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Abstract We consider the offset-deconstruction problem: Given a polygonal shape Q

with n vertices, can it be expressed, up to a tolerance ε in Hausdorff distance, as
the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it
does, we also seek a preferably simple-looking solution P ; then, P ’s offset consti-
tutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an
O(n logn)-time exact decision algorithm that handles any polygonal shape, assum-
ing the real-RAM model of computation. A variant of the algorithm, which we have
implemented using the CGAL library, is based on rational arithmetic and answers the
same deconstruction problem up to an uncertainty parameter δ; its running time addi-
tionally depends on δ. If the input shape is found to be approximable, this algorithm
also computes an approximate solution for the problem. It also allows us to solve
parameter-optimization problems induced by the offset-deconstruction problem. For
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convex shapes, the complexity of the exact decision algorithm drops to O(n), which
is also the time required to compute a solution P with at most one more vertex than
a vertex-minimal one.

Keywords Offsets · Minkowski sums · Polygonal smoothing · Deconstruction

1 Introduction

The r-offset of a polygon, for a real parameter r > 0, is the set of points at distance
at most r away from the polygon. Computing the offset of a polygon is a fundamen-
tal operation. The offset operation is, for instance, used to define a tolerance zone
around the given polygon [11] or to dilute details for clarity of graphic exposition
[4, 16, 20]. Technically, it is usually computed as the Minkowski sum of the polygon
and a disk of radius r . The resulting shape is bounded by straight-line segments and
circular arcs. However, a customary practice is to model the disk in the Minkowski
sum with a (tight) polygon, which yields a piecewise-linear approximation of the off-
set. Our study is motivated by two applications, where such an approximation forms
the legacy data which a program has to deal with—the original shape before off-
setting is unknown. This leads to the question what is the original polygon whose
approximate offset we have at hand. Of course, finding the exact original polygon,
or even its topology, is impossible in general, because the offset might have blurred
small features like holes or dents. However, a reasonable choice can lead to a more
compact and smooth representation of the approximate offset.

The first relevant problem concerns cutting polygonal parts out of wood. A wood-
cutting machine, which can smoothly cut along straight-line segments and circular
arcs, is given a plan to cut out a certain shape. This shape was designed as a polygon
expanded by a small offset, but with circular arcs approximated by polygonal lines
comprising many tiny line segments. Thus instead of moving smoothly along circular
arcs, the cutting tool has to move along a sequence of very short segments, and make
a small turn between every pair of segments. The process becomes very slow, the
tool heats up, and occasionally it causes the wood to burn. Moving the cutting tool
smoothly and fast enough is the way to keep it cool. If this were the only issue, other
smoothing techniques like arc-spline approximation [5, 12] may have been applica-
ble. However, we may also wish to reduce the offset radius if a more accurate cutting
machine is available—in this case, it seems desirable to find the original shape first
and then to re-offset with a smaller radius.

A motivation to study this question from a different domain is to recover shapes
sketched by a user of a digital pen and tablet. The pen has a relatively wide tip, and
the input obtained is in fact an approximate offset (with the radius of the pen tip)
of the intended shape. The goal is to give a good polygonal approximation of the
intended shape. More broadly, as the offset operation is so commonplace, it seems
natural to ask, given only an (approximated) offset shape, what could be the original
shape before the offsetting. Therefore, we pose the (offset-)deconstruction problem
which comes in two variants:
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Fig. 1 For a given Q, the red P is a candidate summand whose exact r-offset is shaded. Left: For a
given ε, deconstruction is ensured iff φ1 ≤ ε and φ2 ≤ ε. Note that, when r decreases, φ1 decreases, but
φ2 increases. Middle: Example where Q can be approximated by an r-offset of a P that has much fewer
vertices than Q. Right: Example where Q can be approximated by the r-offset of a disconnected shape P

(Color figure online)

Problem 1 (The decision problem) Given a polygonal shape Q, and two real pa-
rameters r, ε > 0, decide if there exists a polygonal shape P such that Q is within
(symmetric) Hausdorff distance ε to the r-offset (i.e., offset with radius r) of P .

Problem 2 (Finding a solution) If the answer to Problem 1 is YES, compute a polyg-
onal shape P with the desired property. We refer to P as a solution of the deconstruc-
tion problem. Note that P might be disconnected, even if Q is connected (Fig. 1).

Problem 1 can be seen as a special case of the Minkowski decomposition problem
which asks whether a set can be composed in a non-trivial way as the Minkowski
sum of two sets—disallowing a summand to be a homothetic copy of the input set.
A general criterion for decomposability of convex sets in arbitrary dimension has
been presented in [19]. A particularly well-studied case are planar lattice polygons,
because of their close relation to problems in algebra, for instance, polynomial fac-
torization [17]. It has been shown that deciding decomposability is NP-complete for
lattice polygons [8]. In [6], decomposability is investigated under the constraint that
one of the summands is a line segment, a triangle, or a quadrangle. However, all
these approaches discuss the exact decomposition problem; our scenario of being
Hausdorff-close to a particular decomposition seems to not have been addressed in
the literature. Allowing tolerance raises interesting algorithmic questions and at the
same time makes the tools that we develop more readily suitable for applications,
which typically have to deal with inaccuracies in measuring and modeling.

Contributions We first present an efficient algorithm to decide Problem 1: For a
shape Q with n vertices, the algorithm reports the correct answer in O(n logn) time
in the real-RAM model of computation [18]. It constructs offsets with increasing radii
in three stages; the intermediate shapes arising during the computation are in general
more difficult to offset than polygons, as they are bounded by straight-line segments
and “indented” circular arcs (namely, the shape is locally on the concave side of the
arcs). The main observation is that for certain classes of such shapes, these circular
arcs can be ignored when computing the next offset (see Theorem 5 for the precise
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statement). This observation bounds the time required by each offset computation by
O(n logn), which is the key to the efficiency of the decision algorithm. Our proof
is constructive, that is, if a solution exists it can be computed with the same running
time.

The computation of the exact decision procedure requires the handling of algebraic
coordinates of considerably high degree. As an alternative, we give an approximation
scheme that works exclusively with rational numbers. The scheme proceeds by re-
placing the offset disks by polygonal shapes of similar diameter, whose precision is
determined by another parameter δ < ε. We prove a bound � that depends on ε̂, the
minimal ε for which the answer to the decision problem is YES, such that the ratio-
nal approximation returns the exact result for all δ ≤ �. If the input shape is found
to be deconstructible, this algorithm also outputs a solution. The computation of ε̂

up to any desired precision is still possible. We believe that our investigation of the
relation between δ and ε̂ is of independent relevance, mostly to the study of certified
algorithms that approximate geometric objects with algebraic coordinates by means
of rational arithmetic.

The deconstruction problem leads to natural optimization questions: if Q and r are
given, how to compute ε̂, the minimal tolerance for which a solution exists? Similarly,
if Q and ε are given, what are the possible radii such that a solution exists? For the
first question, we provide a certified and efficient solution based on binary search,
using the rational-approximation algorithm. For the second question, we prove that
the set of possible radii forms an interval and propose an algorithm to compute it. We
also provide a heuristic to find a reasonable radius r if both r and ε are unknown.

For a convex shape Q with n vertices, we reduce the running time for solving
Problem 1 to the optimal O(n) (in the real-RAM model). Moreover, we describe a
greedy algorithm within the same time complexity that returns a solution P � which
minimizes, up to one extra vertex, the number of vertices among all solutions, if there
are any. Our algorithm technically resembles an approach for the different problem
of finding a vertex-minimal polygon in the annulus of two nested polygons [1]. We
also remark that the r-offset of P � has a tangent-continuous boundary and therefore
constitutes a special case of an arc-spline approximation of Q where all circular arcs
have the same radius.

Organization We describe an exact decision algorithm for the deconstruction
problem (solving Problem 1 above) in Sect. 2. In Sect. 3 we describe a rational-
approximation algorithm for the deconstruction problem. Both algorithms output a
solution in case the input is deconstructible (solving Problem 2). Section 4 discusses
the optimization problems. For convex input, Sect. 5 exposes a specialized decon-
struction algorithm and the computation of an almost vertex-minimal solution. We
conclude in Sect. 6 by pointing out open problems.

2 The Decision Algorithm

For a set X ⊂ R
2 denote its boundary by ∂X and its complement by XC := R

2 \ X.
A polygonal region or polygonal shape X ⊂ R

2 is a set whose boundary con-
sists of finitely many line segments with disjoint interiors. The endpoints of these
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straight-line segments are the vertices of the polygonal region. We assume hence-
forth that the input shapes that we deal with are bounded (but not necessarily con-
nected). Although the techniques seem to go through also for unbounded shapes,
this assumption simplifies the exposition and is sufficient for the real-life applica-
tions we have in mind. For two sets X and Y , we denote their Minkowski sum by
X ⊕ Y := {x + y | x ∈ X,y ∈ Y }. With d(·, ·) the Euclidean distance function, and
any c ∈ R

2, r ∈ R, we write Dr(c) := {p ∈ R
2 | d(c,p) ≤ r} for the (closed) r-disk

around c, and Dr := Dr(O) for the r-disk centered at the origin. The r-offset of a set
X, offset(X, r), is the Minkowski sum X ⊕ Dr .

For p ∈ R
2 and X a closed set, we write d(p,X) := min{d(p,x) | x ∈ X}. The

(symmetric) Hausdorff distance of two closed point sets X and Y is

H(X,Y ) := max
{
max

{
d(x,Y ) | x ∈ X

}
,max

{
d(y,X) | y ∈ Y

}}
.

We say that X is ε-close to Y (and Y to X) if H(X,Y ) ≤ ε, which can also be
expressed alternatively:

Proposition 1 For X,Y closed, X is ε-close to Y if and only if Y ⊆ offset(X, ε) and
X ⊆ offset(Y, ε).

Decision Algorithm We fix r > 0, ε > 0, and a polygonal region Q, and consider
the following question: Is there a polygonal region P such that Q and the r-offset of
P have Hausdorff distance at most ε? First of all, we can assume that r > ε; other-
wise, we can choose P := Q, because offset(Q, r) and Q have Hausdorff distance
at most ε. We define another operation, r-inset (a.k.a. “erosion”), which is computa-
tionally similar to an offset:

Definition 2 For r > 0, and X ⊂ R
2, the r-inset of X is the set inset(X, r) :=

offset(XC, r)C = {x ∈ R
2 | Dr(x) ⊆ X}.

We are now ready to present the decision algorithm:

Algorithm 1 DECIDE(Q,r, ε)

(1) Qε ← offset(Q, ε)

(2) Π ← inset(Qε, r)

(3) Q′ ← offset(Π, r + ε)

(4) if Q ⊆ Q′ then return YES else return NO

See Fig. 2 for an example with a positive answer. We next prove that DECIDE

(Algorithm 1) correctly decides whether Q is ε-close to some r-offset of a polygonal
region. A first observation is that for any polygonal region P , offset(P, r) ⊆ Qε if
and only if P ⊆ Π . This is an immediate consequence of the definition of the inset
operation. This shows that for any offset(P, r) that is ε-close to Q, P must be in-



Discrete Comput Geom (2012) 48:964–989 969

Fig. 2 The decision algorithm
illustrated on an M-shaped
polygon. The set on the
right-hand side of the
expression is colored in light
gray, the set on the left-hand
side in dark gray

side Π . Moreover, it shows that any choice of P ⊆ Π already satisfies one of Propo-
sition 1’s inclusions. It is only left to check whether Q ⊆ offset(offset(P, r), ε) =
offset(P, r + ε). We summarize:

Proposition 3 Q is ε-close to offset(P, r) if and only if P ⊆ Π and Q ⊆
offset(P, r + ε).

To prove correctness of DECIDE, we have to show that Q ⊆ offset(Π, r + ε)

already implies that there also exists a polygonal region P ⊆ Π with Q ⊆
offset(P, r + ε); see Fig. 3. The main difficulty in proving this is that Π is not polyg-
onal in general; we have to study its shape closer to prove that we can approximate it
by a polygonal region, maintaining the property that the offset remains ε-close to Q.

The Shape of Offsets and Insets For a polygonal region Q, it is not hard to figure out
the shape of Qε = offset(Q, ε): It is a closed set bounded by straight-line segments
and by circular arcs, belonging to a circle of radius ε. It is important to remark that
all circular arcs are bulges.

Definition 4 Let X ⊂ R
2 be a closed set with some circular arc γ on its boundary.

Then, γ is called a dent with respect to X, if each line segment connecting two
distinct points on γ is not fully contained in X. Otherwise, the arc is called a bulge.

We call X a bulged (resp. an indented) region with radius r , if ∂X consists of
finitely many straight-line segments and bulges (resp. dents) that are all of radius r ,
interlinked at the vertices of the region.
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Fig. 3 The polygon in light
gray and Π (in medium gray)
have the same offset (dark gray)

Fig. 4 (a) The (extended) linear cap split by the polyline 
, (b–c) the two cases in the proof of
Theorem 5

Note that a bulged region (left) is not necessarily convex. The r-offset of a polyg-
onal region P is a bulged region with radius r . The heart of this section is Theorem 5
showing that the same also holds if P is an indented region (right) with radius smaller
than r .

Theorem 5 Let P be an indented region with radius r1, and let r2 > r1. Then, there
is a polygonal region PL ⊆ P such that offset(P, r2) = offset(PL, r2). In particular,
offset(P, r2) is a bulged region with radius r2.

Proof After possibly splitting circular arcs into at most four parts, we can assume
that each circular arc spans at most a quarter of the circle. For such a circular arc,
we define its endpoints by x1 and x2, and denote the linear cap of the circular arc as
the (closed) indented region enclosed by the circular arc, and the two lines tangent to
the circle through x1 and x2 (the shaded area in Fig. 4(a)). The extended linear cap
is the (polygonal) region spanned by the two tangents just mentioned, and the two
corresponding normals at x1 and x2. Clearly, the normals meet in the center of the
circle that defines the arc.

We iteratively replace an indented arc of an indented region P ′ with radius r1
(initially set to P ) by a polyline 
 ending in the endpoints of the circular arc, such
that 
 does neither leave P ′ nor the linear cap of the circular arc, and such that other
boundary parts of P ′ are not intersected. This yields another indented region P ′′ with



Discrete Comput Geom (2012) 48:964–989 971

radius r1, where one indented arc is replaced by a polyline, as depicted in Fig. 4(a).
Iterating this construction, starting with P , until all indented arcs are replaced, we
obtain a polygonal region PL.

We show that in each iteration, the r2-offsets of P ′ and P ′′ are the same. For that
we consider any point x′ ∈ P ′ \ P ′′, in the region that is cut off by P ′′, and consider
y = x′ + v′ for an arbitrary v′ ∈ Dr2 . We show that in all cases, y can also be written
by y = x′′ + v′′, with x′′ ∈ P ′′, and v′′ ∈ Dr2 .

Since the circular arc spans at most a quarter of the circle, it is easily seen that
Dr1(x1) ∪ Dr1(x2) covers the whole extended linear cap. Therefore, for any y that
lies within the extended linear cap, selecting x′′ = x1 or x′′ = x2, we get y = x′′ + v′′
with v′′ ∈ Dr1 .

We distinguish two other cases: for y that lies outside of the extended linear cap
v′ = x′y crosses either 
 or the circular arc. In the former case, we can simply pick the
crossing point as x′′, and set v′′ ∈ Dr2 accordingly (Fig. 4(b)). In the latter case, let us
denote the crossing point as x∗ (Fig. 4(c)). We consider the set of points that is closer
to x∗ than to x1 and x2. Clearly, that region is bounded by the two corresponding
bisectors, which meet in the center of the circle that defines the circular arc and is
therefore completely contained within the extended linear cap. It follows that y is
closer to one of the endpoints of the arc, say x1, than to x∗. Selecting x′′ = x1 we
ensure y is closer to x′′ than to x′, which proves that y = x′′ +v′′ with some v′′ ∈ Dr2

in this case as well. �

The proof of Theorem 5 implies that offset(P, r2) for such a region P is com-
pletely determined by the offset of its linear segments, and the offset of the endpoints
of circular arcs: the interior of the indented circular arcs can be ignored.

Corollary 6 Algorithm 1 (DECIDE) returns YES if and only if there exists a polygonal
region P such that offset(P, r) is ε-close to Q.

Proof Qε is a bulged region with radius ε. Therefore, QC
ε is an indented region with

the same radius. Since r > ε, Theorem 5 implies that offset(QC
ε , r) is a bulged region

with radius r , and so, offset(QC
ε , r)C = inset(Qε, r) = Π is an indented region with

the same radius. Using r + ε > r and applying Theorem 5 once more, there exists a
polygonal region P ⊆ Π such that offset(Π, r +ε) = offset(P, r +ε). It follows that,
if the algorithm returns YES, there is indeed a polygonal region P whose r-offset is
ε-close to Q. If the algorithm returns NO, it is clear that no such polygonal region can
exist. �

Theorem 7 Let P be an indented region with radius r1 having n vertices, and assume
r2 > r1. Then, offset(P, r2) has O(n) vertices and it can be computed in O(n logn)

time.

Proof By Theorem 5, it suffices to consider a polygonally bounded PL instead of P .
We use trapezoidal decomposition of P to construct such a PL with only O(n)

vertices. The Voronoi diagram of PL’s vertices and (open) edges can be computed
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in O(n logn) time and has size O(n) [22]. From it, the offset polygon with the same
asymptotic complexity can be obtained in O(n logn) [13]. �

Corollary 8 Algorithm 1 (DECIDE) decides ε-closeness with O(n logn) operations.

Proof Apply Theorem 7 in each step of Algorithm 1. The fourth step runs in
O(n logn) time as well using a simple sweep-line algorithm. �

Note that ΠL, if constructed for Π as in the proof of Theorem 5 during step (3) of
Algorithm 1, is a solution to the deconstruction problem if DECIDE returns YES.

3 Rational Approximation

A direct realization of Algorithm 1 runs into difficulties since vertices of the resulting
offsets are algebraic numbers whose degrees become high in cascaded offset compu-
tations. We next describe two approximation variants of Algorithm 1, each produc-
ing a certified one-sided decision by approximating all disks in the algorithm with
k-gons. In order to make guaranteed statements about the exact ε-approximability
by r-offsets, we have to approximate the disks by a “working precision” δ which is
even smaller than ε. Recall that Dr is the disk of radius r centered at the origin. For
a, b ∈ R, a < b define D̄a,b to be a polygon with rational vertices whose boundary
lies in the annulus Db \ Da . In the approximation algorithms, every disk is replaced
with such a polygon lying inside a δ-width annulus.

Interior Approximation In the first part of our algorithm, we ensure that the final ap-
proximation of Q′ (see line (3) of Algorithm 1), called Q̂′, will be a subset of the ex-
act Q′. We achieve this by approximating Ds by D̄s−δ,s when an offset is computed;
and by approximating Ds by D̄s,s+δ when an inset is computed; see Algorithm 2.

Algorithm 2 APPROXDECIDEINTERIOR(Q,r, ε, δ)

(1) Q̂ε ← Q ⊕ D̂ε with D̂ε ← D̄ε−δ,ε

(2) Π̂ ← (Q̂ε
C ⊕ D̂r )

C with D̂r ← D̄r,r+δ

(3) Q̂′ ← Π̂ ⊕ D̂r+ε with D̂r+ε ← D̄r+ε−δ,r+ε

(4) if Q ⊆ Q̂′, return YES,
otherwise, return UNDECIDED

Lemma 9 If APPROXDECIDEINTERIOR(Q,r, ε, δ) returns YES, then
DECIDE(Q,r, ε) returns YES as well, which means that there exists a polygonal re-
gion P such that offset(P, r) is ε-close to Q. In particular, P := Π̂ is a solution to
the deconstruction problem.

Proof Compare the execution of Algorithm 2 with the corresponding call of its exact
version, Algorithm 1. It is straightforward to check that for any δ, Q̂ε ⊂ Qε , Π̂ ⊂ Π ,
and Q̂′ ⊂ Q′. The last inclusion shows that if Q ⊆ Q̂′, also Q ⊆ Q′. �



Discrete Comput Geom (2012) 48:964–989 973

Definition 10 For fixed Q and r , define ε̂ := inf{ε | DECIDE(Q, r, ε) returns YES}.

Note that ε̂ ∈ [0, r], and that DECIDE(Q,r, ε) returns YES for every ε ≥ ε̂ and
returns NO for every ε < ε̂. We do not have a way to compute ε̂ exactly. However, we
show next that APPROXDECIDEINTERIOR(Q,r, ε, δ) returns YES for every ε > ε̂ for
δ small enough, and that the required precision δ is proportional to the distance of ε

to ε̂.

Theorem 11 Let ε > ε̂, and δ < ε−ε̂
2 . Then, APPROXDECIDEINTERIOR(Q,r, ε, δ)

returns YES.

Proof Let ε0 be such that ε̂ < ε0 < ε0 + 2δ ≤ ε. Let Qε0 , Π and Q′ denote the
intermediate results of DECIDE(Q, r, ε0) and let Q̂ε , Π̂ , Q̂′ denote the intermediate
results of APPROXDECIDEINTERIOR(Q,r, ε, δ). By the choice of ε0, YES is returned,
and thus Q ⊆ Q′. The theorem follows from Q′ ⊆ Q̂′, which we prove in three sub-
steps:

(1) offset(Qε0 , δ) ⊆ Q̂ε : Indeed,

offset(Qε0 , δ) = offset(Q, ε0 + δ) ⊆ offset(Q, ε − δ) ⊂ Q ⊕ D̂ε = Q̂ε.

(2) Π ⊆ Π̂ : Starting with (1), we obtain

offset(Qε0 , δ) ⊆ Q̂ε ⇒ offset(Qε0 , δ)
C ⊕ Dr+δ ⊇ Q̂ε

C ⊕ D̂r

⇒ inset
(
offset(Qε0 , δ), r + δ

) ⊆ Π̂.

We use the general fact inset(offset(A, r), r) ⊇ A to obtain

inset
(
offset(Qε0 , δ), r + δ

) = inset
(
inset

(
offset(Qε0 , δ), δ

)
, r

)

⊇ inset(Qε0 , r) = Π.

(3) Q′ ⊆ Q̂′: Using (2), we have

offset(Π, r + ε − δ) = Π ⊕ Dr+ε−δ ⊆ Π̂ ⊕ D̂r+ε = Q̂′.

Note that r + ε − δ > r + ε0, and therefore, offset(Π, r + ε − δ) ⊃
offset(Π, r + ε0) = Q′. �

Exterior Approximation In Algorithm 3, we ensure that Q̂′ becomes a superset of
the exact Q′ by appropriately choosing approximate disks. Specifically, we approxi-
mate Ds by D̄s,s+δ when an offset is computed, and Ds by D̄s−δ,s when an inset is
computed. Not surprisingly, we get a certified answer in the other direction, and a cer-
tified answer is guaranteed when δ is sufficiently small. The proofs of the following
two statements are similar to Lemma 9 and Theorem 11 and thus omitted.
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Algorithm 3 APPROXDECIDEEXTERIOR(Q,r, ε, δ)

(1) Q̂ε ← Q ⊕ D̂ε with D̂ε ← D̄ε,ε+δ

(2) Π̂ ← (Q̂ε
C ⊕ D̂r )

C with D̂r ← D̄r−δ,r

(3) Q̂′ ← Π̂ ⊕ D̂r+ε with D̂r+ε ← D̄r+ε,r+ε+δ

(4) if Q ⊆ Q̂′, return UNDECIDED,
otherwise, return NO

Lemma 12 If APPROXDECIDEEXTERIOR(Q,r, ε, δ) returns NO, then
DECIDE(Q,r, ε) returns NO as well, which means that there exists no polygonal
region P such that offset(P, r) is ε-close to Q.

Theorem 13 Let ε < ε̂ and δ < ε̂−ε
2 . Then, APPROXDECIDEINTERIOR(Q,r, ε, δ)

returns NO.

In combination with Theorem 11, it follows that the exact answer can always be
found for δ < � := |ε−ε̂|

2 by combining APPROXDECIDEEXTERIOR and APPROX-
DECIDEINTERIOR. We display the complete rational-approximation algorithm1 for
later reference in Algorithm 4.

Algorithm 4 APPROXDECIDE(Q,r, ε, δ)

(1) if APPROXDECIDEINTERIOR(Q,r, ε, δ) = YES, return YES

(2) if APPROXDECIDEEXTERIOR(Q,r, ε, δ) = NO, return NO

(3) Otherwise, return UNDECIDED

Complexity Analysis The main task is to bound the number of vertices of D̄a,b . We
will create a D̄a,b with the additional property that all vertices lie on ∂Db . As depicted
below, two such points on Db are connected by a chord of the boundary circle that
does not intersect Da if and only if the angle induced by the two points is at most
ψ := 2 arccos a

b
, or equivalently, the length of the chord is less than 2

√
b2 − a2. Note

that we need at least 2π
ψ

points on ∂Db for a valid D̄a,b , and 2π
ψ

∈ Θ(

√
b

b−a
) as easily

shown by L’Hopital’s rule.

1As in the DECIDE case for ε = 0 the return value is NO, and for ε = r it is YES with P = Q.
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Rational points on ∂Db can be constructed for an arbitrary t ∈ Q as Qt :=
(b 1−t2

1+t2 , b 2t

1+t2 ) [3]. For some positive z ∈ Z, we define Pi := Qi/z for i = 0, . . . , z.

Lemma 14 For every i = 1, . . . , z − 1, the chord Pi−1Pi is longer than the chord
PiPi+1. In particular, the length of each chord is bounded by the length of P0P1

which is shorter than 2b
z

.

Proof W.l.o.g., we assume b = 1 for the proof, since the chord length scales propor-

tionally when scaling the circle by a factor of b. The point Qt = ( 1−t2

1+t2 , 2t

1+t2 ) can be
constructed geometrically as the intersection point of ∂Db with the line 
t through
S = (−1,0) and slope t (see the figure below). In particular, the line SPi has slope i

z
;

we let Ti denote the intersection point of that line with the line x = 1. We observe
that the segment TiTi+1 has length 2

z
, and that STi < STi+1 for i = 0, . . . , z − 1.

We are showing next that the chord Pi−1Pi is longer than PiPi+1. For that, we
consider the triangle SDi−1Di+1, and its bisector at S. This bisector intersects the
line x = 1 at some point B . By the Angle Bisector theorem, B divides the segment
Ti−1Ti+1 proportionally to the corresponding triangle sides, that is, STi−1

STi+1
= BTi−1

BTi+1
.

Because the left-hand side is smaller than 1, it follows that BTi−1 is shorter than
BTi+1. Therefore, B lies below Ti , and therefore, the angle αi−1 = ∠Ti−1STi =
∠Pi−1SPi is larger than αi = ∠TiSTi+1 = ∠PiSPi+1. But the chord lengths Pi−1Pi

and PiPi+1 are defined by 2 sin(αi−1) and 2 sin(αi), respectively, which proves that
the chord lengths are indeed decreasing.

Finally, by Thales’ theorem, the triangle SP0P1 has a right angle at P1. Therefore,
the longest chord P0P1 is shorter than the segment T0T1, which has length 2

z
. �

Note that all Pi ’s lie in the first quadrant of the plane and that P0 := (b,0) and
Pz := (0, b). Therefore, we can subdivide the other three quarters of the circle sym-
metrically such that the length of each chord is bounded by 2b

z
, using 4z vertices al-

together. To compute a valid D̄a,b , it suffices to choose z such that 2b
z

≤ 2
√

b2 − a2,

that is, z ≥
√

b2

b2−a2 . We choose z0 := �
√

b
b−a

�, indeed, since 0 < a < b, we have

z0 ≥
√

b
b−a

>

√
b

b−a
· b

b+a
=

√
b2

b2−a2 . As stated above, we need at least Ω(

√
b

b−a
)

points, so z0 is an asymptotically optimal choice. We summarize the result
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Lemma 15 For a < b, a polygonal region D̄a,b as above with O(

√
b

b−a
) (rational)

points can be computed using O(

√
b

b−a
) arithmetic operations.

The Minkowski sum of an arbitrary polygonal region with n vertices and a convex
polygonal region with k vertices has complexity O(kn) and it can be computed in
O(nk log2(nk)) operations by a simple divide-and-conquer approach, using a sweep-
line algorithm in the conquer step [14]. Using generalized Voronoi diagrams where
the distance is based on the convex summand of the Minkowski sum operation [15],
we obtain an improved algorithm, which requires only O(kn log(kn)) operations. In
combination with Lemma 15, this leads to the following complexity bound for the
two approximation algorithms.

Theorem 16 Algorithm APPROXDECIDE requires

O

(
n

r

δ

√
ε

δ
· log

(
n

r

δ

√
ε

δ

))

arithmetic operations with rational numbers.

We remark that the O(n logn) bound for DECIDE refers to operations with real
numbers instead.

We have implemented the algorithms APPROXDECIDEINTERIOR and APPROX-
DECIDEEXTERIOR using exact rational arithmetic using the CGAL2 packages for
polygons [9], Minkowski sums [21] and Boolean set operations [7]. We demonstrate
the execution of our software on two examples in Figs. 5 and 6.

4 Searching ε and r

So far, we have assumed that both r and ε are given as input parameters, and we posed
the question of deconstructing a polygon with respect to these parameters. We now
investigate three variants where r and/or ε are unknown. Specifically, we ask, for
some input polygon Q:

1. Given r , what is ε̂, the infimum of all ε-values such that the deconstruction prob-
lem has a solution (compare Definition 10)?

2. Given ε, what is the set of radii for which the deconstruction problem has a solu-
tion?

3. Given neither r nor ε, how are we to choose them in a “reasonable” way to obtain
a solution?

Whereas the first two questions are formally posed, the third one is of a rather heuris-
tic nature. In all three cases, we also ask for computing some polygonal shape P that
approximates the solution of the deconstruction problem for the given set of parame-
ters.

2The Computational Geometry Algorithms, www.cgal.org.

http://www.cgal.org
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Fig. 5 Dependency of the algorithm’s outcome on ε and δ: The input polygon (wheel) appears in bold line.
It is colored according to its approximability with the given parameters: green for YES, red for NO and
yellow for UNDECIDED. The inset polygon �̂ and its approximate (r + ε)-offset Q̂′ are drawn in green
and cyan, respectively. Their outer-approximation counterparts are drawn in red and magenta. Figures (a)
and (b) demonstrate how when ε is tightened from 1

3 · r to 1
9 · r , with the same r and δ, the decision

result changes from YES to NO. The green polygon inside the input polygon in (a) is a possible r-offset
solution. The magnification in (b) highlights the area of the input polygon that does not fit inside the outer
δ-approximation (in magenta) of maximal possible (r + ε)-offset. Figures (c) and (d) show how when δ

is decreased from 1
4 · ε to 1

10 · ε, for the same r and ε, the decision result changes from UNDECIDED
to NO, namely in the latter case the algorithm is able to produce a certified negative answer (Color figure
online)

We discuss the posed questions in the remainder of this section. Our main tool will
be the decision algorithm for fixed r and ε as described earlier. Because we aim for
a practical algorithm, we formulate our approach using the rational-approximation
algorithm from Sect. 3. We have implemented the proposed algorithms; the example
at the end of this section has been produced with our implementation.

Searching for ε̂ If we use the exact decision procedure DECIDE, it is straightfor-
ward to approximate ε̂ to arbitrary precision � employing binary search: Start with
the interval [0, r] and choose ε as the midpoint of the interval. If DECIDE(Q,r, ε) re-
turns YES, recurse on the left subinterval, otherwise, on the right one. Obviously, the
interval width is halved in every step, so O(log( r

�
)) steps are necessary. Let ε̃� de-

note the ε̂ approximation, s.t. ε̃� − ε̂ ≤ �. We demonstrate next that we can achieve
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Fig. 6 A map of Kazakhstan, represented as a polygon Q (in bold blue) with 1881 vertices, is approx-
imable for ε = 1

2 · r and δ = 1
8 · ε. A solution polygon P (in green) has 335 vertices. Offset(P, r)

(shown as lightly shaded gray r-strip around P ) is inside the ε-offset of the input Q by construction.
The δ-approximation of the ε-offset of Offset(P, r) (as computed in line (3) of APPROXDECIDEIN-
TERIOR(Q,r, ε, δ)) is drawn in cyan and has 261 vertices. Since the cyan polygon contains Q, the
Offset(P, r) and Q have Hausdorff distance of at most ε, that is, Q is approximable and P is a solu-
tion. Approximability computation took 3.868 seconds in this case on a 3 GHz Intel Dual Core processor.
The magnification on the left highlights some cavities in the input polygon that have no effect on the Haus-
dorff distance within this tolerance ε. The magnification on the right demonstrates a sharp end that would
prevent Q’s approximability with a tighter ε (Color figure online)

the same approximation and produce with it a solution to the deconstruction problem
using the rational approximation version APPROXDECIDE.

Let |I | denote the width of I henceforth on and consider the pseudocode given in
Algorithm 5. It computes an interval I of width at most � that contains ε̂.

Algorithm 5 APPROXSEARCHEPS(Q,r,�)

(1) I ← [0, r]
(2) while |I | > � do
(3) εno ← left endpoint of I , εyes ← right endpoint of I

(4) εmid ← εno+εyes
2 , δ ← |I |

8
(5) res ← APPROXDECIDE(Q, r, εmid, δ)

(6) if res = YES then I ← [εno, εmid]
(7) otherwise, if res = NO then I ← [εmid, εyes]
(8) otherwise, (res = UNDECIDED), I ← [εmid − |I |

4 , εmid + |I |
4 ]

(9) end while
(10) return I

We prove the invariant that ε̂ ∈ I after each iteration of the while-loop, implying
correctness of the whole algorithm. Trivially, ε̂ ∈ [0, r], and the invariant is obvi-
ously maintained if APPROXDECIDE(Q, r, εmid, δ) returns YES or NO. For the case
of UNDECIDED, recall that APPROXDECIDE is a combination of the two one-sided
approximation algorithms APPROXDECIDEEXTERIOR and APPROXDECIDEINTE-
RIOR, and both returned UNDECIDED. Theorems 11 and 13 imply therefore that

|I |
8

≥
∣∣∣∣
εmid − ε̂

2

∣∣∣∣.
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It follows that ε̂ ∈ [εmid − |I |
4 , εmid + |I |

4 ] which proves that the invariant is maintained
also in this case.

We next compute a solution P for the deconstruction problem for Q, r and ε̃�.
Recall that if APPROXDECIDE returns YES, the algorithm computes a solution for
the deconstruction problem as a by-product. Let I ← APPROXSEARCHEPS(Q, r,�)

be the approximation interval for ε̂ and let εyes denote the right endpoint of I , that is,
ε̂ ≤ εyes. We call APPROXDECIDE(Q, r, εyes,

|I |
4 ). If the result is YES, then ε̃� = εyes

and the polygon computed by APPROXDECIDE is a solution. Otherwise let us choose
ε̃� = εyes + �

2 and produce a solution by calling APPROXDECIDE(Q, r, ε̃�, �
8 ).

Since the result of APPROXDECIDE(Q, r, εyes,
|I |
4 ) was UNDECIDED we conclude

from Theorem 11 that ε̂ ≥ εyes − |I |
2 , that is, ε̃� = εyes + �

2 is indeed �-
approximation of ε̂. The call to APPROXDECIDE(Q, r, ε̃�, �

8 ) is bound to yield
YES because if it returned UNDECIDED, we would have ε̂ ≥ ε̃� − 2�

8 = εyes + �
4 ,

a contradiction to ε̂ ≤ εyes. So, the polygon computed in this call is a solution.
An overall complexity analysis of approximating ε̂ (and computing a solution)

is relatively straightforward: I is obviously halved in every iteration, so it takes
O(log( r

�
)) iterations to approximate ε̂. Every iteration is bounded by the complexity

given in Theorem 16. We omit further details of the proof:

Theorem 17 Approximating ε̂ to a precision � > 0 requires

O

(
n

r

�

√
ε̂

�
· log

(
n

r

�

√
ε̂

�

))

arithmetic operations with rational numbers.

Searching Valid Radii We assume now that Q and ε are given, and discuss the
question of what is the set R of radii such that the deconstruction problem has a
solution. A priori, it is not clear what is the shape of R, but we will prove that it is an
interval of the form [0, r∗]. Having established this, we can apply another variant of
binary search to approximate the extremal value r∗.

In order to prove that R is an interval, we prove first that the deconstruction prob-
lem can always be solved for Q, r and ε̂. In other words, we can replace the infimum
in Definition 10 by a minimum. The proof relies on two properties of infinite inter-
sections of insets and offsets that we show first.

Lemma 18 Let (Ai)i∈N be a sequence of closed sets in R
2. Then

inset

( ∞⋂

i=0

Ai, r

)

=
∞⋂

i=0

inset(Ai, r).

Proof The fact follows readily from the definition of insets: If a ∈ inset(
⋂∞

i=0 Ai, r),
then Dr(a) is contained in

⋂∞
i=0 Ai . In particular, it is contained in Ai for every i

which proves one inclusion. The other direction is similar. �
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Lemma 19 Let (Ai)i∈N be a sequence of closed sets in R
2 with A0 ⊇ A1 ⊇ · · · .

Moreover, let (λi)i∈N be a monotonously decreasing sequence of real numbers that
converges to λ ∈ R. Then

offset

( ∞⋂

i=0

Ai,λ

)

=
∞⋂

i=0

offset(Ai, λi).

Proof The “⊆” inclusion is straightforward, so we concentrate on the “⊇” part. Fix
some b ∈ ⋂

offset(Ai, λi). For every i ∈ N, there exists some ai ∈ Ai such that (b −
ai) ∈ Dλi

. Now, the sequence (b − ai)i∈N is a bounded sequence in R
2 (bounded

by Dλ0 ) and therefore has a convergent subsequence by the well-known Bolzano–
Weierstrass Theorem. Let r denote the limit point of this subsequence. In particular,
the corresponding subsequence of (ai)i∈N converges to a := b − r . We show that
a ∈ ⋂

Ai and r ∈ Dλ which suffices to prove the claim.
Assume that a /∈ ⋂

Ai . Then, there is some n0 such that a /∈ An0 . Since An0 is
closed, d(a,An0) =: ε > 0, where d is the Euclidean distance function. Moreover,
because each An with n ≥ n0 is included in An0 , d(a,An) ≥ ε. Because (ai)i∈N

converges to a, we can find some N ≥ n0 such that d(a, aN) < ε. However, aN ∈ AN ,
so

d(a,AN) ≤ d(a, aN) < ε = d(a,An0) ≤ d(a,AN),

which is a contradiction. The fact that r ∈ Dλ follows by a similar argument. �

Theorem 20 For arbitrary Q and r , and ε̂ as from Definition 10, there exists a
solution to the deconstruction problem.

Proof Because of Corollary 6, we need to prove that

Q ⊆ Q′
ε̂
:= offset

(
inset

(
offset(Q, ε̂), r

)
, r + ε̂

)
.

Let (εi)i∈N be a monotone decreasing sequence of real numbers that converges to ε̂.
Because εi > ε̂ for each i, DECIDE return YES for each εi , which is equivalent to

Q ⊆ Q′
i := offset

(
inset

(
offset(Q, εi), r

)
, r + εi

)
.

It is therefore sufficient to prove that

Q′
ε̂
=

∞⋂

i=0

Q′
i .

For that, we apply Lemma 19 on the constant sequence (Q)i∈N and on (εi)i∈N to
obtain

offset(Q, ε̂) =
∞⋂

i=0

offset(Q, εi).
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Applying Lemma 18 yields

inset
(
offset(Q, ε̂), r

) =
∞⋂

i=0

(
inset

(
offset(Q, εi), r

))
,

and applying Lemma 19 for the sequences (inset(offset(Q, εi), r))i∈N and (r +εi)i∈N

yields

offset
(
inset

(
offset(Q, ε̂), r

)
, r + ε̂

)

︸ ︷︷ ︸
=Q′

ε̂

=
∞⋂

i=0

offset
(
inset

(
offset(Q, εi), r

)
, r + εi

)

︸ ︷︷ ︸
=Q′

i

.

�

Since r is no longer fixed, we now consider ε̂ as a function from R
+ to R

+ de-
pending on r ; abusing notation, we will let ε̂ by itself denote this function from now
on.

Theorem 21 ε̂ is a monotone increasing function. Moreover, ε̂ is Lipschitz-
continuous with Lipschitz factor 1.

Proof We prove monotonicity first: Let a < b denote two radii and εa = ε̂(a), εb =
ε̂(b). We will show that DECIDE(a, εb) returns YES, which proves that εa ≤ εb .

We compare the intermediate results of DECIDE(a, εb), denoted by Si , to those of
DECIDE(b, εb), denoted by Bi :

S1 = offset(Q, εb) B1 = offset(Q, εb) = S1

S2 = inset(S1, a) B2 = inset(B1, b) = inset
(
inset(S1, a), b − a

)

= inset(S2, b − a)

S3 = offset(S2, a + εb) B3 = offset(B2, b + εb)

= offset
(
offset(B2, b − a), a + εb

)
.

Since

offset(B2, b − a) = offset
(
inset(S2, b − a), b − a

) ⊆ S2

it follows that B3 ⊆ S3. Because DECIDE(b, εb) returns YES by definition, we have
Q ⊆ B3, therefore Q ⊆ S3 and DECIDE(a, εb) also returns YES.

For Lipschitz continuity, let a < b be such that b − a ≤ δ, and again εa = ε̂(a),
εb = ε̂(b). We show that εb − εa ≤ δ. There exists a polygonal region P that is a
solution to the deconstruction problem for Q, a and εa . In other words,

H
(
offset(P, a),Q

) ≤ εa.

Because of the general fact

H(A,B) ≤ ε ⇒ H
(
offset(A, δ),B

) ≤ ε + δ,
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and since b ≤ a + δ we have

H
(
offset(P, b),Q

) ≤ H
(
offset(P, a + δ),Q

)

= H
(
offset

(
offset(P, a), δ

)
,Q

) ≤ εa + δ.

Therefore, P is a solution for the deconstruction problem for Q, b and εa + δ, so
εb ≤ εa + δ. �

It follows from the monotonicity and Theorem 20 that R is an interval which has
0 as its left endpoint. Thus, computing R reduces to finding the maximal r∗ > 0 such
that ε̂(r∗) = ε.

Using the exact decision procedure, we can perform a binary search similar to that
for approximating ε̂: First, we compute an interval [0, r] containing r∗. Since Q is
finite, we can take r to be the radius of the smallest enclosing circle of Q plus ε. Then,
we start the iterative process, deciding on the left or right subinterval depending on
the result of DECIDE for Q, ε and the midpoint of the interval.

What if we are using APPROXDECIDE instead? Unlike Algorithm 5, we can no
longer guarantee that every execution of the approximation algorithm halves the
search interval, because a return value UNDECIDED does not bound the distance of the
current radius r to the critical value r∗. Instead, we propose the following scheme:
For an interval I with midpoint r , APPROXDECIDE is called with some δ, initially
set to ε

2 . If it returns UNDECIDED, δ is divided by 2 and APPROXDECIDE is recalled.
Eventually, the algorithm returns YES or NO, and the interval I can be halved.

Let R′ be the preimage of ε under ε̂. Note that R′ is an interval (which may consist
of only one point). The scheme from above is guaranteed to converge to some r ∈ R′.
However, if R′ contains more than one point, it is not guaranteed to converge to the
maximal one (because it gets stuck in an infinite loop as soon as the query value r

lies in R′). One way of avoiding this infinite loops is to decrease δ only to some
threshold and choosing another query value r from the interval if no decision was
made. Nevertheless, we have not found an algorithm with t he formal guarantee of
converging to the largest value in R′ eventually.

Searching for both r and ε We finally consider the question of how we can find
a reasonable choice of r , ε and a polygonal region P , such that P is a solution for
the deconstruction problem for Q, r , and ε. The meaning of “reasonable” depends
on the application context, and possible prior information (for instance, a range of
possible offset radii). We offer a basic generic approach and justify our choice with
an example.

Generally, we expect from a reasonable pair (r, ε) that ε is small. So, in order to
judge whether a good solution exists for radius r , we consider ε̂(r). However, ε̂(r)

being small (or equivalently, 1
ε̂(r)

being large) is not a good criterion, because ε̂ is
monotone increasing according to Theorem 21, so r = 0 would always be the best
solution.3 In order to remove the bias towards small radii, we scale the objective

3Note that this is also formally correct, because P := Q is the perfect solution for r = 0.
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Fig. 7 The Flower polygon example: 10 samples per radius unit for r ≤ 5

function and consider

J : R
+ → R

+, r �→ r

ε̂(r)
.

Note that J is well-defined on the positive axis and continuous. Moreover, we can
approximate the graph of J in any finite interval of r-values by choosing a sample of
the interval and approximating ε̂ at each sample value using Algorithm 5.

We demonstrate by an example that the local maxima of J yield radii that lead
to good deconstruction results. Consider the polygonal region defined in Fig. 7a,
and its (approximated) J -graph in Fig. 7b. We can identify two local maxima r1

and r3; we have plotted the corresponding solutions in Fig. 8. Indeed, we see that for
the large radius r3, we obtain a relatively simple solution whose offset blurs away
the spikes of Q. For the smaller local maximum at r1, we obtain a solution with
more details such that the spikes can be approximated almost perfectly with the given
radius. In contrast, the shape at the local minimum r2 combines the disadvantages
of the two discussed cases: the solution is similarly complicated as the r1-solution
(it contains flattened versions of all the spikes), but its approximation quality is not
significantly better than for the r3 solution which achieves the same with a much
larger radius.

5 Deconstructing Convex Polygons

Assume that the input Q to Algorithm 1 is a convex polygon. We first improve the
decision algorithm such that it runs in linear time (Algorithm 6). Then we look for
a polygon P with a minimal number of vertices (OPT) such that Q is ε-close to
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Fig. 8 Flower polygon approximations for the (r, ε̃�(r)) values at J -graph extrema. In the upper row,
approximations of the solutions are shown in green, and their r-offsets (ε̃�(r)-close to the input) in dark
blue. In the lower row the input polygon is shown in blue. The ε̃�-width cyan stripe around the r-offset
demonstrates the quality of the approximation (Color figure online)

offset(P, r). We give a simple linear-time algorithm that produces a polygon with at
most OPT + 1 vertices.

Lemma 22 If Q is a convex polygonal region, then Π , as computed by DECIDE

(Algorithm 1), is also a convex polygon, and it can be computed in O(n) time.

Proof Q is the intersection of the half-planes bounded by lines that support the poly-
gon edges. Observe that Π can be directly constructed from Q by shifting each such
line by r −ε inside the polygon, which shows that Π is convex. For the time complex-
ity, we divide the shifted edges of Q into those bounding Q from above, and those
bounding Q from below (we assume w.l.o.g. that no edge is vertical). Consider the
former edges; the lines supporting those edges have slopes that are monotonously de-
creasing when traversing the edges from left to right. We have to compute their lower
envelope; for that, we dualize by mapping y = mx + c to (m,−c), which preserves
above/below relations, and compute the upper hull of the dualized points. Since we
already know the order of the points in their x-coordinate, this can be done in linear
time using Graham’s scan [2, 10]. The same holds for the edges bounding Q from
below, taking the upper envelope/lower hull. �

DECIDE first computes Π and checks whether Q ⊆ offset(Π, r + ε). We replace
the latter step for convex polygons: Let q1, . . . , qn be the vertices of Q (in counter-
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clockwise order) and define Ki = Dr+ε(qi), namely the disk of radius r + ε centered
at qi . We check whether all these disks intersect Π .

Algorithm 6 CONVEXDECIDE(Q,r, ε)

(1) Qε ← offset(Q, ε)

(2) Π ← inset(Qε, r)

(3) if Ki ∩ Π �= ∅ for all i = 1, . . . , n, return YES,
otherwise return NO

Lemma 23 CONVEXDECIDE agrees with DECIDE on convex input polygons Q and
runs in O(n) time.

Proof For correctness, it suffices to prove that offset(Π, r) is ε-close to Q if and
only if each Ki intersects Π : Indeed, if any Ki does not intersect Π , then qi has
distance more than r + ε to Π , so Q is not ε-close to the offset. Otherwise, if each
disk Ki intersects Π , offset(Π, r + ε) contains each vertex of Q. Since it is a convex
set (as the Minkowski sum of two convex sets), it also covers each edge of Q. Thus,
Q ⊆ offset(Π, r + ε), which ensures that Q is ε-close to the offset by Proposition 3.

For the complexity, Lemma 22 shows that the computation of Π runs in linear
time. We still have to demonstrate that the last step of the algorithm (checking for
non-empty intersections) also takes a linear time. Let e1, . . . , em be the edges of Π

(with m < n). To check for an intersection of Ki with Π , we traverse the edges and
check for an intersection, returning NO if no such edge is found. However, if such an
edge, say ej was found, we start the search for an intersection of the next disk Ki+1
at ej , again traversing the edges in counterclockwise order. Using this strategy, and
noting that K1, . . . ,Kn are arranged in counterclockwise order around Π , it can be
easily seen that we iterate at most twice through the edges of Π . �

Reducing the Number of Vertices We assume that offset(Π, r) is ε-close to Q. We
prefer a simple-looking approximation of Q, thus we seek a polygon P ⊆ Π whose
offset is ε-close to Q, but with fewer vertices than Π . Any such P intersects each of
the bulged regions of radius r + ε: κi := Ki ∩ Π, i = 1, . . . , n. We call these bulged
regions Π ’s eyelets. The converse is also true: Any convex polygon P ⊆ Π that in-
tersects all eyelets κ1, . . . , κn has an r-offset that is ε-close to Q.

The following observation is a simple consequence of Proposition 3:

Proposition 24 If offset(P, r) is ε-close to Q, and P ⊆ P ′ ⊆ Π , then offset(P ′, r)
is ε-close to Q.

We call a polygonal region P (vertex-)minimal, if its r-offset is ε-close to Q, and
there exists no other such region with fewer vertices. Necessarily, a minimal P must
be convex – otherwise, its convex hull CH(P ) has fewer vertices and it can be seen
by Proposition 24 that offset(CH(P ), r) is also ε-close to Q. By the next lemma, we
can restrict our search to polygons with vertices on ∂Π .
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Lemma 25 There exists a minimal polygonal region P ⊆ Π the vertices of which
are all on ∂Π .

Proof We pull each vertex pi �∈ ∂Π in the direction of the ray emanating from pi−1
towards pi until it intersects ∂Π in the point p′

i (dragging pi ’s incident edges along
with it); see the enclosed illustration. For P ′ = (p1, . . . , pi−1,p

′
i , pi+1, . . . , pm):

P ⊆ P ′ ⊆ Π , offset(P ′, r) is ε-close to Q by Proposition 24. �

We call a polygonal region P good, if P ⊆ Π , all vertices of P lie on ∂Π , and P

intersects each eyelet κ1, . . . , κn. Note that any good P is convex.

Definition 26 For two points u,u′ ∈ ∂Π , we denote by [u,u′] ⊂ ∂Π all points that
are met when traveling along ∂Π from u to u′ in counterclockwise order. Likewise,
we define half-open and open intervals [u,u′), (u,u′], (u,u′).

Let κi = Ki ∩ Π be qi ’s eyelet as before. Consider κi ∩ ∂Π . The portion of that
intersection set that is visible from qi (considering Π as an obstacle) defines a (ccw-
oriented) interval [vi,wi] ⊂ ∂Π . We call vi the spot of the eyelet κi . Finally, for
u,u′ ∈ ∂Π , we say that the segment uu′ is good, if for all spots vi ∈ (u,u′), uu′
intersects the corresponding eyelet κi .

The figure above illustrates these definitions: The segment pp′ is good, whereas
pp′′ is not good, because v2 ∈ (p,p′′), but the segment does not intersect κ2.

Theorem 27 Let P be a convex polygonal region with all its vertices on ∂Π . Then,
P is good if and only if all its bounding edges are good.

Proof We first prove that if all the edges of P are good, then P is good. It suffices
to argue that it intersects all eyelets κ1, . . . , κn. Let p1, . . . , pk be the vertices of P in
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counterclockwise order. Any spot vi of an eyelet κi either corresponds to some vertex
p
 of P , or lies inside some interval (p
,p
+1). Since p
p
+1 is good, it intersects κi .

For the converse, assume that p
p
+1 is not good, which encloses with the interval
(p
,p
+1) a polygonal region R ⊆ Π \ P . Hence, there is a spot vi ∈ R such that
p
p
+1 does not intersect the eyelet κi . It follows that the entire κi is inside R (see
the illustration above, considering pp′′ and κ2). Thus, P ∩ κi = ∅, and so P cannot
be good. �

For u ∈ ∂Π , we define its horizon hu ∈ ∂Π as the maximal point in counterclock-
wise direction such that that segment uhu is good. Consider again the figure above:
The segment php is tangential to κ2, so if going any further than hp on ∂Π from p,
the segment would miss κ2 and thus become non-good.

Lemma 28 Let P be a good polygonal region, and u ∈ ∂Π . Then, P has a vertex
p ∈ (u,hu].

Proof Assume to the contrary that P has no such vertex, and let p1, . . . , p
 be its
vertices on ∂Π . Let pj be the vertex of P such that u ∈ (pj ,pj+1). Then, also hu ∈
(pj ,pj+1), because otherwise, pj+1 ∈ (u,hu]. Since P is good, the segment pjpj+1
is good, too. It is not hard to see that, consequently, both pju and upj+1 are good.
However, the latter contradicts the maximality of the horizon hu. �

For an arbitrary initial vertex s ∈ ∂Π , we finally specify a polygonal region P s

by iteratively defining its vertices. Set p1 := s. For any j ≥ 1, if the segment pj s,
which would close P s , is good, stop. Otherwise, set pj+1 := hpj

. Informally, we
always jump to the next horizon until we can reach s again without missing any of
the eyelets. By construction, all segments of P s are good, so P s itself is good. The
(almost-)optimality of this construction mainly follows from Lemma 28.

Theorem 29 Let P be a vertex-minimal polygonal region for Q, having OPT ver-
tices. Then, for any s ∈ ∂Π , P s has at most OPT + 1 vertices.

Proof We first prove that P s has the minimal number of vertices among all good
polygonal regions that have s as a vertex. Let s := p1, . . . , pm be the vertices of P s .
There are m − 1 segments of the form p
hp


. By Lemma 28, any good polygonal
region has a vertex inside each of the intervals (p
,hp


]. Together with the vertex
at s, this yields at least m vertices, thus P s is indeed minimal among these polygonal
regions.

Next, consider any minimal polygonal region P �. We can assume that all its ver-
tices are on ∂Π by Lemma 25. If s is not a vertex of P �, we add it to the vertex set
and obtain a polygonal region P ′ with at most OPT+1 vertices that has s as a vertex.
P s has at most as many vertices as P ′, so m ≤ OPT + 1. �

As each visit of an eyelet requires constant time, the construction of a horizon is
proportional to the number of visited eyelets, and there are only linearly many eyelets.
Thus, we can state:
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Theorem 30 For an arbitrary initial vertex s, computing P s requires O(n) time.

Proof We prove that computing the horizon of a point u takes a number of operations
proportional to the number of eyelets that are visited by the segment uhu. Let us
consider an arbitrary u ∈ ∂Π . By rotating appropriately, we can assume, without loss
of generality, that u lies on a vertical edge of Π (or, if u is a vertex, that the next
edge in counterclockwise order is vertical), and that the edge is traversed top-down.
The horizon is determined by the slope of the edge at u. Note that for each eyelet
κ1, . . . , κn, there is an interval of slopes I

(u)
1 , . . . , I

(u)
n such that the segment from

u with slope λ intersects κi if and only if λ ∈ I
(u)
i . Furthermore, each single I

(u)
i

can be computed with a constant number of arithmetic operations. Assuming that
the next eyelet to be traveled from the current pi is κj , we can iteratively compute
the intersections Ij ∩ Ij+1 ∩ Ij+2, . . . until Ij ∩ · · · ∩ Ij+k is empty. In this case, we
choose λi := max(Ij ∩ · · · ∩ Ij+k−1) as the slope for the next segment, which must
be pihpi

since it is good by construction, and any larger slope would produce a non-
good segment. Based on this property, it is easy to show that computing P s needs a
number of operations which is proportional to n, the number of eyelets. �

6 Open Problems

We have shown how to decide whether a given arbitrary polygonal shape Q is com-
posable as the Minkowski sum of another polygonal region and a disk of radius r ,
up to some tolerance ε. Many related questions remain open. (i) Deconstruction
of Minkowski sums seems more difficult when both summands are more compli-
cated than a disk; many practical scenarios may raise this general deconstruction
problem. (ii) It would be interesting to analyze the deconstruction not only under
the Hausdorff distance but for other similarity measures, such as the Frêchet or the
symmetric distance. (iii) Can one remove the extra vertex when seeking an optimal
(vertex-minimal) polygonal summand P in the convex case. (iv) Finding an opti-
mal or near-optimal polygonal summand in the non-convex case seems challenging.
(v) As in polygonal simplification, we could also search for the polygonal region with
a given number of vertices whose r-offset minimizes the (Hausdorff) distance to the
given shape. (vi) The offset-deconstruction problem can be reformulated in higher
dimensions. We consider especially the three-dimensional case to be of practical rel-
evance.
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