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Abstract In this paper, we study tropicalizations of singular surfaces in toric three-
folds. We completely classify singular tropical surfaces of maximal-dimensional ge-
ometric type, show that they can generically have only finitely many singular points,
and describe all possible locations of singular points. More precisely, we show that
singular points must be either vertices, or generalized midpoints and barycenters of
certain faces of singular tropical surfaces, and, in some case, there may be additional
metric restrictions to faces of singular tropical surfaces.

Keywords Tropical geometry · Singularities · Discriminants · Regular subdivisions
of lattice polytopes

1 Introduction

This paper studies singularities of tropical surfaces in R
3. The question what the ana-

logue of a singularity in the tropical world should be is quite natural to ask and has
consequently interested several authors recently [3, 4, 10]. The fact that this question
is hard to answer in general makes it even more intriguing. We define a point p in a
tropical surface S to be singular if there is an algebraic surface S̃, defined over the
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Puiseux-series with coefficients in C, whose tropicalization is S and which is singu-
lar at a point p̃ ∈ S̃ that tropicalizes to p. Given a non-degenerate lattice polytope
� ∈ R

3, consider the family Sing(�) ⊂ P
#(�∩Z

3)−1 of singular hypersurfaces in the
toric threefold defined by � whose defining equations have Newton polytope �. We
assume that � is non-defective, i.e. that Sing(�) is a hypersurface in P

#(�∩Z
3)−1, de-

fined by a polynomial which is then called the discriminant of �. The tropicalization
Trop(Sing(�)) of Sing(�) has been studied in [3] and is called the tropical discrim-
inant. While a general member of Sing(�) has exactly one singular point, namely
a node, an analogous statement is not true in tropical geometry. The reason is that
for a given singular tropical surface, there can be several singular tropical surfaces
tropicalizing to it, but such that the respective singular points tropicalize to different
points in the tropical surface. Consequently, there are also general tropical surfaces
with infinitely many singularities. The subset of singular points of a tropical surface
does not seem to have any nice structure, in particular it is not a tropical subvariety.
Examples 4.5 and 4.3 of [4] show tropical curves with infinitely many resp. two sin-
gular points. We concentrate on singular tropical surfaces of maximal-dimensional
geometric type (see Definition 8 in Sect. 2.3 for a precise description). These are
the singular tropical surfaces whose parameter space is of the maximal possible di-
mension equal to #(� ∩ Z

3) − 2, which, in particular, equals the dimension of the
parameter space of singular algebraic surfaces with Newton polygon �. Specifically,
such tropical surfaces have only finitely many singular points. We completely classify
these singular tropical surfaces and describe possible locations of singular points.

Our study is closely related to [4], which deals with singular tropical hypersurfaces
of any dimension. There, a more algebraic point of view is taken however: the main
result is the description of tropical singular points in terms of Euler derivatives, i.e.
tropical equations are given which a point must satisfy to be singular. We concentrate
more on the geometry of singular tropical surfaces.

Our paper can be viewed as a sequel to [10], where we studied tropical plane
curves with a singular point. The main result of [10] is the classification of singular
tropical curves of maximal-dimensional geometric type. A singular point of a tropical
curve of maximal-dimensional geometric type is either a “crossing” of two edges, or
a three-valent vertex of multiplicity 3, or it is a point on an edge e of weight two
which has equal distance to the two vertices of e (or which satisfies a similar metric
condition, respectively). To derive this result, we used the following methods: we
considered the family of algebraic curves in a toric surface with a singularity in a
fixed point. This family is defined by linear equations, and so its tropicalization is a
Bergman fan which can be described in terms of weight classes of flags of flats of the
corresponding matroid [1, 6]. We studied the possible weight classes and classified
the corresponding tropical curves. Fixing a different point in the torus yields a shift
of the Bergman fan (see Remarks 3.1 and 3.2 of [10]).

Here, we apply the same methods to the family of algebraic surfaces in a toric
threefold with a singularity in a fixed point. While the basic ideas we use are the
same as in [10], the classification becomes much more complicated and we have to
establish and use various facts about lattice polytopes. Also, we concentrate purely on
tropical surfaces with only finitely many singularities (contrary to our classification
in the curve case in [10]). Our main result is the classification in Theorem 2. Such a
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classification is not possible in higher dimensions (see Remark 6). Theorem 1 tells us
for which tropical surfaces there are only finitely many singularities. For more details
and notation, see Sect. 4.

Theorem 1 Let � ⊂ R
n be a non-degenerate convex lattice polytope and denote by

A = � ∩ Z
n the lattice points of �. Let Fu(x) = maxm∈A{um + m · x}, x ∈ R

n,
define a generic (see Definition 16) singular tropical hypersurface S. Assume the
dual marked subdivision corresponds to a cone of codimension c in the secondary
fan. Then the set of singular points in S is a union of finitely many polyhedra of
dimension c − 1.

In the following classification below, we thus want to restrict to the case c = 1 of
generic tropical surfaces S whose dual marked subdivision corresponds to a cone of
codimension 1 in the secondary fan. (Not all cones of codimension 1 in the secondary
fan correspond to singular tropical surfaces. We do not give a complete classification
but restrict to cones of maximal-dimensional geometric type.) It follows that the dual
marked subdivision contains a unique circuit and that every marked polytope in the
subdivision which does not contain the circuit is a simplex (see Remark 7). We can
conclude from Lemma 3.1 of [4] that every singular point of S is contained in the cell
of S dual to the circuit.

In addition, we make the assumption that the tropical surface is of maximal-
dimensional geometric type (see Definition 8 in Sect. 2.3). In this case, the singular
tropical surface uniquely defines a codimension one cone of the secondary fan, and,
in the dual marked subdivision, all lattice points of � are marked. Our main result is
a complete classification of such singular tropical surfaces and of possible locations
of their singular points.

Notice that some codimension 1 cones of the secondary fan do not appear in
our classification: these correspond to singular tropical surfaces which are not of
maximal-dimensional geometric type. In this case the cone cannot be uniquely re-
stored out of the tropical surface, and the singular locus has positive dimension.

In what follows we will usually consider polytopes only up to integral unimodular
affine transformations which we refer to as IUA-equivalence.

Theorem 2 Let Fu = max(i,j,k)∈A{u(i,j,k) + ix + jy + kz} define a singular tropical
surface S. We assume that S is generic (see Definition 16) and dual to a marked
subdivision T = {(Q1, A1), . . . , (Qk, Ak)} (see Sect. 2.3) of maximal-dimensional
geometric type. Assume the dual subdivision corresponds to a cone of codimension
1 in the secondary fan. Then every marked polytope (Qi, Ai ) in T which does not
contain the circuit is a simplex, and S contains only finitely many singular points.
Their possible locations and dual polytopes, classified up to IUA-equivalence, are as
follows:

(a) If the circuit is of dimension 3 (Cases (A) and (B) in Fig. 1), the dual cell is a
vertex V of S and this vertex is the only singular point.
(a.1) Either V is adjacent to six edges and nine 2-dimensional polyhedra. Then

the dual polytope is IUA-equivalent to a pentatope with vertices (0,0,0),
(1,0,0), (0,1,0), (0,0,1) and (1,p, q) with p and q coprime (Case (A)
in Fig. 1, see also Fig. 2).
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Fig. 1 The possible circuits

Fig. 2 Case (a.1), a singular
tropical surface dual to (A) with
the singular point marked

Fig. 3 Case (a.2), a singular
tropical surface dual to (B) with
the singular point marked

(a.2) Or V is adjacent to four edges and six 2-dimensional polyhedra, just
as a smooth vertex (Case (B) in Fig. 1, see also Fig. 3). However, if
we define the multiplicity of a vertex of a tropical hypersurface analo-
gously to the case of tropical curves as the lattice volume of the cor-
responding polytope in the dual subdivision, then it follows that V is
a vertex of higher multiplicity. More precisely, the multiplicity can be
4,5,7,11,13,17,19, or 20. The dual is IUA-equivalent to a tetrahedron
with vertices (0,0,0), (1,0,0), (0,1,0) and, resp., (3,3,4), (2,2,5),
(2,4,7), (2,6,11), (2,7,13), (2,9,17), (2,13,19), or (3,7,20).

(b) If the circuit is of dimension 2 (Cases (C) and (D) in Fig. 1), the dual cell is an
edge E. We have the following cases:
(b.1) The dual of E is IUA-equivalent to a triangle with vertices ma = (0,0,0),

mc = (0,1,2) and md = (0,2,1), i.e. E is adjacent to three 2-dimensional
cells of S (Case (C) in Fig. 1). Each end vertex of E is adjacent to four
edges and six 2-dimensional polyhedra, just as a smooth vertex.
(b.1.1) E is bounded and there is a singularity at the midpoint of E or

at points which divide E with the ratio 3 : 1 (see Fig. 4). Or, E

is unbounded and there is a singularity whose distance from the
vertex of E depends on six coefficients of the tropical polynomial
(see Eq. (2) in Sect. 4.3.2).
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Fig. 4 A singular point which divides the edge E either in the midpoint or with ratio 3 : 1, and dual
subdivisions (case (b.1.1))

Fig. 5 A tropical surface with a singularity as in case (b.1.2) and its dual subdivision. The edge with the
singular point can be extended to an unbounded edge containing only the vertex V . The singular point is
at distance d from V , where d depends on the coefficients involving the two vertices V and V ′

(b.1.2) A bounded edge E admits finitely many (bounded or unbounded)
extensions to a virtual edge with a singularity at the positions de-
scribed in (b.1.1) (see Fig. 5). (Sect. 4.3.2 explains the term virtual
edge.)
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Fig. 6 Case (b.2), a dual subdivision with circuit (D) and the corresponding singular tropical surface with
the singular point marked

(b.2) E is dual to a quadrangle, i.e. adjacent to four 2-dimensional cells of S

(Case (D) in Fig. 1, see also Fig. 6). E must be bounded and its end vertices
are each adjacent to five edges and eight 2-dimensional cells. S contains a
unique singular point which is the midpoint of E.

(c) If the circuit is of dimension 1 (Case (E) in Fig. 1), then the dual is a
2-dimensional cell of S.
(c.1) If this cell is a triangle or trapeze, there is a singular point at the weighted

barycenter resp. generalized midpoint, see Sect. 4.5 (for an image see Ex-
ample 3).

(c.2) An arbitrary 2-dimensional cell admits finitely many extensions to a trian-
gle or a trapeze, with a singularity at the position described in (c.1).

Section 4.5 referred to in statement (c) of Theorem 2 contains a classification of
the possible shapes of the cell dual to the circuit and explains the terms weighted
barycenter and generalized midpoint.

Example 3 A tropical surface S can have several singularities, since there may be
several singular surfaces tropicalizing to S with different images for their singular
point. We give here an example for this behavior. Consider the polynomials

f = (
1 − 3t5 − 3t8) + (−2 + t5) · z + z2 + t8 · 1

xy
+ (

t5 + t8) · y

+ (
2t5 + t8) · x − t5 · x2yz

and

g = (
1 − 3t6 + 3t8) − (

2 + t8) · z + z2 + t8 · 1

xy
+ (

t5 − t7) · y

+ (
t5 − 2t7) · x + t5 · x2yz

over the field of Puiseux series. They both tropicalize to the tropical polynomial

Fu = max{0, z,2z,−8 − x − y,−5 + y,−5 + x,−5 + 2x + y + z}
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Fig. 7 Two singular points on a
tropical surface as weighted
barycenters

with u = (0,0,0,−8,−5,−5,−5) and define thus the same tropical surface S. More-
over, both V (f ) and V (g) are singular, however, V (f ) is singular in (1,1,1) which
tropicalizes to G = (0,0,0), while V (g) is singular in (t, t,1) which tropicalizes to
H = (−1,−1,0). Thus S has two singular points on the quadrangle dual to the cir-
cuit formed by (0,0,0), (0,0,1), and (0,0,2). The quadrangle is shown in Fig. 7,
and G = 1

3 · (A + B − E) and H = 1
3 · (C + D + E) are weighted barycenters of

the vertices A and B respectively C and D with the virtual vertex E in the sense of
Theorem 2 and Sect. 4.5 (see also Remark 17 and Examples 22 and 24).

Theorem 2 gives necessary conditions for the geometry of a singular tropical sur-
face. We can also formulate a sufficient condition, which follows from Lemma 10
and the classification:

Theorem 4 Let Fu = max(i,j,k)∈A{u(i,j,k) + ix + jy + kz} define a tropical surface
S dual to a marked subdivision of maximal-dimensional geometric type. Assume that
the dual subdivision corresponds to a cone of codimension 1 in the secondary fan,
and its unique circuit is one of the IUA-types shown in Fig. 1. Then S is a singular
tropical surface if

• either the circuit is of type (A) or (B),
• or the circuit is of type (C), (D), or (E) and it does not lie on the boundary of �,
• or the circuit is of type (C), lies on ∂� and it is the base of a pyramid P of the dual

subdivision such that vol(P ) = 9 and P � �,
• or the circuit is of type (E), lies on ∂�, and � contains three more points as

described in Proposition 21, or four more points as described in Sect. 4.6.

Furthermore, let p ∈ S be a point in the cell dual to the circuit, and assume p

satisfies conditions (a), (b) or (c) of Theorem 2 above. Then S is the tropicalization of
an algebraic surface with a singularity tropicalizing to p if and only if after shifting
S such that p becomes the origin (and accordingly adding lineality vectors to the
coefficients u such that they become equal along the circuit, see Sect. 3) the flag of
subsets F (u) (see Sect. 2.4) either is a flag satisfying the conditions of Lemma 10, or
is in the boundary of such a flag.

Note that Theorems 2 and 4 together give a complete classification of maximal-
dimensional geometric tropical surfaces and their singular points, and both the nec-
essary and sufficient criteria are easy to verify in any concrete example.
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For circuits of type (C), the singularity condition may impose non-local geometric
conditions. Non-local here means that they involve cells of the tropical surface which
are not faces of the cell dual to the circuit. The following example presents such a
situation.

Example 5 Let us consider the point configuration A with ma = (0,0,0), mb =
(0,1,1), mc = (0,1,2), md = (0,2,1), me = (1,1,1), mf = (3,0,2) and mg =
(−1,1,0), and a tropical surface S defined by a tropical polynomial Fu, u =
(ua,ub, . . . , ug). We assume that ua = ub = uc = ud ≥ ue,uf ,ug , or equivalently,
we assume that the edge E dual to the circuit satisfies y = z = 0. From Theorem 2
and Sect. 4.3.2 can conclude that S can be singular at the point p which divides E

with ratio 3 : 1, or at the point q whose position is determined by Eq. (2), or at the
point r with coordinates (

ug−ue

2 ,0,0). (The point r is the midpoint of an extension
of E to a virtual edge, see Sect. 4.3.2.) For the points q and r , the position of the
singular point is not locally determined, i.e. it is not determined purely by the linear
forms in Fu corresponding to the part of the subdivision which is dual to the edge
E and its end points, but it involves the vertex V ′ of S determined by the polytope
ma,md,me,mf (see also Fig. 5).

We now want to specify the sufficient conditions we observe in Theorem 4 in
this situation in order to decide which of the points p, q or r is a singular point of
the tropical surface. If we move p to the origin, this corresponds to adding the vec-
tor

ue−uf

2 · (0,0,0,0,1,3,−1) to the coefficient vector (ua,ub,uc, ud,ue, uf ,ug).
The new coefficients satisfy the conditions of Lemma 10 if and only if the new g-
coefficient is smaller than the new e and f -coefficients which became equal. This is
the case if and only if 2ue > ug +uf . Moving the point r to the origin corresponds to

adding the vector ug−ue

2 · (0,0,0,0,1,3,−1). The new coefficients satisfy the con-
ditions if and only if the new f -coefficient which equals is smaller than the new g

and e-coefficients, which again is the case if and only if 2ue > ug + uf . Thus S is
singular at both points p and r if and only if 2ue ≥ ug + uf .

Moving the point q to the origin corresponds to adding the vector
ug−uf

2 ·
(0,0,0,0,1,3,−1) to the coefficient vector. The new coefficient vector satisfies the
conditions of Lemma 10 if and only if 2ue < ug +uf . Thus q is a singular point of S

if and only if 2ue ≤ ug + uf . If 2ue = ug + uf then q = r and the coefficient vector
is in the boundary of three weight classes satisfying the conditions of Lemma 10. In
any case, we either have one or two singular points, depending on the coefficients
of u.

Remark 6 The classification is closely related to the study of �-equivalence classes
of marked subdivisions (see Sect. 11.3 of [8]), since by Theorem 1.1 of [3], the trop-
ical discriminant (which equals the codimension one subfan of the secondary fan
that groups maximal dimensional cones of the secondary fan into �-equivalence
classes) equals the Minkowski sum of the tropicalization of the family of curves
with a singularity in a fixed point and its lineality space. This explains why the dual
marked subdivisions of maximal-dimensional geometric singular tropical surfaces
correspond to codimension one cones of the secondary fan which separate two non-
�-equivalent maximal cones (see 11.3.10 of [8] for the smooth case): understanding
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the combinatorial types of singular tropical hypersurface is equivalent to understand-
ing �-equivalence classes. Since understanding �-equivalence classes combinatori-
ally is an open problem for dimension larger than 3, this connection restricts further
generalizations of Theorems 2 and 4 to higher dimensions.

This paper is organized as follows. In Sect. 2 the basic notions will be intro-
duced, most prominently the tropicalization Trop(Ker(A)) of the family of sur-
faces in a given toric threefold which are singular at (1,1,1). We also explain how
Trop(Ker(A)) comes in a natural way with a fan structure induced by the matroid
associated to A, and we describe the full-dimensional cones of this fan as weight
classes associated to flags of flats (see Lemma 10). It is well known from [3] that the
secondary fan of the point configuration corresponding to A is the Minkowski sum of
Trop(Ker(A)) and the lineality space. In Sect. 3 we reconsider how the Minkowski
sum of a cone in Trop(Ker(A)) with the lineality space can lie in cones of the sec-
ondary fan, and we use this to introduce the notion of a generic singular surface as
well as to prove Theorem 1. Section 4 is devoted to the classification of generic sin-
gular tropical surfaces of maximal-dimensional geometric type, and the classification
works along the classification of weight classes in Lemma 10. For the classification
also polytopes with certain properties have to be classified, and the corresponding
classification results can be found in Sect. 4 too.

2 Notations and Basic Facts

In this section, we fix notations and collect basic properties of the family of sur-
faces with a singularity in a fixed point and its tropicalization, the Bergman fan of
the corresponding linear ideal. The content of this section is parallel to Sects. 1, 2
and 3.1 of [10], only now we deal with surfaces instead of curves. We omit proofs
in this section, since they are all straightforward generalizations of the corresponding
statements in [10].

2.1 The Family of Surfaces with a Singularity in a Fixed Point

Fix a non-degenerate convex lattice polytope � ⊂ R
3 and denote by A = � ∩ Z

3 =
{m1, . . . ,ms} the lattice points of �. For any field K there is a toric threefold TorK(�)

associated to � and it comes with the tautological line bundle L� generated by the
global sections {xiyj zk : (i, j, k) ∈ A}. The torus (K∗)3 is embedded in TorK(�)

via

ΨA : (K∗)3 −→ P
A
K

: (x, y, z) 
→ (
xiyj zk | (i, j, k) ∈ A

)

and inside the torus the elements in the linear system |L�| are defined by the equa-
tions

fa =
∑

(i,j,k)∈A
a(i,j,k) · xi · yj · zk = 0
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with a = (a(i,j,k) | (i, j, k) ∈ A) ∈ (PA
K)∗. |L�| contains a nonempty linear subsystem

Singp(�) of surfaces with a singularity at the point p = (1,1,1). The equations for
this subsystem are the linear equations

fa(p) = 0,
∂fa

∂x
(p) = 0,

∂fa

∂y
(p) = 0,

∂fa

∂z
(p) = 0,

or equivalently we can say that the family Singp(�) is the kernel of the 4 × s matrix

A =
(

1 . . . 1
m1 . . . ms

)
.

Notice that A is just the matrix of the point configuration A, after raising the points
to the {t = 1}-plane in R

4, if we choose the coordinates (t, x, y, z) on R
4.

2.2 Tropicalizations

Let K denote the field of Puiseux series and val the valuation sending a Puiseux series
to the smallest exponent. For an ideal I ⊂ K[x±

1 , . . . , x±
n ] = K[x±] determining a

variety V = V (I) ⊂ (K∗)n we define the tropicalization of V to be

Trop(V ) := {(−val(x1), . . . ,−val(xn)
) | (x1, . . . , xn) ∈ V (I)

}
,

i.e. we map V componentwise with the negative of the valuation map and take the
topological closure in R

n.
We consider tropicalizations in two situations:

• The tropicalization of Singp(�) = ker(A): The linear space V = ker(A) is defined
by linear equations over Q. Trop(V ) is the so-called Bergman fan of I [1, 6].
We will study the Bergman fan Trop(ker(A)) further in Sect. 2.4. Note that, since
the linear generators of A are homogeneous, we will consider Trop(V ) modulo
the vector space spanned by (1, . . . ,1). That is, we consider Trop(Singp(�)) =
Trop(Ker(A)) as a fan in R

s−1 = R
A/(1, . . . ,1).

• The tropicalization of a surface V (fa) with a ∈ Singp(�): This is an example of
a tropical hypersurface. If V is a hypersurface defined by f = ∑

amxm, then its
tropicalization equals the locus of non-differentiability of the tropical polynomial

tropf : R
n −→ R : x 
→ max

{−val(am) + m · x}

by Kapranov’s Theorem (see [5, Theorem 2.1.1]).

Let us first study the hypersurface case more closely.

2.3 Tropical Hypersurfaces and Dual Marked Subdivisions

Tropical hypersurfaces are dual to marked subdivisions T = {(Q1, A1), . . . ,

(Qk, Ak)} (where the Qi are polytopes and the Ai marked integer points, see
[8, Definition 7.2.1] resp. [10, Sect. 2]). We define the type of a marked subdivi-
sion to be the subdivision, i.e. the collection of Qi without the markings.
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For a finite subset A of the lattice Z
d we denote by R

A the set of vectors indexed
by the lattice points in A. A point u ∈ R

A induces a regular (or coherent) marked
subdivision of � by considering the convex hull of

{
(m,um) | m ∈ A

} ⊂ R
d × R (1)

in R
d+1, and projecting the upper faces onto R

d . A lattice point m is marked if the
point (m,um) is contained in one of the upper faces. We say two points u and u′ in
R

A are equivalent if and only if they induce the same regular marked subdivision
of �. This defines an equivalence relation on R

A whose equivalence classes are the
relative interiors of convex cones. The collection of these cones is the secondary fan
of �.

Regular marked subdivisions of � are dual to tropical hypersurfaces (see e.g. [11,
Proposition 3.11]). Given a point u ∈ R

A it defines a tropical hypersurface SF as the
locus of non-differentiability of the tropical polynomial

Fu = max
{
um + m · x | m ∈ A

}
,

and it defines a regular subdivision of �. Each k-dimensional polytope in the subdi-
vision is dual to a d − k-dimensional orthogonal polyhedron of the tropical hypersur-
face.

For tropical surfaces dual to a marked subdivision of a polytope in R
3, this means

more precisely:

• each 3-dimensional polytope in the subdivision is dual to a vertex of the tropical
surface;

• each 2-dimensional face in the subdivision is dual to an edge of the tropical surface,
which is perpendicular to the plane spanned by the 2-dimensional face;

• each edge of the subdivision is dual to a perpendicular 2-dimensional polyhedron
of the tropical surface. The weight of a 2-dimensional polyhedron of the tropical
surface is defined to be #(e ∩ Z

3) − 1, where e is the dual edge in the marked
subdivision.

The duality implies that we can deduce the type of the marked subdivision from
the tropical hypersurface SF , but not the markings. To deduce the markings, we need
to know the coefficients um.

Obviously, the vector (1, . . . ,1) is contained in the lineality space of the secondary
fan. Therefore we can mod out this vector and consider the resulting fan in R

s−1 =
R

A/(1, . . . ,1) with s = #A. We have seen above that every point u in R
A defines a

tropical hypersurface via the tropical polynomial Fu = max{um + m · x}. Of course,
adding 1 to each coefficient um does not change the tropical hypersurface associated
to this polynomial. Hence if we consider R

A as a parametrising space for tropical
hypersurfaces, it makes sense to mod out the linear space spanned by (1, . . . ,1), and
we will do so in what follows. By abuse of notation, we call the fan in R

s−1 that we
get from the secondary fan in this way also the secondary fan.

The identification of R
A with R

s , s = #A, is done by fixing an ordering of the
elements of A, say m1, . . . ,ms . When referring to an element u ∈ R

A = R
s we will

sometimes refer to the coordinates of u as um with m ∈ A and sometimes simply as
ui with i = 1, . . . , s. This should not lead to any ambiguity.



890 Discrete Comput Geom (2012) 48:879–914

Fig. 8 Circuits in 3-space

Remark 7 A cone in the secondary fan of codimension one contains exactly one
circuit, i.e. a set of lattice points that is affinely dependent but such that each proper
subset is affinely independent. A circuit in 3-space consists either of the five vertices
of a pentatope such that each subset of four vertices spans the space (A), or of the
four vertices of a simplex and an interior point (B), or of four points in a plane as in
(C) resp. (D), or of three points on a line (E), as depicted in Fig. 8.

Definition 8 Given a tropical surface S, we have seen above that it is dual to a type
α = {Q1, . . . ,Qk} of a marked subdivision. We call α also the type of the tropical
surface. We can parametrize all tropical surfaces of a given type by an unbounded
polyhedron in R

3·v , where v denotes the number of vertices of S. We associate a point
in R

3·v to a tropical surface by collecting all coordinates of vertices. The polyhedron
is defined by equations and inequalities that we can deduce from the type and that
tell us which vertices are connected by an edge of which direction. We define the
dimension dim(α) of a type α to be the dimension of this parametrising polyhedron.
If the tropical surface S is singular and dim(α) = #(�∩Z

3)−2, which is the maximal
possible value for singular tropical surfaces with Newton polytope �, we say that S

is of maximal-dimensional geometric type.

For the following lemma recall that we consider the secondary fan of � as a fan
in R

A/(1, . . . ,1).

Lemma 9 Given a marked subdivision T = {(Ql, Al)} of � of type α, we have

dim(α) ≤ dim(CT ),

where CT denotes the cone of the secondary fan corresponding to T . Equality holds
if and only if in T all lattice points of � are marked, i.e. if

⋃
l Al = � ∩ Z

3.

The proof is analogous to Lemma 2.5 of [10].
Since many tropical polynomials can induce the same tropical surface, the sec-

ondary fan is not the parameter space for tropical surfaces. However, singular trop-
ical surfaces of maximal-dimensional geometric type are parametrized by the union
of (the interior of) codimension one cones of the secondary fan which correspond to
dual marked subdivisions with all lattice points marked. This feature also explains
our interest in singular tropical surfaces of maximal-dimensional geometric type.
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2.4 The Tropicalization of Singp(�) = ker(A)

We use the following known results about the tropicalization of linear spaces ([17],
Sect. 9.3, [1, 6]). The tropicalization of the linear space ker(A) depends only on the
matroid M associated to A as follows: we define M by its collection of circuits, which
are minimal sets {i1, . . . , ir} ⊂ {1, . . . , s} such that the columns bi1, . . . , bir of a Gale
dual B of A are linearly dependent. A Gale dual is a matrix B whose rows span the
kernel of A. Given u ∈ R

s , let F (u) denote the unique flag of subsets

∅ =: F0 � F1 � · · · � Fk � Fk+1 := {1, . . . , s}
such that

ui < uj ⇐⇒ ∃l : i ∈ Fl−1 and j �∈ Fl−1.

In particular,

ui = uj ⇐⇒ ∃l : i, j ∈ Fl \ Fl−1.

The weight class of a flag F is the set of all u such that F (u) = F .
A flag F is a flag of flats of the Gale dual B of A respectively of the associated

matroid M if the linear span of the vectors {bj | j ∈ Fi} contains no bk with k /∈ Fi .
As before, the vectors bj denote the columns of B . It follows from Theorem 1 of [1]
resp. Theorem 4.1 of [6] that the Bergman fan of a matroid M is the set of all weight
classes of flags of flats of M .

As a consequence, we can study Trop(ker(A)) by studying weight classes of flags
of flats of a Gale dual of A. Note that since A is a 4 × s-matrix, maximal flags of flats
can be identified with flags of s − 4 subspaces Vi ⊂ R

s−4:

{0} � V1 � · · · � Vs−4,

where each Vi is generated by a subset of the column vectors bj of the Gale dual B of
A indexed by the set Fi , and the vectors {bj | j ∈ Fi} are all the column vectors of the
Gale dual that are contained in the subspace Vi . In particular, Fs−4 = {1, . . . , s}. We
set F ′

i := Fi \ Fi−1. Each F ′
i must of course consist of at least one element j . Since

we have s vectors in total, we have four “extra” vectors that can a priori belong to
any of the F ′

i . In the next lemma, we show how the four extra vectors can be spread.

Lemma 10 With the notation from above, for each flag of flats F = F (u) of a Gale
dual B of A we have either

(a) #F ′
i = 1 for all i = 1, . . . , s − 5 and #F ′

s−4 = 5, or
(b) #F ′

s−4 = 4 and there is a j ∈ {1, . . . , s − 5} with #F ′
j = 2, or

(c) #F ′
s−4 = 3 and there is a j ∈ {1, . . . , s − 5} with #F ′

j = 3, or
(d) #F ′

s−4 = 3 and there are i < j ∈ {1, . . . , s − 5} with #F ′
i = #F ′

j = 2.

In each case, the lattice points corresponding to the indices in F ′
s−4 form a circuit. In

the first case, this is a circuit of type (A) or (B) as in Remark 7, in the second case of
type (C) or (D), and in the third and fourth case of type (E).
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In the second case, all points mr with r ∈ F ′
l , l > j , are on the same plane as the

four points of F ′
s−4, and none of the points with r ∈ F ′

j is on this plane.
In the third case, all points mr with r ∈ F ′

l , l > j , are on the same line as the three
points of F ′

s−4, and each choice of two of the points in F ′
j spans the space together

with the three points of F ′
s−4.

In the fourth case, all points mr with r ∈ F ′
l , l > j , are on the same line as the

three points of F ′
s−4, and all points mr with r ∈ F ′

l , j > l > i, are on the same plane
as the three points of F ′

s−4 and the two points of F ′
j , and the two points of F ′

i do not
lie on this plane.

The proof is a straightforward generalization of Lemma 3.7 of [10]. Note that
with this Lemma we describe only interior points of cones corresponding to weight
classes of top dimension in Trop(ker(A)). The analogous statement to Remark 3.8 of
[10] holds true as well: for any circuit and any choice of points satisfying the affine
dependencies as above we can find a corresponding weight class in Trop(ker(A)).
That means that whenever the coefficients of a tropical polynomial meet one of the
above conditions, it lifts to a polynomial over K defining a surface with singularity at
(1, 1, 1).

3 The Tropical Discriminant Revisited

For x ∈ R
n arbitrary, denote by px ∈ (K∗)n a point with val(px) = x, and con-

sider the family Singpx
(�) of surfaces with a singularity in px . Its tropicalization

Trop(Singpx
(�)) does not depend on the choice of px . Moreover, it follows from

Remark 3.2 of [10] that it is a shift of Trop(Singp(�)) = Trop(ker(A)) by a vector
which we denote by v(x) whose coordinates in R

s/(1, . . . ,1) are given by the scalar
products of the m ∈ A with x.

If we let x vary over all points in R
n, it follows that v(x) varies over all points

in the rowspace of the matrix A in R
s/(1, . . . ,1). In the following, we denote the

rowspace of A in R
s/(1, . . . ,1) by L. Notice that L also equals the lineality space of

the secondary fan.

Notation 11 Let v : R
n → L denote the linear map sending x to v(x) = (m ·x)m∈A as

above. Notice that v is a bijective linear map between vector spaces of dimension n.

This illustrates the equality Trop(ker(A))+ rowspace(A) = Trop(Sing(�)) which
is proved in Theorem 1.1 of [3]. Since we assume that � yields a non-defective
point configuration, it follows from [8], 10.1.2, that Trop(Sing(�)) is a subfan of the
codimension-one-skeleton of the secondary fan. Therefore it comes with a natural fan
structure given by the secondary fan. Since it equals Trop(ker(A)) + rowspace(A),
it also comes with a natural fan structure by weight classes of the lattice of flats of
the matroid of A. In general, these two fan structures are not compatible—cones can
overlap, cut through cones, be smashed to lower dimension etc. In the following, we
define the notion of a generic tropical surface and restrict our results in Theorems 1
and 2 to generic surfaces—these are surfaces for which the two fan structures locally
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Fig. 9 A subdivision
corresponding to a defective
weight class

around the coefficient vector u are best compatible. The set of generic surfaces is of
top dimension.

Notation 12 For a point u ∈ R
s/(1, . . . ,1), we set C(u) the unique cone of the sec-

ondary fan with u ∈ relint(C(u)). Notice that C(u) = C(u + l) for every l ∈ L.

Definition 13 We call a weight class C, i.e. a cone of Trop(ker(A)), defective if there
exists a point u ∈ C + L with dim(C + L) < dim(C(u)).

Remark 14 If C is a weight class and u ∈ C such that C(u) has codimension one in
the secondary fan, then C is defective if and only if span(C) ∩ L �= {0}.

Example 15 We consider the point configuration A = {ma,mb, . . . ,mh} with

ma = (0,0,0), mb = (0,0,1), mc = (0,0,2), md = (0,1,0),

me = (0,−1,0), mf = (1,0,0), mg = (1,1,0), mh = (−1,0,0)

and we consider the weight class

C = {xma = xmb
= xmc > xmd

= xme > xmf
= xmg > xmh

}.

The corresponding subdivision of the polytope � is shown in Fig. 9. For a point
u in the weight class C, the corresponding cone C(u) in the secondary fan is of
codimension one. However, the intersection of span(C) with the lineality space in
R

8/(1, . . . ,1) is 1-dimensional, since it contains the vector (0,0,0,0,0,−1,−1,1).
This shows that the weight class is defective.

Indeed, the weight class C shares a facet with each of the two weight classes

C′ = {xma = xmb
= xmc > xmd

= xme > xmf
= xmh

> xmg }

and

C′′ = {xma = xmb
= xmc > xmd

= xme > xmg = xmh
> xmf

}.
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The span of each of these two weight classes intersects the lineality space transver-
sally. The cone C(u) from above is just the union

(C + L) ∪ (
C′ + L

) ∪ (
C′′ + L

)
,

where actually C +L is not needed, since it is a face of both C′ +L and C′′ +L. This
is thus an example that a full-dimensional weight class in Trop(Ker(A)) may lead to
a lower dimensional cone in the tropical discriminant of A which lies in the interior
of a full-dimensional cone of the tropical discriminant.

Note that in this example the point configuration A itself is not defective, however
the subset consisting of points ma,mb,mc,md,me,mf is.

Assume C is a non-defective weight class, then C +L is contained in cones of the
secondary fan of dimension equal to dim(C + L) or less. The set of all u ∈ C with
dim(C + L) > dim(C(u)) is obviously of smaller dimension than dimC.

We now define the notion of a generic tropical surface. We choose this definition
in such a way that if we decompose the coefficient vector u of a generic surface as
v + l with v ∈ Trop(ker(A)) and l ∈ L, and C is the weight class of Trop(ker(A))

containing v in its relative interior, then all dimensions are as expected, i.e. C is of
top dimension and dim(C + L) = dimC(u).

Definition 16 We call a point u ∈ Trop(Ker(A)) + L ⊆ R
s/(1, . . . ,1) in the tropical

discriminant of A generic if it lies outside the locus formed by C + L, where a cone
C of Trop(Ker(A)) either is defective, or is not of the top dimension, or satisfies
dim(C + L) > dim(C(v)). The singular tropical hypersurface defined by the tropical
polynomial Fu is then also called generic.

From the above, it is obvious that the set of generic points in the tropical discrim-
inant is of top dimension.

Note that in Theorem 2 we consider generic surfaces whose dual marked subdivi-
sion is of codimension one in the secondary fan. For defective point configurations,
such surfaces do not exist.

Proof of Theorem 1 Let u ∈ Trop(Sing(�)) be generic. It follows from the definition
of genericity that we can write u as a sum v + l with v ∈ Trop(ker(A)) and l ∈ L,
such that the weight class C of Trop(ker(A)) which contains v in its relative interior
is top-dimensional and satisfies dim(C + L) = dim(C(v)). Assume C(v) = C(u) is
a cone of codimension c of the secondary fan. Notice that the representation of u

as a sum as above is not unique. Firstly, there might be several weight classes C in
Trop(ker(A)) such that we can write u as the sum of a vector in C and a vector in L.
Secondly, even if we fix one cone C, there might be several representations of u as
the sum of a vector in this C and a vector in L. For now, let us fix one weight class C

which allows a representation of u as u = v + l with v ∈ C and l ∈ L.
Since dim Trop(ker(A)) = s − 1 − (n + 1) (where s = #A) and v ∈ C is

in a top-dimensional weight class, we have dim(C + L) = dim(C) + dim(L) −
dim(span(C) ∩ L) = s − 1 − (n + 1) + n − dim(span(C) ∩ L) = dim(C(v)) =
s − 1 − c, where span(C) denotes the smallest linear space containing C. It follows
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that dim(span(C) ∩ L) = c − 1. Therefore there exists a c − 1-dimensional polyhe-
dron in H ⊂ C such that for all h ∈ H we have v + h ∈ C. We can thus write v also
as v = (v +h)−h, where the first summand is in C and the second summand is in L,
and these are all possibilities to represent v as a sum of a vector in C plus a vector
in L. Consequently, we can write u as u = (v + h) + (l − h) and again, these are all
possibilities to represent u as a sum of a vector in C and a vector in L. It follows that
Fu defines a tropical surface which is singular at all points xl−h, where xl−h ∈ R

n de-
notes the preimage of the bijective linear map sending x ∈ R

n to v(x) = (m · x)m∈A
from Notation 11. Since the map v−1 maps the c − 1-dimensional polyhedron l − H

to a c − 1-dimensional polyhedron, it follows that all singular points of the surface
of Fu that we get by decomposing u as a sum of a vector in C and a vector in L lie
in a c − 1-dimensional polyhedron. As we have seen above there may be several (but
finitely many) weight classes C in Trop(ker(A)) such that we can write u as the sum
of a vector in C and a vector in L, and it thus follows that the set of singular points of
the tropical surface defined by Fu is a finite union of c − 1-dimensional polyhedra. �

Remark 17 Recall again Example 3 where we had a surface S with two singular
points. These two singular points arise because we can interpret the coefficient vector
u of the tropical polynomial defining S in two ways as a sum of a vector in a weight
class of Trop(ker(A)) and a vector in the lineality space. The two weight classes are
different. The point configuration in question corresponds to the matrix

A =

⎛

⎜⎜
⎝

1 1 1 1 1 1 1
0 0 0 −1 0 1 2
0 0 0 −1 1 0 1
0 1 2 0 0 0 1

⎞

⎟⎟
⎠ ,

and the singular point G = (0,0,0) on Fu with

u = (0,0,0,−8,−5,−5,−5) ∈ Trop
(
Ker(A)

)

comes from the weight class containing u. However, we can also write u as

u = (0,0,0,−6,−6,−6,−8) + (0,0,0,−2,1,1,3) = v + l,

where

l = (0,0,0,−1,0,1,2) + (0,0,0,−1,1,0,1) = (0,0,0,−2,1,1,3)

belongs to the lineality space of the secondary fan of the point configuration and
v belongs to some other weight class. The corresponding singular point on S is
H = (−1,−1,0), since we have added once the vector of x-coordinates and once
the vector of y-coordinates to the weight vector v in the weight class in order to
get u. This corresponds to shifting the whole surface (determined by Fv , which is
singular at 0) by (−1,−1,0) (see also Notation 11 and before). Examples 22 and 24
give further explanations concerning this example.

This shows that even if the point u in the tropical discriminant is generic, the
surface corresponding to u may have more than one singular point.
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4 The Classification

Now, using the preparation from Sect. 2, we prove Theorem 2. In particular, we con-
sider the points u ∈ Trop(Sing(�)) which are generic in the sense of Definition 16,
and which in addition satisfy dim(C(u)) = s − 2, where C(u) is as in Notation 12. In
addition, we work in the situation where the dual marked subdivision as in Sect. 2.3
has all lattice points marked (see Lemma 9). Since we can always write u = v + l

for some a ∈ Trop(ker(A)) and l ∈ rowspace(A), just as in the proof of Theorem 1
above, we can classify the singularities of the tropical surface defined by Fv with
v ∈ Trop(ker(A)) first, and then investigate how the shift to Fu effects the location of
the singular points. We thus have to consider all different types of weight classes as in
Lemma 10, and the corresponding possible types of circuits. It turns out that in most
cases we do not have to worry about the shift when passing from Fv to Fu, since we
describe the location of the singular point relative to other points in the surface, e.g.
as the midpoint of an edge. This midpoint is of course shifted accordingly.

4.1 Weight Class as in Lemma 10(a), Circuit (A) of Remark 7

Let u ∈ Trop(ker(A)) be in a weight class as in Lemma 10(a), and assume F ′
s−4 =

{a, b, c, d, e}. Consider the marked subdivision defined by u as in Sect. 2.3. As the
heights of the points ma,mb,mc,md and me are biggest, it follows that the convex
hull spanned by these points is a polytope of the subdivision. Let us first assume that
this polytope is a circuit of type (A) as in Remark 7. The vertex of the tropical surface
dual to this pentatope is at the point (x, y, z) where the maximum is attained by the
corresponding five terms of trop{um + m · (x, y, z)}, in particular the five terms are
equal at this vertex. That means, we can set the five terms equal and solve for x, y

and z to get the position of the vertex. But since the coefficients are all equal, we get
x = y = z = 0 when solving. Notice that (0,0,0) is the tropicalization of the singular
point (1,1,1).

Since we require that all lattice points are marked, this polytope cannot contain
any lattice point besides these five. By Theorem 3.5 of [16], a pentatope which does
not contain any lattice point besides its five vertices are IUA-equivalent to the tuple
of points (0,0,0), (1,0,0), (0,1,0), (0,0,1) and (1,p, q) with p and q coprime. It
is a bipyramid.

It follows that in this situation the node of the tropical surface is at a vertex with
six adjacent edges and nine adjacent 2-dimensional polyhedra.

This settles case (a.1) of Theorem 2.

4.2 Weight Class as in Lemma 10(a), Circuit (B) of Remark 7

As above, it follows that the singular point (0,0,0) is dual to the convex hull of
ma,mb,mc,md and me . This is a vertex of the tropical surface with four adjacent
edges and six 2-dimensional polyhedra, just as a smooth vertex. However, if we de-
fine the multiplicity of a vertex of a tropical hypersurface analogously to the case
of tropical curves as the lattice volume of the corresponding polytope in the dual
subdivision, then it follows that the singular point is a vertex of higher multiplic-
ity. More precisely, the multiplicity can be 4,5,7,11,13,17,19 or 20. This follows
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Fig. 10 The cone Cm

from the classification of 3-dimensional tetrahedra with one interior lattice point
(and no other lattice points besides the vertices) (see [15], Theorem 7). Since we
require that all lattice points are marked, the tetrahedron which is the convex hull of
ma,mb,mc,md and me has to be of this form. The classification states that such a
tetrahedron is IUA-equivalent to one of the following eight: it has vertices (0,0,0),
(1,0,0), (0,1,0) and, respectively, (3,3,4), (2,2,5), (2,4,7), (2,6,11), (2,7,13),
(2,9,17), (2,13,19), or (3,7,20). This settles case (a.2) of Theorem 2.

4.3 Weight Class as in Lemma 10(b), Circuit (C) of Remark 7

Let F ′
s−4 = {a, b, c, d} and F ′

j = {e, f }.

4.3.1 Assume That in the Subdivision, me and mf Both Form a Pyramid with the
Triangle Spanned by ma,mb,mc and md as Base

In particular, me and mf must lie on different sides of the plane spanned by ma , mb ,
mc and md . Since there are no other circuits, and we require that all lattice points in
� are marked, both of these pyramids contain no further lattice points.

Lemma 18 Let four lattice points ma,mb,mc and md in an affine plane in R
3 form a

circuit of type (C) as in Remark 7. Let me be a fifth lattice point that forms a pyramid
with this circuit as base and assume this pyramid contains no further lattice points.
Then me has integral distance 1 or 3 from the plane spanned by the circuit.

Proof We can assume that the plane spanned by ma,mb,mc and md is the
x = 0-plane, and, using a suitable automorphism of Z

2, we can bring these four
points to (0,0), (−1,−1), (−2,−1) and (−1,−2). Denote the triangle spanned by
these points by T . Also we assume without restriction that the x-coordinate of me

is positive. We have to show that it is then either 1 or 3. Consider a lattice point m

with x-coordinate 1 and let Cm be the cone with vertex m and spanned by the rays
m, m − (0,−2,−1) and m − (0,−1,−2). Intersect this cone with the plane x = k

for some choice of k > 1 (see Fig. 10).
For any lattice point in Cm ∩ {x = k} ∩ Z

3, consider the pyramid that this point
forms with T as base. This pyramid will contain the point m. If we move m by a
step of integer length 1, the triangle Cm ∩ {x = k} is shifted by k. Compared to T the
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Fig. 11 The shifts of the
triangle Cm ∩ {x = k} on the
plane {x = k}

Fig. 12 The non-covered
region for different values of k

triangle Cm ∩ {x = k} is grown by a factor of k − 1. Of course, we can also move m

to a point with a different x-coordinate, this will add more triangles (smaller in size)
such that for each point inside a triangle we know that the corresponding pyramid
contains another lattice point. We show that for k �= 3 the shifted triangles cover all
lattice points with x-coordinate k. It follows that any pyramid with T as base and with
a vertex with x-coordinate k �= 1,3 contains another lattice point. Figure 11 shows
the plane {x = k} with the k-shifts of the triangle Cm ∩ {x = k}.

Let us compute the vertices of the right shaded region which is not yet covered by
a triangle. Assume the left most vertex of the top right triangle has coordinates (1,1)

in the plane, then it follows that the coordinates of the vertices of the shaded region
are ( 2k

3 − 1, k
3 ), ( 2k

3 + 1, k
3 + 1) and ( 2k

3 , k
3 − 1). Independently of k, this is a triangle

of lattice area 3, with the point ( 2k
3 , k

3 ) as midpoint from which we reach the three
vertices by a lattice step to the left, down, and to the upper right. This triangle has an
interior lattice point if and only if k is divisible by 3. In this case, the lattice point is
( 2k

3 , k
3 ) (see Fig. 12).

Analogously, we can compute the vertices of the left shaded region and see that
it has an interior lattice point if and only if k is divisible by 3, and then this lattice
point has coordinates ( k

3 , 2k
3 ). It follows that for any k which is not divisible by 3 the

k-shifts of the triangle Cm ∩ {x = k} ∩ Z
3 cover already all lattice points. That is, any

pyramid with T as base and with a vertex with x-coordinate which is not divisible by
3 contains another lattice point with x-coordinate 1.

If k is divisible by 3, then a pyramid with a vertex with coordinates (k, 2k
3 +

ik, k
3 + jk) or (k, k

3 + ik, 2k
3 + jk) where i, j ∈ Z does not contain a lattice point

with x-coordinate 1. Here, we take the effect of the k-shifts of Cm ∩ {x = k} ∩ Z
3

on the shaded regions into account. Let us now assume that k = 3l · h, where h �= 1
and 3 � h. Now move m to a point with x-coordinate 3l . It follows using the same
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arguments as above that any pyramid with base T and a vertex with x-coordinate k

contains a lattice point with x-coordinate 3l . Next assume that k = 3l , l ≥ 2. Using
m with x-coordinate 1 as before we see that the only possibilities to get a pyramid
which does contain a lattice point with x-coordinate 1 are that the vertex has (y, z)-
coordinates divisible by 3l−1 and not by 3l . Using m with x-coordinate 3 we see that
the only possibilities to get a pyramid which does not contain a lattice point with
x-coordinate 3 are that the vertex has (y, z)-coordinates divisible by 3l−2 and not
by 3l−1. As there is no vertex which satisfies both it follows that any pyramid with a
vertex with x-coordinate k = 3l , l ≥ 2, contains a lattice point with x-coordinate 1, or
it contains a lattice point with x-coordinate 3. In any case, it contains another lattice
point. It follows that the x-coordinate of the vertex me can only be 1 or 3. �

Remark 19 There are vertices me with integral distance 1 and 3 to the plane contain-
ing the circuit of type (C) of Remark 7 such that the pyramid formed by the circuit
and me contains no further lattice points, e.g. the convex hull of the points (0,1,0),
(0,0,1), (0,2,2) and (3,0,2), or the convex hull of the points (0,0,0), (0,1,2),
(0,2,1) and (1,0,0).

Now solve the equations given by the tropical polynomial to get the positions of
the two vertices corresponding to the two pyramids. The x-coordinates of me and
mf can either be the negative of each other, or one can be 3 and the other −1. Since
ma,mb,mc and md have biggest and equal height, it follows that the edge dual to
the convex hull of ma,mb,mc and md satisfies the equations y = 0 and z = 0. If
λ = uma is the biggest weight (the weight of ma,mb,mc and md ), and μ = ume is the
weight of me and mf , it follows that the vertex dual to the pyramid with vertex me

is at (μ − λ,0,0) (resp. ( 1
3 · (μ − λ),0,0)) and the vertex dual to the pyramid with

vertex mf is at (λ − μ,0,0) (resp. ( 1
3 · (λ − μ),0,0)). It follows that the singular

point (0,0,0) is either exactly in the middle of the edge dual to the convex hull of
ma,mb,mc and md , or subdivides the edge into parts whose distances have ratio 1 : 3.
This explains the first cases of (b.1) in Theorem 2.

4.3.2 Assume that at Most One of the Points me and mf Forms a Pyramid with the
Triangle Spanned by ma , mb , mc and md as Base

As before, assume that ma = (0,0,0), mb = (0,1,1), mc = (0,2,1) and md =
(0,1,2). Any point m that forms a pyramid with the triangle as base must have the ab-
solute value of the x-coordinate 1 or 3 due to Lemma 18, since otherwise we would
get extra lattice points, contradicting our assumption that the plane is of maximal-
dimensional geometric type. If m is a point different from me and mf but with
x-coordinate 1 or −1, then it cannot form a pyramid with the triangle as base since its
coefficient is too low. Thus we can conclude without restriction that in this situation,
there is a pyramid with the triangle as base and with a vertex m with x-coordinate 3.

Assume that me does not form a pyramid with the triangle as base. We now de-
termine the possible x-coordinates of me. We have seen already that then there is a
pyramid with vertex m with x-coordinate 3. Because μ = ume is the second biggest
coefficient, the x-coordinate of me must be smaller than 3. It cannot be 2 however,
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since then by Lemma 18 the pyramid formed by me and the triangle contains further
lattice points. Even if this pyramid is not part of the subdivision, these additional lat-
tice points would be contained in the convex body spanned by m, me and the triangle.
Because of their coefficients smaller μ, they cannot be marked points of the subdi-
vision, contradicting our assumption that the surface is of maximal-dimensional ge-
ometric type. With the same arguments, me cannot have x-coordinate −2 or smaller
−3. It follows that it must have the absolute value of the x-coordinate 1.

There are a priori several possibilities for weight classes as in Lemma 10(b) from
which our subdivision can arise. In order to determine these possibilities, we have to
decompose the coefficient vector u ∈ Trop(Sing(�)) of our tropical polynomial as a
sum v + l where v is in a feasible weight class and l is in the rowspace of A. Assume
we have already added vectors of the rowspace to u to achieve that the four points of
the circuit have equal and biggest coefficients. Next we add a multiple of the vector of
x-coordinates to make two coefficients of points outside the plane of the circuit equal
and second biggest, the two points me and mf . To all points with x-coordinate one,
we add the same value by adding the multiple of this rowspace vector. Thus there is a
unique point with x-coordinate ±1 which is a candidate to be me resp. mf —the one
with the biggest coefficient after adding rowspace vectors that make the coefficients
of the circuit equal. Candidates for me and mf are now points with x-coordinate ±3
that form a pyramid with the triangle as base, and points with x-coordinate ±1 whose
coefficient is biggest after adding rowspace vectors to make the coefficients of the
circuit equal. Also, me and mf must have different x-coordinates since otherwise the
weight class would not intersect the corresponding weight class transversely which
contradicts our assumption that u is generic (see Definition 16).

We therefore have the following four possibilities for weight classes (without re-
striction):

• Let m with x-coordinate 3 form a pyramid with the triangle, and let me be a point
with x-coordinate one. Let mf with x-coordinate −1 form a pyramid with the
triangle.

• Let m with x-coordinate 3 form a pyramid with the triangle, and let me be a point
with x-coordinate one. Let mf with x-coordinate −3 form a pyramid with the
triangle.

• Let m1 with x-coordinate 3 and m2 with x-coordinate −3 form a pyramid with the
triangle. Let me be a point with x-coordinate 1 and mf with x-coordinate −1.

• Let m = mf with x-coordinate 3 form a pyramid with the triangle, and let me be a
point with x-coordinate one.

In each of the four cases, the rowspace of A intersects the corresponding weight
class transversely, and so there is at most one solution to decompose u as a sum. The
decomposition must be possible in at least one of the cases.

The fourth case has to be treated separately. Note that the fourth case is the only
one which can also arise if the edge dual to the triangle is unbounded.

In the first three cases, we introduce the notion of a virtual edge dual to the trian-
gle. This virtual edge is just as the actual edge dual to the triangle contained in the
line y = z = 0, however it ends at points whose x-coordinates differ from the actual
x-coordinates of the vertices dual to the pyramids adjacent to the triangle. For a fixed
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weight class, i.e. for a fixed choice of me and mf as above, we define the virtual ver-
tex corresponding to me to be the vertex dual to the pyramid formed by the triangle
and me (even though this pyramid is not part of the subdivision). In the third case, we
also define the virtual vertex of mf analogously. The virtual edge connects the vir-
tual vertex of me with the (virtual or actual) vertex of mf . Note that the virtual edge
contains the actual edge. It follows from the previous subsection that in the first and
third case, the singular point is the midpoint of the virtual edge while in the second
case, it subdivides the virtual edge with ration 1 : 3.

Let us treat the first case exemplarily with more details. Denote by λ the coefficient
of ma , mb , mc and md , by μ the coefficient of me and mf and by ν the coefficient of
the point m which forms a pyramid with the triangle. We have ν < μ < λ. The virtual
vertex of me has coordinates (λ − μ,0,0), the actual vertex—i.e. the vertex corre-
sponding to the pyramid formed by m and the triangle—has coordinates (λ−ν

3 ,0,0).
Since me has x-coordinate 1 and m has x-coordinate 3 but forms a pyramid with the
triangle, we must have μ < 2λ+ν

3 . This shows that the virtual edge is indeed longer
than E.

In the fourth case, we cannot describe the location of the singular point as some
sort of midpoint as in the earlier cases, a description which does not change when
we shift. When we solve for the position of V as before, and denote by λ = uma the
highest weight, i.e. the coefficient of the four points ma, . . . ,md , and by μ = ume the
coefficient of me and mf , then as before we get ( 1

3 · (λ−μ),0,0) for the coordinates

of V . The singular point is at (0,0,0) which is a point of distance λ−μ
3 from V . This

distance will not change of course when we shift, however the coefficients λ and μ

are going to be changed by adding a vector in the rowspace of A. Since there is a
unique way of writing u as a sum of a vector in the weight class and a vector in the
rowspace, we can in fact solve for the vector in the rowspace which we need. By
our choice of coordinates for the point configuration, we can deduce that we need
to add the vector of y-coordinates in the rowspace (umb

− umc)-times and the vector
of z-coordinates (umb

− umd
)-times. Then the four new coefficients of the circuit are

equal, we have

λ = uma

= umd
+ (umb

− umc) + 2 · (umb
− umd

)

= umd
+ 2 · (umb

− umc) + (umb
− umd

)

= umb
+ (umb

− umc) + (umb
− umd

).

If M denotes the multiple of the x-vector that we add, then M has to satisfy the
equality

μ = umf
+ (umb

− umc) · mfy + (umb
− umd

) · mf z + 3 · M
= ume + (umb

− umc) · mey + (umb
− umd

) · mez + M,

where mfy is the second coordinate of mf etc., so that then the new coefficients of
me and mf are also equal. So we can solve for M and then express the distance λ−μ

3
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of the singular point from V as

λ − μ

3
= uma

3
−

(
ume

2
− umf

6

)
− (umb

− umc) ·
(

mey

2
− mfy

6

)

− (umb
− umd

) ·
(

mez

2
− mf z

6

)
. (2)

This settles case (b.1) of Theorem 2.

4.4 Weight Class as in Lemma 10(b), Circuit (D) of Remark 7

Let F ′
s−4 = {a, b, c, d}, F ′

j = {e, f }, and assume first that me and mf lie on different
sides of the plane spanned by ma,mb,mc and md . Since the two points me and mf

have the biggest heights of points outside the plane, it follows that both form a pyra-
mid with ma,mb,mc and md in the subdivision. By assumption both pyramids cannot
have any lattice point besides the five vertices. It follows from Lemma 3.3 of [16] that
the lattice distance of both points to the plane is one. Now solve the equations given
by the tropical polytope to get the positions of the two vertices corresponding to the
two pyramids. Without restriction, we can assume that ma,mb,mc and md lie in the
x = 0-plane, it follows that the x-coordinate of me is −1 and the x-coordinate of mf

is 1. Since ma,mb,mc and md have biggest and equal height, it follows that the edge
dual to the convex hull of ma,mb,mc and md satisfies the equations y = 0 and z = 0.
If λ = uma is the biggest weight (the weight of ma,mb,mc and md ), and μ = ume

is the weight of me and mf , it follows that the vertex dual to the pyramid with ver-
tex me is at (μ − λ,0,0) and the vertex dual to the pyramid with vertex mf is at
(λ − μ,0,0). The singular point (0,0,0) is thus exactly in the middle of the edge
dual to the convex hull of ma,mb,mc and md .

Now assume me and mf lie on the same side of the plane spanned by ma,mb,mc

and md . It follows from Lemma 3.3 of [16] again that none of these two points can
have an integral distance larger than one to the plane, or it would form a pyramid with
interior lattice points. Thus both me and mf have integral distance one, and form a
“triangular roof ” with ma,mb,mc and md . Again, then the dual subdivision does not
correspond to a cone of codimension 1 of the secondary fan, and we do not consider
the situation. pyramid with base ma,mb,mc and md . We can again solve for the
position of vertex dual to this pyramid and get (ν − λ,0,0). The singular point is on
an edge ending at a vertex V1 adjacent to five edges and nine 2-dimensional polyhedra
and at a vertex V2 with five adjacent edges and eight 2-dimensional polyhedra, and
its distance to V2 is bigger or equal to its distance to V1. This settles case (b.2) of
Theorem 2.

4.5 Weight Class as in Lemma 10(c), Circuit (E) of Remark 7

With the notation from Lemma 10(c) let F ′
s−4 = {a, b, c} and F ′

j = {d, e, f }. We may
assume that ma = (0,0,0), mb = (0,0,1), and mc = (0,0,2). We then distinguish
two cases. Either there is no plane containing the z-axis such that md , me and mf are
all on one side of the plane, or there is such a plane.
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Fig. 13 Lattice triangles of
lattice height one

Fig. 14 π−1(k, l) contains a
lattice point

4.5.1 Assume There Is no Plane Through the z-Axis with md , me , and mf All on the
Same Side of the Plane

In a first step we want to classify the possible polytopes spanned by ma, . . . ,mf ,
and then we will see how the corresponding tropical surfaces look like locally at the
singular point.

Lemma 20 Let P = conv((0,0,0), (0,0,2),m,m′) with m,m′ ∈ Z
3 be a 3-dimen-

sional lattice polytope such that

P ∩ Z
3 = {

(0,0,0), (0,0,1), (0,0,2),m,m′}. (3)

Projecting P orthogonally onto the xy-plane we get a triangle T which contains
no interior lattice point and where the edges with vertex (0,0) contain no relative
interior point.

Proof We denote by π : P −→ R
2 : (x, y, z) 
→ (x, y) the orthogonal projection onto

the xy-plane, so that T = π(P ).
Applying a suitable coordinate change in Gl3(Z) we may assume that m′ =

(0, β ′, γ ′) and m = (α,β, γ ) with β ′ > 0. If β ′ > 1 then π−1(0,1) is a line segment
of Euclidean length at least one and it thus contains a lattice point in contradiction
to (3). Applying a coordinate change again we can assume 0 ≤ β < α. Since β ′ = 1
the edge of T connecting the vertex (0,0) with (0, β ′) has no relative interior point.
If β = 0 or β = 1 the statement holds obviously, since then T is a triangle of lattice
height one (see Fig. 13). Note here that for β = 0 necessarily α = 1 since otherwise
above π−1(1,0) would contain an interior lattice point.

We may therefore assume

m′ = (
0,1, γ ′) and m = (α,β, γ ) with 2 ≤ β < α. (4)

Moreover, we must have gcd(α,β) = 1, since α = k · d and β = l · d with d ≥ 2
would imply that π−1(k, l) is a line segment of lattice length at least one and thus
contains a lattice point in contradiction to (3), see Fig. 14. Therefore, also the edge of
T connecting vertex (0,0) with (α,β) has no relative interior point, and if we divide
α by β with remainder we get

α = q · β + r with 1 ≤ r ≤ β − 1 and q ≥ 1. (5)
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The triangle T can be described by inequalities as follows

T =
{
(x, y) | x ≥ 0, y ≥ β

α
· x, y ≤ β − 1

α
· x + 1

}
,

which ensures that

(q,1) ∈ T .

We now want to show that

π−1(q,1) ∩ Z
3 �= ∅,

which will be a contradiction to (3).
An easy computation shows that

π−1(q,1) =
{(

q,1,
q · γ + r · γ ′ + z

q · β + r

)
| 0 ≤ z ≤ 2 · q · (β − 1)

}
,

and we have to show that there is a 0 ≤ z ≤ 2 · q · (β − 1) such that

q · β + r | (q · γ + r · γ ′) + z. (6)

We consider first the special case β = 2. Then necessarily r = 1 and there is of course
a 0 ≤ z ≤ 2 · q such that q · β + r = 2 · q + 1 divides (q · γ + γ ′) + z.

Next we consider the special case (q, r) = (1, β − 1), and we have to check if
q · β + r = 2 · β − 1 divides (γ + (β − 1) · γ ′) + z for some 0 ≤ z ≤ 2 · β − 2, which
is obviously the case.

For the general case we may now assume that β ≥ 3 and (q, r) �= (1, β − 1).
Taking (4) and (5) into account it follows that

β ≥ 2 + r

q
,

or equivalently

2 · q · (β − 1) ≥ q · β + r.

But then, there is definitely a 0 ≤ z ≤ 2 · q · (β − 1) such that (6) is satisfied.
So the case 2 ≤ β < α cannot occur, and this finishes the proof. �

Proposition 21 Let P be a lattice polytope which is the convex hull of a circuit of
type (E) and three additional lattice points m, m′ and m′′ such that any two of these
together with the circuit span R

3, P contains only the given six lattice points, and
there is no plane through the z-axis such that m, m′ and m′′ are all on the same side
of the plane, see Fig. 15.

Then the circuit is given up to IUA-equivalence by (0,0,0), (0,0,1), and (0,0,2),
and the lattice points m, m′, and m′′ satisfy the conditions in exactly one of the fol-
lowing cases:
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Fig. 15 A lattice polytope P as
in Proposition 21 with
subdivision

Fig. 16 π(P ) = T ∪ T ′ ∪ T ′′
decomposes as a union of three
triangles

Fig. 17 The five lattice triangles with one interior lattice point

(a) m = (0,1, γ ), m′ = (1,0, γ ′), and m′′ = (−1,−1, γ ′′) with γ, γ ′, γ ′′ ∈ Z arbi-
trary.

(b) m = (0,1, γ ), m′ = (2,1, γ ′), and m′′ = (−1,−1, γ ′′) with γ, γ ′, γ ′′ ∈ Z such
that γ �≡ γ ′ (mod 2).

(c) m = (0,1, γ ), m′ = (3,1, γ ′), and m′′ = (−1,−1, γ ′′) with γ, γ ′, γ ′′ ∈ Z such
that γ �≡ γ ′ (mod 3) and γ ′ �≡ γ ′′ (mod 2).

(d) m = (0,1, γ ), m′ = (3,1, γ ′), and m′′ = (−3,−2, γ ′′) with γ, γ ′, γ ′′ ∈ Z such
that γ �≡ γ ′ �≡ γ ′′ �≡ γ (mod 3).

Proof It is clear that the circuit (E) is IUA-equivalent to (0,0,0), (0,0,1), and
(0,0,2). If we denote by π : P −→ R

2 : (x, y, z) 
→ (x, y) the projection onto the
xy-plane then π(P ) is a triangle which decomposes into three triangles π(P ) =
T ∪ T ′ ∪ T ′′ as in Lemma 20, see Fig. 16. Lemma 20 therefore implies that (0,0)

is the only interior lattice point of π(P ). Lattice polygons with exactly one interior
lattice point have been classified up to IUA-equivalence, see e.g. [14] or [13], and
among them are exactly five triangles as shown in Fig. 17, where the interior lattice
point is (0,0). Applying a Z-linear coordinate change we may therefore assume that
π(P ) is one of these five triangles. In each of the cases it remains to check whether
there exist polytopes P that project to the triangle and what restrictions this poses
on the third component of the lattice points m, m′, and m′′. Actually, the only ob-
struction is that above the relative interior lattice points on the edges of the triangles
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Fig. 18 The triangle in the
tropical surface dual to the
circuit

there should be no lattice point in P . If such an edge has k relative interior lattice
points and the z-coordinates of the vertices of the edge differ by l, then some of the
relative interior lattice points lifts to a lattice point if and only if k + 1 and l are
not coprime. Therefore, T1, . . . , T4 lead to the four cases mentioned in the statement
of the proposition. For T5 we would need points m = (0,1, γ ), m′ = (4,1, γ ′), and
m′′ = (−2,−1, γ ′′) such that each of the differences γ − γ ′, γ − γ ′′ and γ ′ − γ ′′ is
coprime to two. That is obviously not possible, so that T5 cannot be the projection of
any P . �

In order to understand how the tropicalization of the singular point locally
looks like in the case we are considering, assume first that the subdivision con-
tains a polytope as considered in Proposition 21, and it is subdivided into the
three polytopes �1 = conv(ma,mc,md,me), �2 = conv(ma,mc,md,mf ) and �3 =
conv(ma,mc,me,mf ), see Fig. 15. The circuit {ma,mb,mc} is then dual to a trian-
gle in the tropical surface whose vertices are dual to �1, �2, and �3, see Fig. 18.
We assume as before that ma = (0,0,0), mb = (0,0,1) and mc = (0,0,2). Recall
that we can project P to the (x, y)-plane and obtain three triangles T , T ′ and T ′′
as in Fig. 16. The midpoint is (0,0). Denote the coordinates of the three vertices by
(r1, s1), (r2, s2) and (r3, s3). Let us use the tropical polynomial to solve for the coordi-
nates (x, y, z) of the three vertices dual to �1, �2, and �3. By assumption the heights
associated to the lattice points satisfy uma = umb

= umc and umd
= ume = umf

, and
we set u = uma − umd

. For any i = 1,2,3, the equation u + z = u has to be satis-
fied, so any of the three vertices has z-coordinate 0. In fact, the whole triangle dual
to the circuit satisfies z = 0. So we only have to solve for the (x, y)-coordinates
of the vertices. For any choice of (i, j) = (1,2), (2,3) or (3,1), the vertex dual to
the polytope which projects to the triangle spanned by (0,0), (ri , si) and (rj , sj )

has to satisfy the equations u = rix + siy and u = rj x + sj y, which are solved by
(x, y) = 1

ri sj −si rj
· (sju − siu, riu − rju). Now assign to each of the vertices the area

of the projection of the dual polytope, i.e. (risj − sirj ), as weight. Then it follows
that the weighted sum of the three vertices is (0,0,0), i.e. the singular point. Thus,
the singular point tropicalizes precisely to the weighted barycenter of the triangle
dual to the circuit. Figure 19 depicts this situation for the case that the projection is
the triangle T3 of Fig. 17.

If the subdivision locally around the circuit contains further lattice points, the local
picture may look more complicated. However, the circuit {ma,mb,mc} is still dual
to a polygon Q in the {z = 0}-plane. Moreover, in the subdivision there will still be
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Fig. 19 T3 = π(�) and the dual triangle in the tropical surface showing (0,0,0) as the weighted barycen-
ter 3·A+2·B+C

3

Fig. 20 The origin as a
generalized weighted barycenter

polytopes which contain conv(ma,mc,md) respectively conv(ma,mc,me) respec-
tively conv(ma,mc,mf ) as a facet. Therefore, the polygon Q will have three edges
dual to these facets. If one computes the intersection points of the lines through these
edges, one gets three points A, B , and C which would be dual to the polytopes �i .
This extension of the cell forms a virtual triangular cell, and the tropicalization of the
singular point is still the weighted sum of the three points A, B and C, see Fig. 20.

Example 22 A concrete example for this behavior is the singular point H =
(−1,−1,0) on the tropical surface in Example 3. We have seen in Remark 17 which
weight class corresponds to the point H = (−1,−1,0). We have

ma = (0,0,0), mb = (0,0,1), mc = (0,0,2),

md = (−1,−1,0), me = (0,1,0), mf = (1,0,0),

and one further point mg = (1,2,1). The circuit ma,mb,mc corresponds then
to quadrangle ABCD (see Fig. 21, where the vertices C = (5,−13,0) and
D = (−13,5,0) correspond to the polytopes �C = conv{ma,mc,md,me} re-
spectively �D = conv{ma,mc,md,mf } in the subdivision. The polytope �E =
conv{ma,mc,me,mf }, however, is not part of the subdivision due to the presence
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Fig. 21 The singular point as
barycenter

of mg with an appropriate height. However, �E defines a virtual point E = (5,5,0),
which is the intersection of the two lines determined by the facets conv{ma,mc,me}
and conv{ma,mc,mf } of �C respectively �D , and

H = 1

3
· (C + D + E)

is the barycenter of this virtual triangle in the tropical surface.

4.5.2 Assume There Is a Plane Through the z-Axis with md , me, and mf All on the
Same Side of the Plane

Again we first want to classify the possible polytopes spanned by ma, . . . ,mf , and
then we will see how the corresponding tropical surfaces look like locally at the
singular point.

Proposition 23 Let P be a lattice polytope which is the convex hull of a circuit of
type (E) and three additional lattice points m, m′, and m′′ such that any two of these
together with the circuit span R

3, P contains only the given six lattice points, and
there is a plane through the z-axis such that m, m′ and m′′ are all on the same side
of the plane, see Fig. 26.

Then the circuit is given up to IUA-equivalence by (0,0,0), (0,0,1), and (0,0,2),
and the lattice points m, m′, and m′′ (up to reordering) satisfy the conditions in
exactly one of the following cases:

(a) m = (−1,0, γ ), m′ = (0,1, γ ′), and m′′ = (α′′,1, γ ′′) with α′′ ≥ 1, γ ∈ Z arbi-
trary and gcd(γ ′′ − γ ′, α′′) = 1.

(b) m = (α,1, γ ), m′ = (α + l,1, γ + k), and m′′ = (α + 2 · l,1, γ + 2 · k) with
α,γ ∈ Z arbitrary and gcd(l, k) = 1.

(c) m = (α,1, γ ), m′ = (α′,1, γ ′), and m′′ = (α′′,1, γ ′′) with

det

(
α′ − α α′′ − α

γ ′ − γ γ ′′ − γ

)
= ±1.

Proof Up to IUA-equivalence we may assume that the circuit is (0,0,0), (0,0,1),
and (0,0,2). Projecting � to the xy-plane the points π(m), π(m′), and π(m′′) lie in
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Fig. 22 π(�) with the separating hyperplane

Fig. 23 The normal form of
π(�) when it is a triangle

one half plane. Due to the assumptions on � no two of these points lie on the same
line through the origin, and ordering these lines by their angle clockwise we may
assume up to reordering that the points π(m), π(m′), and π(m′′) come in this order,
see Fig. 22 for possible configurations.

We should note here first that in π(�) the point π(m′) cannot be an interior point
of conv((0,0),π(m),π(m′′)), since otherwise conv((0,0,0), (0,0,2),m,m′′) will
be in the subdivision of � which therefore satisfies the assumptions on Lemma 20,
but π(m′) would violate these assumptions. It is then natural to distinguish the two
cases that either π(m′) is on the line segment connecting π(m) and π(m′′), i.e. π(�)

is a triangle as shown on the right hand side of Fig. 22, or π(�) is a quadrangle as
shown on the left hand side of Fig. 22. In any case, applying Lemma 20 to the convex
hull of the circuit and two of the further lattice points m, m′, and m′′, we see that each
of the points π(m), π(m′), and π(m′′) has lattice distance one from the origin.

Let us first consider the case that π(�) is a triangle. Up to IUA-equivalence we
may assume that the line through π(m), π(m′), and π(m′′) is parallel to the x-axis,
i.e. π(m) = (α,β), π(m′) = (α′, β), and π(m′′) = (α′′, β) with α < α′ < α′′. By
Lemma 20 the triangle conv((0,0),π(m),π(m′′)) has no interior lattice point and
the number of lattice points on the boundary is α′′ − α + 2, so that Pick’s Formula
implies β = 1, see Fig. 23.

This case now subdivides into two subcases, namely, that the points m, m′, and
m′′ lie on a line, respectively that they form a triangle. If the three points lie on a
line, then m′ must be the midpoint of the line segment from m to m′′ and the line
segment contains no further lattice point. Thus, gcd(α′′ − α,γ ′′ − γ ) = 2 is the only
obstruction that has to be satisfied, and we are thus in Case (b) of the proposition with
l = α′′−α

2 and k = γ ′′−γ
2 . If the three points m, m′, and m′′ form a triangle, then the

only obstruction to the condition that � contains no further lattice points is that this
triangle should have lattice area one. This is precisely the condition of Case (c) in the
proposition.

It remains to consider the case that π(�) is a quadrangle. As in the proof of
Lemma 20, up to IUA-equivalence, m′ = (0,1, γ ′) and m′′ = (α′′, β ′′, γ ′′) with
0 ≤ β ′′ < α′′. Moreover, since the triangle T = conv((0,0),π(m′),π(m′′)) contains
no interior lattice point due to Lemma 20 Pick’s Formula implies that β ′′ ∈ {0,1},
and if β ′′ = 1 then necessarily α′′ = 1, since the lattice distance from π(m′′) to the
origin is one. See Fig. 24.
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Fig. 24 Possible configurations for the triangle T = conv((0,0),π(m′),π(m′′))

Fig. 25 The normal forms of π(�) when it is a quadrangle

Fig. 26 Possible subdivisions of �

Let us now consider the case β ′′ = 1 in more detail. The point π(m) = (α,β) has
to lie below the line {y = 1} and above the line {α · y = x}. Thus 0 ≥ β > α, and
applying Pick’s Formula once again we find β = 0, and then necessarily α = −1.
Analogously, we get in the case β ′′ = 0 that β ′′ = 1 and α ≥ 1. That is, π(�) is one
of the quadrangles shown in Fig. 25.

Obviously, reflecting at the plane {x = 0} and exchanging m and m′′ the two pos-
sible configuration types are equivalent, so that we may assume that β = 1. We thus
have m = (−1,0, γ ), m′ = (0,1, γ ′), and m′′ = (α′′,1, γ ′′). Only above the line seg-
ment joining π(m′) and π(m′′) there could be an additional lattice point in � if the
coordinates γ ′ and γ ′′ are chosen inappropriately, and the condition to avoid this is
gcd(γ ′′ −γ ′, α′′) = 1. We are thus in Case (a) of the proposition, and this finishes the
proof. �

We now have to see how the tropical surface looks locally at the tropicalization of
the singular point, i.e. locally at (0,0,0). As in Sect. 4.5.1 we want to restrict first to
the case where the Newton polytope � is just the convex hull of ma, . . . ,mf , and in
the notation of Proposition 23 we may assume that md = m, me = m′, and mf = m′′.
Moreover, we will consider the Case (a) in Proposition 23 first. In the subdivision
of � there will be exactly two polytopes which contain the circuit ma , mb , and mc,
namely �A = conv(ma,mb,mc,md,me) and �B = conv(ma,mb,mc,me,mf ), see
Fig. 26. The subdivision may contain a third polytope conv(ma,md,me,mf ), re-
spectively, conv(mc,md,me,mf ) which does not contain the circuit, and which con-
sequently will not matter for the singular point.

The tropicalization of the singular point will then be contained in the plane seg-
ment dual to the circuit. This segment will be unbounded, but it has two vertices
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Fig. 27 The singular point at
the virtual barycenter.

A and B which are dual the polytopes �A and �B . Moreover, if we consider
the lines through the line segments which are dual to conv(ma,mb,mc,md) and
conv(ma,mb,mc,mf ) respectively, then these will intersect in a point C which is
dual to the polytope conv(ma,mb,mc,md,mf ) which is not part of the subdivi-
sion. Anyway, if we assign to the points A, B , and C as weights the lattice area
of the corresponding triangle in π(�), e.g. B gets as weight the lattice area α′′
of conv((0,0), (0,1), (α′′,1)), and if we moreover consider the weight of C nega-
tively, since C lies outside the plane segment, then the tropicalization of the singu-
lar point is the weighted sum of A, B , and C. In the normal form a simple com-
putation gives A = (−u,u,0), B = (0, u,0) and C = (−u, (1 + α′′) · u,0), and
A+α′′·B−C

3 = (0,0,0). We could thus interpret the tropicalization of the singular point
as a virtual weighted barycenter of the virtual triangle ABC, see Fig. 27.

In our classification we need not consider the Case (b) in Proposition 23, since
there the weight class C in Trop(Ker(A)) corresponding to this situation is defective
because span(C) intersects the lineality space in the vector corresponding to the y-
coordinates of the point configuration.

The Case (c) in Proposition 23 differs from Case (a) by the fact that the points A,
B , and C all coincide, and that the plane segment corresponding to the circuit has
only one vertex. However, it remains true that the tropicalization of the singular point
is the weighted sum of A, B , and C.

Finally, if the Newton polytope contains further points the situation becomes more
complicated. The polytopes �A and �B might be subdivided further, and conse-
quently the vertices A and B might be cut off, similar to the situation described in
Fig. 20. As in Sect. 4.5.1 we can still identify the virtual points A, B , and C and their
weighted sum is the tropicalization of the singular point.

Example 24 A concrete example for this behavior is the singular point G = (0,0,0)

on the tropical surface in Example 3. Here

ma = (0,0,0), mb = (0,0,1), mc = (0,0,2),

md = (1,2,1), me = (0,1,0), mf = (1,0,0),

and one further point mg = (−1,−1,0). Note that the points md,me,mf are all on
the same side of the plane x + y = 0 through the circuit. The circuit ma,mb,mc cor-
responds then to quadrangle ABCD (see Fig. 28, where the vertices A = (0,5,0)

and B = (5,0,0) correspond to the polytopes �A = conv{ma,mc,md,me} re-
spectively �B = conv{ma,mc,md,mf } in the subdivision. The polytope �E =
conv{ma,mc,me,mf }, however, is not part of the subdivision and defines only a
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Fig. 28 The singular point as
barycenter.

virtual point E = (5,5,0), which is the intersection of the two lines determined by
the facets conv{ma,mc,me} and conv{ma,mc,mf } of �A respectively �B . In this
situation and

G = 1

3
· (C + D − E)

is the virtual weighted barycenter of this virtual triangle in the tropical surface. Note
here that the virtual vertex E comes with a negative weight since it lies outside the
plane segment dual to the circuit even if we only consider the points ma, . . . ,mf .
Note also that the plane segment dual to the circuit is bounded due to the presence of
the additional point mg .

4.6 Weight Class as in Lemma 10(d), Circuit (E) of Remark 7

Let F ′
s−4 = {a, b, c}, F ′

j = {d, e} and F ′
i = {f,g}. We assume without restriction

that ma = (0,0,0), mb = (0,0,1) and mc = (0,0,2). Dual to this circuit is then
as before a 2-dimensional polyhedron satisfying z = 0. We know that in this situa-
tion, the points md and me lie in a plane with the line {x = y = 0}, we can assume
that this plane satisfies y = 0. Let us first assume that md and me lie on different
sides of the line, i.e. we assume that md has positive x-coordinate and me has neg-
ative x-coordinate. Then the triangle with vertices ma , mc and md (resp. me) will
be a face of a polytope in the subdivision. If md or me had integral distance big-
ger one from the circuit, this face would contain extra lattice points, contradicting
our assumption that the surface is of maximal-dimensional geometric type. It fol-
lows that md has x-coordinate 1 and me has x-coordinate −1. Also, the triangle
spanned by ma , mc and mf (resp. mg) are faces of the subdivision and thus mf and
mg must have integral distance one to the plane {y = 0}. Let us first assume mf

has y-coordinate 1 and mg has y-coordinate −1. Assume first that the subdivision
locally contains only the polytopes conv(ma,mc,md,mf ), conv(ma,mc,me,mf ),
conv(ma,mc,md,mg) and conv(ma,mc,me,mg). Then corresponding to this part
of the subdivision we have a quadrangle on the surface. Let us solve for the (x, y)-
coordinates of the four vertices. Assume md = (1,0, γ ), me = (−1,0, γ ′), mf =
(α,1, γ ′′) and mg = (α′,−1, γ ′′′). Let us denote by u = uma − umd

the difference
of the weights of ma and md and by w = umd

− umf
the difference of the weights

of md and mf . Then the coordinates of the four vertices are A = (u,w + (1 − α)u),
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Fig. 29 The trapeze with the
singular point as its midpoint,
and the more general situation

B = (−u,w + (1 + α)u), C = (u,−w + (α′ − 1)u) and D = (−u,−w − (1 + α′)u).
That is, the quadrangle is a trapeze with the singular point (0,0,0) = A+B+C+D

4 as
its midpoint, as depicted in Fig. 29 on the left.

If the subdivision contains more polytopes than just these four locally around the
circuit, then we get a polygon with more sides. The four edges of the trapeze are still
present, and the singular point is still the midpoint. We can thus extend the cell to a
virtual trapeze cell. This more general situation is depicted in Fig. 29 on the right.

If md and me are on the same side of the circuit in the plane {y = 0}, then they
must both be of integral distance one, and they form a quadrangle with the circuit
which is a face of the subdivision. Thus the dual subdivision does not correspond to
a cone of the secondary fan of codimension 1, and we do not consider the situation.
Analogously, if mf and mg are on the same side of the plane {y = 0}, they must both
have integral distance one to {y = 0}. However, since the edge connecting mf and
mg and the circuit do not need to lie in a plane, it may be that only one of the points
mf or mg forms a facet of the subdivision with the circuit. In this case, the dual
subdivision corresponds to a cone of codimension 1. However, since the span of the
corresponding weight class intersects the rowspace of A non-trivially (both contain
the vector of x-coordinates of the points m ∈ A), this weight class is defective and
we do not consider the situation.
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