the equations on the parameters s, t, u. Note that
for all (i, j, k) ∈ E3({i, j, k} �= {9,12,13}), the sign is given by

χε(i, j, k) = sgn det(xi, xj , xk)|s=t=1/2,u=1/3.

From the equation sgn det(x2, x3, x5) = sgn(s) = sgn(1/2) = +1, we get s > 0. Sim-
ilarly, we get det(x2, x5, x4) = 1 − s > 0; therefore,

0 < s < 1. (2)

From the equations det(x1, x7, x3) = t > 0,det(x1, x4, x7) = 1 − t > 0, we get

0 < t < 1. (3)

Moreover, we have the inequalities

det(x1, x9, x3) = u > 0, (4)

det(x4, x7, x9) = 1 − t − u > 0, (5)

det(x3, x9, x8) = t − u > 0, (6)

det(x5, x13, x7) = s
(
t2 − (1 − s)u

)
> 0, (7)

det(x6, x12, x8) = (1 − s)
(
(1 − t)2 − su

)
> 0. (8)

From the equation det(x9, x12, x13) = u(1 − 2s)(1 − 2t + tu − su), we get

sgn
(
u(1 − 2s)(1 − 2t + tu − su)

) = ε. (9)

Conversely, if we have Eqs. (2)–(9), then we get (1).
We can interpret a (3,13) matrix as the set of vectors {x1, . . . , x13} ⊂ R

3. After
we normalize the last coordinate for xi (i ∈ E\{1,2,9}), we can visualize the matrix
on the affine plane {(x, y,1) ∈ R

3} ∼= R
2. Figure 1 shows the affine image of X0. See

Figs. 2, 3 for realizations of Mε .

Proof of Theorem 1.3 We prove that R∗(χ−) and R∗(χ+) are disconnected. From
Eqs. (2)–(9), we obtain

R∗(χ−) =
⎧
⎨

⎩(s, t, u) ∈ R
3

0 < s < 1, 0 < u < t < 1 − u,

(1 − t)2 − su > 0, t2 − (1 − s)u > 0,

(1 − 2s)(1 − 2t + tu − su) < 0

⎫
⎬

⎭ ,
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Fig. 2 Realization of M− (on the left) and that of M+ (on the right)

Fig. 3 Realizations of M0

R∗(χ+) =
⎧
⎨

⎩(s, t, u) ∈ R
3

0 < s < 1, 0 < u < t < 1 − u,

(1 − t)2 − su > 0, t2 − (1 − s)u > 0,

(1 − 2s)(1 − 2t + tu − su) > 0

⎫
⎬

⎭ .

First, we show that R∗(χ−) is disconnected; more precisely, that it consists of two
connected components. We do this by proving the next proposition.

Proposition 2.2

R∗(χ−) =
{
(s, t, u) ∈ R

3 0 < s < 1/2
1/2 < t < 1

, 0 < u < min

{
1 − t,

(1 − t)2

s
,

2t − 1

t − s

}}

∪
{
(s, t, u) ∈ R

3 1/2 < s < 1
0 < t < 1/2

, 0 < u < min

{
t,

t2

1 − s
,

1 − 2t

s − t

}}
.

Proof There are two cases:

(1 − 2s)(1 − 2t + tu − su) < 0 ⇔
{1 − 2s > 0, 1 − 2t + tu − su < 0,

or
1 − 2s < 0, 1 − 2t + tu − su > 0.

Note that
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(2 − u)(2t − 1) = −2(1 − 2t + tu − su) + u(1 − 2s), (10)

t2 − (1 − s)u = −(1 − 2t + tu − su) + (1 − t)(1 − t − u), (11)

(1 − t)2 − su = (1 − 2t + tu − su) + t (t − u). (12)

(⊂) For the case 1 − 2s > 0 and 1 − 2t + tu − su < 0, the inequality 2t − 1 > 0
follows from Eq. (10). Since we have 0 < s < 1/2 < t < 1, we get

{1 − 2t + tu − su < 0,

(1 − t)2 − su > 0,

1 − t − u > 0
⇔ u < min

{
1 − t,

(1 − t)2

s
,

2t − 1

t − s

}
. (13)

For the other case 1 − 2s < 0, similarly, we get 1 − 2t > 0 from Eq. (10). Since
we have 0 < t < 1/2 < s < 1, we get

{1 − 2t + tu − su > 0,

t2 − (1 − s)u > 0,

t − u > 0
⇔ u < min

{
t,

t2

1 − s
,

1 − 2t

s − t

}
. (14)

(⊃) For the component 0 < s < 1/2 < t < 1, the inequalities 1 − 2t + tu − su <

0, (1 − t)2 − su > 0, 1 − t − u > 0 follow from (13). Thus we get t2 − (1 − s)u > 0
from Eq. (11). The inequality u < t holds because t > 1/2 and u < 1 − t .

For the other component 0 < t < 1/2 < s < 1, similarly, we get the inequalities
1 − 2t + tu − su > 0, t2 − (1 − s)u > 0, t − u > 0 from (14), and (1 − t)2 − su > 0
from Eq. (12). Last, we get u < 1 − t from t < 1/2 and u < t . �

For the set R∗(χ+), we have the following proposition.

Proposition 2.3

R∗(χ+) =
{
(s, t, u) ∈ R

3
∣∣∣∣
0 < s < 1/2,0 < u < 1/2,

(1 − u)2 − (1 − s)u > 0,

√
(1 − s)u < t <

1− su

2 − u

}

∪
{
(s, t, u) ∈ R

3
∣∣∣∣
1/2 < s < 1,0 < u < 1/2,

(1 − u)2 − su > 0,

1 − su

2 − u
< t < 1 − √

su

}
.

The proof is similar to that of Proposition 2.2 and is omitted.

Proof of Theorem 1.4 We show that R∗(χ0) consists of two irreducible components
whose intersection is not empty. From Eqs. (2)–(9), we get

R∗(χ0) =
⎧
⎨

⎩(s, t, u) ∈ R
3

0 < s < 1, 0 < u < t < 1 − u,

(1 − t)2 − su > 0, t2 − (1 − s)u > 0,

(1 − 2s)(1 − 2t + tu − su) = 0

⎫
⎬

⎭ .

Here we have the decomposition

R∗(χ0) =
{
(s, t, u) ∈ R

3
∣∣∣0 < t < 1, 0 < u < 2t2, u < 2(1 − t)2, 1 − 2s = 0

}

∪
{
(s, t, u) ∈ R

3 0 < s < 1, 0 < u < 1/2, (1 − u)2 − su > 0,

(1 − u)2 − (1 − s)u > 0, 1 − 2t + tu − su = 0

}
.
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Fig. 4 R∗ (on the top) and its
partition (R∗(χε))ε∈{−,0,+}

The intersection of the two irreducible components is the set
{
(s, t, u) ∈ R

3
∣∣∣∣s = t = 1

2
,0 < u <

1

2

}
∼=

{
X

(
1

2
,

1

2
, u

)∣∣∣∣0 < u <
1

2

}
.

The proof is also similar to that of Proposition 2.2 and is omitted. �

Figure 3 shows two realizations of M0. On the left, it shows the affine image of
X( 1

2 , 3
8 , 1

4 ), on the irreducible component 1−2s = 0. On the right, it shows the image
of X( 3

4 , 11
24 , 2

7 ), on the other component 1 − 2t + tu − su = 0. These images can be
deformed continuously to each other via X( 1

2 , 1
2 , u) (0 < u < 1

2 ).
We set

R∗ :=
{
(s, t, u) ∈ R

3
∣∣∣∣

0 < s < 1, 0 < u < t < 1 − u,

(1 − t)2 − su > 0, t2 − (1 − s)u > 0

}
.

The set R∗ × (0,∞)12 is rationally isomorphic to a realization space of a partial
oriented matroid with the sign χ(9,12,13) non-fixed. The collection of semialge-
braic sets (R∗(χε))ε∈{−,0,+} is a partition of R∗. Figure 4 illustrates this partition in
3-space.
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