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Abstract A universal tiler is a convex polyhedron whose every cross-section tiles
the plane. In this paper, we introduce a slight-rotating operation for cross-sections
of polyhedra. By applying the operation to suitably chosen cross-sections, we prove
that a convex polyhedron is a universal tiler if and only if it is a tetrahedron or a
pentahedron with parallel facets.
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1 Introduction

A tiler is a polygon that can cover the plane by congruent repetitions without gaps
or overlaps. The problem of determining all tilers, which is alternatively called the
problem of tessellation or of plane tiling, is one of the most famous problems in
discrete mathematics. It is still open to the best of our knowledge. The reader is
referred to Grunbaum and Shephard’s book [3] for an introduction to the theory of
tessellation, and to Brass, Moser and Pach’s book [2] for many further problems and
results on tiling.

Considering a variant of the problem of plane tiling, Akiyama [1] found all con-
vex polyhedra whose every development is a tiler. The key idea in his proof is to find
whether the facets of a polyhedron tile the plane in a certain stamping manner. Notic-
ing that facets are special cross-sections, we study another variant of the problem of
plane tiling, namely, what kind of polyhedra are so well performed that each of its
cross-sections is a tiler.
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Let P be a convex polyhedron, and π a plane. Denote the intersection of π and P
by C(π). We say that π intersects P non-trivially if C(π) is a non-degenerated poly-
gon, that is, C(π) is a polygon with at least 3 edges. We call C(π) a cross-section
if π crosses P nontrivially. The polyhedron P is said to be a universal tiler if every
cross-section of P is a tiler. The goal of this paper is to determine all universal tilers.

With the aid of Euler’s formula, and Reinhardt’s theorem [5], the author [7] man-
aged to obtain the following necessary condition for the number of faces of a universal
tiler by investigating specific cross-sections of any given polyhedron.

Theorem 1.1 Any universal tiler has at most five facets. Moreover, a convex polyhe-
dron is a universal tiler if it is a tetrahedron or a pentahedron with parallel facets.

In light of the above theorem, the problem of determining all universal tilers turns
out to be one of finding the list of pentahedronal universal tilers. One of the difficulties
in determining whether a pentahedron is a universal tiler is the fact that the list of
pentagonal tilers is not known, although there are 14 classes of pentagonal tilers are
found, see Hirschhorn and Hunt [4], and Sugimoto and Ogawa [6] for instance.

The key idea used in solving the universal tiler problem consists of two parts. The
first part is to construct some technical conditions subject to which we can specify
a cross-section of any given pentahedron. It is an extension of the method adopted
in [7]. The other part is to introduce a slight-rotating operation and apply it to the
specified cross-sections. Here is our main result.

Theorem 1.2 A convex polyhedron is a universal tiler if and only if it is a tetrahedron
or a pentahedron with parallel facets.

Our proof of the above theorem has nothing to do with the knowledge of the
complete list of pentagonal tilers. This paper is organized as follows. In the next
section, we give necessary notions and notations on tessellations of the plane formed
by a single pentagon. Section 3 is devoted to the construction of technical conditions
and to the introduction of the slight-rotating operation. In Sect. 4, we complete the
proof of Theorem 1.2.

2 Preliminary

In this section, we introduce some necessary notions and notations. Let T =
V 1V 2 · · ·V 5 be a pentagonal tiler. Let T be a tessellation of the plane by copies
of T . Denote the copies used in T by {Ti = V 1

i V 2
i · · ·V 5

i : i ∈ Λ}, where Λ is a set.
Then every Ti has the same shape as T .

Let i ∈ Λ and ε > 0. Since T is a tiler, the ε-neighborhood of the point V
j
i in T

must be covered without gaps or overlaps. It follows that either there is a sequence
V

j
i ,V

j1
i1

,V
j2
i2

, . . . , V
jk

ik
(k ≥ 2) of angles arranged counter-clockwise which complete

the 2π angle around the point V
j
i , or there is a sequence V

j1
i1

, . . . , V
jk

ik
, V

j
i ,V

t1
s1 , . . . ,
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Fig. 1 The local tessellation

around the point V
j
i

Fig. 2 The arrangement (2.3)

V
th
sh (k + h ≥ 1) of angles arranged counter-clockwise which adds to π (see Fig. 1).

In the former case, we denote the local tessellation around the point V
j
i by

S
(
V

j
i

) = [
V

j
i ,V

j1
i1

, V
j2
i2

, . . . , V
jk

ik

]
. (2.1)

In the latter case, we denote it by

S
(
V

j
i

) = [
V

j
i , V t1

s1
, . . . , V th

sh
, π, V

j1
i1

, . . . , V
jk

ik

]
. (2.2)

Suppose that there is a sequence V
j1
i1

V
k1
i1

,V
j2
i2

V
k2
i2

, . . . , V
js

is
V

ks

is
of s collinear edges

such that the point V
kr

ir
coincides with the point V

jr+1
ir+1

for each 1 ≤ r ≤ s − 1, and the

copies Ti1, Ti2, . . . , Tis lie on the same side of the directed line segment �l = V
j1
i1

V
ks

is
.

In this case, we denote

�l = V
j1
i1

V
k1
i1

+ V
j2
i2

V
k2
i2

+ · · · + V
js

is
V

ks

is
.

Assume also that

�l = V
j ′

1
i′1

V
k′

1
i′1

+ V
j ′

2
i′2

V
k′

2
i′2

+ · · · + V
j ′
t

i′t
V

k′
t

i′t

such that the copies Ti′1 , Ti′2 , . . . , Ti′t lie on the other side of �l (see Fig. 2). In this case,

we say that �l is represented in T , and is denoted as

S
(
V

j1
i1

V
k1
i1

, V
j2
i2

V
k2
i2

, . . . , V
js

is
V

ks

is

) = [
V

j ′
1

i′1
V

k′
1

i′1
, V

j ′
2

i′2
V

k′
2

i′2
, . . . , V

j ′
t

i′t
V

k′
t

i′t

]
. (2.3)

Let Z, Z
+ and N denote the set of integers, positive integers and nonnegative

integers, respectively. Let N > 0 and a1, . . . , a5 ∈ N. We say that the set
{
a1V

1, a2V
2, . . . , a5V

5} (2.4)

is a sum-N -collection if N = ∑5
i=1 aiV

i . We call the set (2.4) a sum-N -collection of
the angle V j if aj ≥ 1. For convenience, we remove the term aiV

i from the collec-
tion (2.4) if ai = 0. Denote by RN(V j ;T ) the set of sum-N -collections of V j in T .
To simplify notation, we write R2π (V j ;T ) = R(V j ;T ). Since T is a tiler, we have

R
(
V j ;T ) �= ∅
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Fig. 3 The pentagon AEFCD

for any 1 ≤ j ≤ 5. For example, if

V 1 = V 2 = 5π

6
, V 3 = 2π

3
, V 4 = V 5 = π

3
,

then we have

R
(
V 1;T ) = {{

2V 1,V 4},
{
2V 1,V 5},

{
V 1,V 2,V 4},

{
V 1,V 2,V 5}},

Rπ

(
V 3;T ) = {{

V 3,V 4},
{
V 3,V 5}}.

Note that the sum of any four angles of a pentagon is larger than 2π , while the sum
of any three angles is larger than π . This immediately leads to the following lemma.

Lemma 2.1 Any sum-2π -collection (2.4) has at most three positive aj , while any
sum-π -collection (2.4) has at most two positive aj .

3 The Slight-Rotating Operation

In this section, we construct some technical conditions and introduce the slight-
rotating operation. As will be seen, for any given pentahedron, there always exists
a cross-section satisfying these conditions.

Denote by E the set of convex pentahedronal universal tilers without parallel
facets. To establish Theorem 1.2, it suffices to prove that E = ∅. We will do this
by contradiction. Throughout this paper, we assume that P ∈ E .

It is well-known that pentahedra have two distinct topological types. The first con-
sists of quadrilateral-based pyramids. The other typical pentahedra have two trian-
gular bases and three quadrilateral facets joining the corresponding sides of the two
bases. In particular, we see that any pentahedron has a quadrilateral facet. Let

Q = ABCD

be a quadrilateral facet of P . Let E be a point lying in the interior of the line seg-
ment AB such that E is neither A nor B . In this case, we write E ∈ AB . Set another
point F ∈ BC. As illustrated in Fig. 3, we have a convex pentagon T = AEFCD.
In [7], the author took a cross-section of P by rotating T a bit along the line EF ,
where E is close to A, and F is near B . In this paper, we extend this method by
selecting the points E and F more carefully. The following lemma will be frequently
used in the proof of Lemma 3.2.

Lemma 3.1 Let N ≥ 0. Then the two sets
{
θ > B/2 : N = a · θ + b · φ + c · ψ, a ∈ Z

+, b, c ∈ N, φ,ψ ∈ {A,C,D}}
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and

{
l < N : l = a · CD + b · DA + c · AE, a, b ∈ N, c ∈ {0,±1,±2}}

are of finite cardinality.

The above lemma is easy to prove and we omit its proof.

Lemma 3.2 There exists some δE > 0 such that for any point E ∈ AB with AE < δE ,
there exists some δF = δF (E) > 0 such that for any point F ∈ BC with BF < δF ,
the pentagon T = AEFCD satisfies

(i) 2AE < min{EF,FC,CD,DA};
(ii) R(E;T ) = R(F ;T ) ⊆ {{E,F, cγ } : c ∈ Z

+, γ ∈ {A,C,D}};
(iii) for any a, b ∈ N, c ∈ {0,±1,±2}, and l ∈ {EF,2FC}, we have

l �= a · CD + b · DA + c · AE.

Proof Choose a point E ∈ AB and move it towards A such that the point E can be
arbitrarily close to but never coincide with the point A. Similarly, choose F ∈ BC

and move it towards B such that F can be arbitrarily close to but never coincide with
the point B . Let

x = max{AE,BF }.
In the above transformation, the pentagon T tends to the quadrilateral Q. To be more
precise, the lengths of edges vary in such a way that

lim
x→0

AE = 0, lim
x→0

EF = AB, lim
x→0

FC = BC, (3.1)

while the sizes of angles vary as

lim
x→0

∠AEF = π, (3.2)

lim
x→0

∠EFC = B. (3.3)

By (3.1), there exists some δ1 such that the condition (i) holds for any x < δ1.
By Lemma 2.1, we have

R(E;T ) ⊆ {{aE,bβ, cγ } : a ∈ Z
+, b, c ∈ N, β, γ ∈ {F,A,C,D}}. (3.4)

By (3.2) and (3.3), there exists some δ2 < δ1 such that for any x < δ2, we have

2E + α > 2π, ∀α ∈ {A,F,C,D}.
Let x < δ2. Then a = 1 in (3.4). By Lemma 3.1 and the limit (3.2), there exists
some δ3 < δ2 such that for any x < δ3, we have

E + bβ + cγ �= 2π, ∀b, c ∈ N, β, γ ∈ {A,C,D}.
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Let x < δ3. In view of (3.4), we have

R(E;T ) ⊆ {{E,bF, cγ } : b ∈ Z
+, c ∈ N, γ ∈ {A,C,D}}. (3.5)

Note that

E + F = π + B. (3.6)

So, every sum-2π -collection {E,bF, cγ }, with b ≥ 1, corresponds to a sum-(π −B)-
collection {b′F,cγ }, where b′, c ∈ N and γ ∈ {A,C,D}. By Lemma 3.1 and the
limit (3.3), there exists some δ4 < δ3 such that for any x < δ4, we have

b′F + cγ �= π − B, ∀b′ ∈ Z
+, c ∈ N, γ ∈ {A,C,D}.

Let x < δ4. So b′ = 0 and consequently b = 1. By (3.6), we see that c ≥ 1. This
proves that

R(E;T ) ⊆ {{E,F, cγ } : c ∈ Z
+, γ ∈ {A,C,D}}. (3.7)

Along the same lines, we have

R(F ;T ) ⊆ {{aF,bβ, cγ } : a ∈ Z
+, b, c ∈ N, β, γ ∈ {E,A,C,D}}. (3.8)

By Lemma 3.1 and the limit (3.3), there exists some δ5 < δ4 such that for any x < δ5,

aF + bβ + cγ �= 2π, ∀a ∈ Z
+, b, c ∈ N, β, γ ∈ {A,C,D}.

In view of (3.8), we deduce that

R(F ;T ) ⊆ {{aF,bE, cγ } : a, b ∈ Z
+, c ∈ N, γ ∈ {A,C,D}}.

So any sum-2π -collection of F is a sum-2π -collection of E. From (3.7), we get
R(F ;T ) = R(E;T ). This proves the condition (ii).

Take δE = δ5. By Lemma 3.1, there exists some δF depending on the choice of E

such that the condition (iii) holds for any F ∈ BC with BF < δF . This completes the
proof. �

We remark that the points E and F can be chosen from any other pair of adjacent
edges of Q, subject to analogous conditions. This idea will be employed in the proof
of Theorem 4.1.

Fix two points E0 ∈ AB and F 0 ∈ BC satisfying the conditions (i)–(iii), and
consider the resulting pentagon P 0 = A0E0F 0C0D0, where A0 = A, C0 = C,
and D0 = D. Now we recursively define a sequence {P k}k≥1 of proper pentagonal
cross-sections.

Let π be a plane which crosses P nontrivially. Let l be a line in π . For any ε > 0,
denote by πε+ (resp. πε−) the plane obtained by rotating π around l by the angle ε

(resp. −ε). It is clear that there exists some ε such that at least one of the planes πε+
and πε− crosses P nontrivially. Denote

p(π; l; ε) =
{

πε+, if πε+ crosses P nontrivially;
πε−, otherwise.
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Intuitively, the plane p(π; l; ε) is obtained by rotating π a little along l. For simplify-
ing notation, we use cr(π; l; ε) to denote the intersection C(p(π; l; ε)). We say that
a cross-section is proper if none of its vertices is a vertex of P . Let CP be the set of
proper pentagonal cross-sections of P . Since every vertex of Q has valence 3, there
exists some δ0 > 0 such that

cr
(
P 0;E0F 0; ε) ∈ CP

for any 0 < ε ≤ δ0. Define

P 1 = cr
(
P 0;E0F 0; δ0

) = A1E1F 1C1D1 (3.9)

to be the initial cross-section. In particular, we have E1 = E0 and F 1 = F 0. Suppose
that P k ∈ CP is well defined for some k ≥ 1. Let ek

1, e
k
2, . . . , e

k
5 be the edges of P k .

It is clear that there exists some 0 < δk < δk−1 such that for any 0 < ε ≤ δk and any
edge ek

j , we have

cr
(
P k; ek

j ; ε
) ∈ CP .

Choosing an edge ek
j , we can define

P k+1 = cr
(
P k; ek

j ; δk

)
. (3.10)

Then P k+1 ∈ CP . Note that the cross-section P k+1 depends on the choices of ek
j

and δk , while the value of δk depends on P k but is independent of the choice of ek
j .

We call the above procedure of getting P k+1 from P k the slight-rotating operation.
Since all cross-sections P k are proper, the slight-rotating operation has a sign-

preserving property if we take δk small enough. Now we clarify the property. Denote
by sgn(x) the signum function, i.e., for any real number x,

sgn(x) =
⎧
⎨

⎩

1, if x > 0;
0, if x = 0;
−1, if x < 0.

Let i ≥ 0,N > 0,1 ≤ j ≤ 5 and a1, . . . , a5, b1, . . . , b5 ∈ N. Let V 1
i , . . . , V 5

i be the
angles of P i . Let

xi = sgn

(

N −
5∑

l=1

alV
l
i

)

,

yi = sgn

(

ei
j −

5∑

l=1

ble
i
l

)

.

If xiyi �= 0, then there exists some 0 < δ ≤ δi such that for any 1 ≤ j ≤ 5, the cross-
section

P i+1 = cr
(
P i; ei

j ; δ
)
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satisfies xi+1 = xi and yi+1 = yi . It is easy to show the above property if one regards
P i+1 as a continuous function of the variable δi in the definitions (3.9) and (3.10).

With the aid of this property, we deduce that each cross-section in the sequence
{P k}k≥1 satisfies some conditions analogous to (i)–(iii) as if the δi ’s are chosen to be
small enough. For all k ≥ 2, we name the vertices of the pentagon P k by

P k = AkEkF kCkDk

in the natural way that Ek ∈ AB and Fk ∈ BC.

Theorem 3.3 For any k ≥ 1, there exists some δ∗
k−1 ≤ δk−1 such that for any edge e1

j1

of P 1, any edge e2
j2

of P 2, . . . , and any edge ek−1
jk−1

of P k−1, the cross-section P k

defined by (3.10) satisfies

(i′) 2AkEk < min{EkFk,F kCk,CkDk,DkAk};
(ii′) R(Ek;P k) = R(Fk;P k) ⊆ {{Ek,F k, cγ } : c ∈ Z

+, γ ∈ {Ak,Ck,Dk}};
(iii′) for any a, b ∈ N, c ∈ {0,±1,±2} and l ∈ {EkFk,2FkCk}, we have

l �= a · CkDk + b · DkAk + c · AkEk;
(iv′) if there exist some a ∈ Z

+, b, c ∈ N, N ∈ {π,2π}, and three pairwise distinct
angles V

j1
k , V

j2
k , V

j3
k of P k such that

N = aV
j1
k + bV

j2
k + cV

j3
k ,

then for any 0 ≤ h ≤ k, the corresponding angles V
j1
h , V

j2
h , V

j3
h of P h satisfy

N = aV
j1
h + bV

j2
h + cV

j3
h .

Let δ∗
i (i ≥ 0) be defined as in the above theorem. The next lemma will be used to

exclude some cases from the set of 2π -sum-collections of the specified angle Ek+1.

Lemma 3.4 Let P ∈ E and k ∈ Z
+. Suppose that

{
Ek,F k,Ak

} ∈ R
(
Ek;P k

)
. (3.11)

Then we have

{
Ek+1,F k+1,Ak+1} �∈ R

(
Ek+1; cr

(
P k;CkDk; δ∗

k

))
. (3.12)

Similarly, if
{
Ek,F k,Ck

} ∈ R
(
Ek;P k

)
,

then we have

{
Ek+1,F k+1,Ck+1} �∈ R

(
Ek+1; cr

(
P k;DkAk; δ∗

k

))
. (3.13)
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Fig. 4 The parallel rela-
tion FkFk+1Ck ‖ DkAkAk+1

Proof By (3.11), we have

FkCk ‖ DkAk. (3.14)

Denote cr(P k;CkDk; δ∗
k ) = Ak+1Ek+1Fk+1CkDk . If (3.12) is false, then we have

Fk+1Ck ‖ DkAk+1. (3.15)

It is clear that the points Fk and Fk+1 are distinct, while the points Ak and Ak+1

are also distinct. Hence by (3.14) and (3.15), we find parallel facets FkF k+1Ck ‖
DkAkAk+1 (see Fig. 4). But P ∈ E , thus we obtain a contradiction. The rela-
tion (3.13) can be proved similarly. This completes the proof. �

4 The Main Result

In this section, we complete the proof of Theorem 1.2.
Let k ∈ Z

+. Suppose that Tk is a tessellation of the plane by copies of P k . Denote
the copies used in Tk by

{
P k

i = Ak
i E

k
i F k

i Ck
i Dk

i : i ∈ Λk

}
,

where Λk is a set. Note that each copy in T k is arranged counter-clockwise either in
the order

Ak
i , Ek

i , F k
i , Ck

i , Dk
i , (4.1)

or in the order

Ak
j , Dk

j , Ck
j , F k

j , Ek
j .

Denote by Ik the set of indices i ∈ Λk such that the vertices of P k
i are arranged

counter-clockwise in the order (4.1). Without loss of generality, we can always sup-
pose that 1 ∈ Ik .

A quadrilateral is said to be cyclic if all its vertices lie on the same circle. Recall
that Q is a quadrilateral facet of P .

Theorem 4.1 The facet Q is either a parallelogram or a cyclic quadrilateral.
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Fig. 5 The local tessellations of A1 and E1

Proof Assume, to the contrary, that Q is neither a parallelogram nor cyclic. Without
loss of generality, we can suppose that C is one of the largest angles of Q. Consider
the cross-section

P 1 = cr
(
P 0;E0F 0; δ∗

1

)
.

For convenience, we rewrite the copies of P 1 as P 1
i = AiEiFiCiDi . Since P 1 is a

tiler, we can express S(E1) = [E1, βj ,X], where βj ∈ {Aj ,Ej ,Fj ,Cj ,Dj }, and X

is a sequence of angles. By the condition (ii′), we have βj �= Ej .
Assume that βj = Aj . By (i′), the sequence X contains no angle Ai . By (ii′), we

deduce that S(E1) = [E1,Aj ,Fk] for some k ∈ Λ1 (see Fig. 5). It follows that E1 +
A1 +F 1 = 2π . By the condition (iv′), we obtain C+D = π . So Q is a parallelogram,
which is a contradiction.

Below we can suppose that βj ∈ {Fj ,Cj ,Dj }. In this case, the condition (i′)
implies S(A1) = [A1, Y,π], where Y is a sequence of angles (see Fig. 5). By (i′)
and (ii′), we deduce that Y contains no angle Ai . Thus there exist some b ∈ Z

+
and β1 ∈ {C1,D1} such that A1 + bβ1 = π . By (iv′), we find that A + bβ = π for
some β ∈ {C,D}. Since Q is neither a parallelogram nor cyclic, we see that b ≥ 2.
But C is one of the largest angles, so β = D. Namely,

A + bD = π. (4.2)

Consider E′ ∈ AD and F ′ ∈ CD subject to the conditions corresponding to (i′)–(iv′).
Since C is one of the largest angles, we derive

A + b′B = π (4.3)

for some b′ ≥ 2. Adding (4.2) and (4.3) yields

2π = 2A + bD + b′B ≥ 2(A + B + D) = 2(2π − C),

namely C ≥ π , hence we obtain a contradiction. This completes the proof. �

Theorem 4.2 The facet Q is cyclic.

Proof Assume to the contrary that Q is a non-cyclic facet. By Theorem 4.1, it is a
parallelogram. Without loss of generality, we can suppose that C is one of the smallest
angles of Q, and that A+D = π . Since Q is non-cyclic, we deduce that the angles C

and D have distinct sizes. Therefore, the condition (ii′) implies that

R
(
E0;P 0) ⊆ {{

E0,F 0,A0},
{
E0,F 0,C0}}.
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Fig. 6 The cross-sections P 1

(dotted), P 2 (dashed) and P 3

(thin)

Consider the cross-sections (see Fig. 6)

P 1 = cr
(
P 0;E0F 0; δ∗

2

) = A1E1F 1C1D1, (4.4)

P 2 = cr
(
P 1;C1D1; δ∗

2

) = A2E2F 2C2D2, (4.5)

P 3 = cr
(
P 2;D2A2; δ∗

2

) = A3E3F 3C3D3. (4.6)

By Lemma 3.4 and (iv′), we see that R(E3;P 3) = ∅. But the cross-section P 3 tiles
the plane, hence we obtain a contradiction. This completes the proof. �

To proceed further, we need the following technical lemma.

Lemma 4.3 Let k ≥ 1. Suppose that

R
(
Ek;P k

) = R
(
Fk;P k

) = {{
Ek,F k,Dk

}}
. (4.7)

Then any edge Fk
i Ck

i is not represented. Moreover, any line segment Fk
i Ck

i + Ck
j F k

j

or Ek
i Ak

i + Ck
j F k

j (if it exists) is not represented.

Proof For convenience, rewrite the copies {P k
i : i ∈ Λk} as P k

i = AiEiFiCiDi . As-
sume to the contrary that FiCi is represented. By (4.7), there is no point Fj (j �= i)
lying on the edge FiCi , and there is at most one point Ej lying on FiCi . Therefore,
we have

FkCk = a1 · CkDk + b1 · DkAk + c1 · AkEk

for some a1, b1 ∈ N and c1 ∈ {0,1}. This contradicts the condition (iii′). Hence FiCi

is not represented. For the same reason, any line segment FiCi + CjFj (if it exists)
is not represented.

Suppose that 1 ∈ Ik and the line segment E1A1 + C2F2 is represented in Tk .
Then 2 ∈ Ik (see Fig. 7). We claim that there exist some i, j ∈ Λk such that

S(E1) = [E1,Fi,Dj ]. (4.8)

In fact, by (4.7), there is at most one copy P k
i such that the vertex Ei lying on the line

segment E1F2, where i �= 1, 2. Also, there is at most one point Fj (j �= 1,2) lying
on the line segment E1F2. If the sequence S(E1F2) contains an edge EiFi , then the
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Fig. 7 The tessellation of
the ε-neighborhood of the line
segment E1F2

condition (ii′) implies (4.8). Otherwise, by (iii′), we can deduce that S(E1F2) con-
tains an edge FiCi . Thus, the condition (i′) yields S(E1A1,C2F2) = [FiCi,AhEh]
for some i and h. In particular, the relation (4.8) holds. The proves the claim.

By (4.8), the edge E1F1 is represented. It follows that there is at most one point Ei

(i �= 1) lying on the edge E1F1, and there is no point Fj (j �= 1) lying on E1F1. So
there exist some a2, b2 ∈ N and c2 ∈ {0,1} such that

EkFk = a2 · CkDk + b2 · DkAk + c2 · AkEk,

contradicting the condition (iii′). This completes the proof. �

Now we are in a position to complete the proof of the main result.

Proof of Theorem 1.2 It suffices to show that E = ∅. Assume, to the contrary,
that P ∈ E . By Theorem 4.2, we see that Q is cyclic. Suppose that D is one of
the smallest angles of Q. By the condition (ii′), we have

R
(
E0;P 0) ⊆ {{

E0,F 0,A0},
{
E0,F 0,C0},

{
E0,F 0,D0}}. (4.9)

Consider the cross-sections P 1, P 2, P 3 defined by (4.4)–(4.6). By (4.9), Lemma 3.4
and the condition (iv′), we see that R(E3;P 3) ⊆ {{E3,F 3,D3}}. Since P 3 is a tiler,
by (ii′), we have

R
(
E3;P 3) = R

(
F 3;P 3) = {{

E3,F 3,D3}}. (4.10)

By (4.10) and (iv′), we deduce that

Rπ

(
A3;P 3) ⊆ {{

A3,C3}} ∪ {{
bA3, aD3} : b ∈ Z

+, a ∈ N
}
. (4.11)

Consider the tessellations of the plane by copies of P 3. For convenience, rewrite

T = T3, P 3
i = AiEiFiCiDi, Λ3 = Λ, I3 = I.

By (4.10) and (i′), there exist an m ∈ Z
+ and some i1, i2, . . . , im ∈ Λ3 such that

S(A1) = [A1, αi1, αi2, . . . , αim,π], (4.12)

where αij ∈ {Aij ,Cij ,Dij }. Let ε > 0. Considering the tessellation of the ε-
neighborhood of the point Eij , we see that

αij �= Aij , ∀1 ≤ j ≤ m. (4.13)

Set i1 = 2. Assume that m = 1. If α2 = D2, then {E3,F 3,C3} ∈ R(E3;P 3), con-
tradicting (4.10). Therefore, by (4.13), the expression (4.12) reduces to S(A1) =
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Fig. 8 The tessellation for the
case of m = 1

Fig. 9 The tessellation for the
case of S(D2C2) = [D3A3]

[A1,C2,π] (see Fig. 8). In this case, if 2 �∈ I , then the point F2 lies on the line deter-
mined by D1A1. By (4.10), we find that the edge F2C2 is represented, contradicting
Lemma 4.3. So 2 ∈ I . By (4.10), the line segment E1A1 + C2F2 is represented, also
contradicting Lemma 4.3.

Below we can suppose that m ≥ 2. Set i2 = 3. Then the expression (4.12) reduces
to

S(A1) = [A1,D2,D3, . . . , π]. (4.14)

Assume that 2 ∈ I . By Lemma 4.3, the edge F2C2 is not represented. So there exist
an s ∈ Z

+ and some j1, j2 . . . , js ∈ Λ3 such that

S(C2) = [C2,π,βj1 , βj2, . . . , βjs ], (4.15)

where βi is an angle of the copy Ti . Therefore the edge D2C2 is represented. In view
of (4.10), (4.14), and (4.15), the line segment D2C2 contains neither a point Ei , nor
a point Fi , for some i. Moreover, by (4.10), no point Aj lies in the interior of D2C2,
since otherwise the ε-neighborhood of the point Ej cannot be tiled. For the same
reason, there is no point, say, Cj , lying in the interior of D2C2. Therefore,

S(D2C2) ∈ {[D3A3], [D3C3]
}
.

So js = 3. If S(D2C2) = [D3A3], then either the edge A3E3 is represented
(when s ≥ 2), which is impossible by the conditions (i′) and (4.10); or the line seg-
ment E3A3 + C2F2 is represented (when s = 1), which contradicts Lemma 4.3. See
Fig. 9. In the other case, S(D2C2) = [D3C3] (see Fig. 10). Then either F3C3 is rep-
resented (when s ≥ 2), or F2C2 + C3F3 is represented (when s = 1). Both of them
contradict Lemma 4.3.

Hence we have 2 �∈ I . Considering the tessellation of the ε-neighborhood of the
point E2, we find that

S(A2) = [A2,π, γh1 , γh2, . . . , γht ], (4.16)
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Fig. 10 The tessellation for the
case of S(D2C2) = [D3C3]

Fig. 11 The tessellation for the
case of S(D2A2) = [D3A3]

Fig. 12 The tessellation for the
case of S(D2A2) = [D3C3]

Fig. 13 Three classes of
universal tilers

where t ≥ 1 and γhi
is an angle of the copy Thi

. Therefore D2A2 is represented. For
the same reason as in the case of 2 ∈ I , we deduce that

S(D2A2) ∈ {[D3A3], [D3C3]
}
.

If S(D2A2) = [D3A3], then either A3E3 is represented (when t ≥ 2), or E2A2 +
A3E3 is represented (when t = 1). See Fig. 11. Both of them are absurd by the con-
dition (i′). In the other case S(D2A2) = [D3C3]. Then either C3F3 is represented
(when t ≥ 2), or F3C3 + A2E2 is represented. See Fig. 12. Both of them contradict
Lemma 4.3.

To sum up, the cross-section P 3 does not tile the plane. This implies that E = ∅,
and that completes the proof. �

We conclude this paper by giving a graphical illustration of our main result. Let
P be a pentahedronal universal tiler. Since any quadrilateral-based pyramid has no
parallel facets, we see that P has two triangular bases. Moreover, the parallel facets
of P must be its two triangular bases. It turns out that either all quadrilateral facets
of P are trapezoids, or P is a triangular prism. In the former case, the pentahedron P

can be obtained from cutting a tetrahedron by a plane parallel to one of its facets. In
conclusion, universal tilers have three classes as illustrated in Fig. 13.
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