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Abstract Given a set of points P ⊆ R
2, a conflict-free coloring of P w.r.t. rectangle

ranges is an assignment of colors to points of P , such that each nonempty axis-
parallel rectangle T in the plane contains a point whose color is distinct from all other
points in P ∩ T . This notion has been the subject of recent interest and is motivated
by frequency assignment in wireless cellular networks: one naturally would like to
minimize the number of frequencies (colors) assigned to base stations (points) such
that within any range (for instance, rectangle), there is no interference. We show that
any set of n points in R

2 can be conflict-free colored with O(nβ∗+o(1)) colors in

expected polynomial time, where β∗ = 3−√
5

2 < 0.382.
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1 Introduction

The study of conflict-free coloring is motivated by the frequency assignment problem
in wireless networks. A wireless network is a heterogeneous network consisting of
base stations and agents. The base stations have a fixed location and are interlinked
via a fixed backbone network, while the agents are typically mobile and can connect
to the base stations via radio links. The base stations are assigned fixed frequencies
to enable links to agents. The agents can connect to any base station, provided that
the radio link to that particular station has good reception. Good reception is only
possible if (i) the base station is located within range, and (ii) no other base station
within range of the agent has the same frequency assignment (to avoid interference).
Thus the fundamental problem of frequency-assignment in cellular networks is to
assign frequencies to base stations so that an agent can always find a base station
with unique frequency among the base stations in its range. Naturally, due to cost,
flexibility, and other restrictions, one would like to minimize the total number of
assigned frequencies.

The study of the above problem was initiated in [9] and continued in a series of
recent papers [3–6, 8, 11, 12, 14, 15]. For a recent survey on the problem and its
applications, we refer to [16]. The conflict-free coloring problem can be formally
described as follows. Let P ⊆ R

2 be a set of points, and R be a set of ranges (e.g.,
the set of all discs or rectangles in the plane). A conflict-free coloring (CF-coloring
in short) of P w.r.t. the range R is an assignment of a color to each point p ∈ P such
that for any range T ∈ R with T ∩ P �= 0, the set T ∩ P contains a point of unique
color. Naturally, the goal is to assign a conflict-free coloring to the points of P with
the smallest number of colors possible.

The work in [9] presented a general framework for computing a conflict-free col-
oring for several types of ranges. In particular, for the case where the ranges are discs
in the plane, they present a polynomial-time coloring algorithm that uses O(logn)

colors for conflict-free coloring, and this bound is shown to be tight. This result was
then extended in [12] by considering the case where the ranges are axis-parallel rect-
angles in the plane. This seems much harder than the disc case, and the work in [12]
presented a simple algorithm that uses O(

√
n) colors. As mentioned in [12], this can

be further improved to O(
√

n log logn/ logn) using the sparse neighborhood prop-
erty of the conflict-free graph, as independently observed by Alon, Krivelevich, and
Sudakov [2] and Pach and Tóth [14]. Prior to this paper, this was the best known upper
bound for CF-coloring axis-parallel rectangles. A lower bound of Ω(logn) trivially
follows from the lower bound for intervals. A related notion is that of the Delaunay
graph of a point set P with respect to axis-parallel rectangles, defined as the graph
on the vertex set P , whose two points p,q ∈ P are connected by an edge if and only
if there is an axis-parallel rectangle that contains p and q , but no other points of P .
Chen et al. [7] show that there exists a set of n points for which the maximum size of
an independent set in the conflict-free graph is O(n log2 logn/ logn).

Recent works have shown that one can obtain better upper bounds for special
cases of this problem. In [12], it was shown that for the case of random points in
a unit square, O(log4 n) colors suffice, and for points lying in an exact uniform√

n × √
n grid, O(logn) colors are sufficient. Chen [5] showed that polylogarithmic
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number of colors suffice for the case of nearly equal rectangle ranges. Elbassioni and
Mustafa [8] asked the following question: Given a set of points P in the plane, can
we insert new points Q such that the conflict free coloring of P ∪ Q requires fewer
colors? They showed that by inserting O(n1−ε) points, P ∪ Q can be conflict-free
colored using Õ(n3(1+ε)/8) colors.

While the CF-coloring problem is closed for disc ranges, the upper bounds are
very far from the currently known lower bounds for axis-parallel rectangular ranges.
It remains very interesting to reduce this gap between upper and lower bounds, and
this is, in fact, the main open problem posed in [12]. In this paper, we improve the
upper bound significantly.

Theorem 1.1 Any set of n points in R
2 can be conflict-free colored with respect to

rectangle ranges using O(n
β∗+O( 1√

logn
)
) colors, in expected polynomial time, where

β∗ = 3−√
5

2 < 0.382.

An immediate corollary of Theorem 1.1 is that the Delaunay graph of any set
of points in the plane with respect to axis-parallel rectangles has an independence
number Ω(n0.618).

Our main tool for proving this theorem is a probabilistic coloring technique, intro-
duced in [8], that can be used to get a coloring with weaker properties, which we call
quasi-conflict-free coloring. This will be combined with boundary sets, monotone se-
quences, and careful griding of the point set, in a recursive way, to obtain the claimed
result. We start with some definitions and preliminaries in Sect. 2. To illustrate our
ideas, we sketch a simple Õ(n6/13) conflict-free coloring algorithm in Sect. 3. The
main algorithm will be given in Sect. 4. We describe the quasi-conflict-free coloring
technique in a slightly more general form in Sect. 5. Section 4 contains the analysis
of the main algorithm.

2 Preliminaries

By R ⊆ 2R
2
, we denote the set of all axis-parallel rectangles. Let P be a set of points

in R
2.

Definition 2.1 (Conflict-free coloring) A coloring of P is a function χ : P 	→ N
from P to some finite set N . A rectangle T ∈ R is said to be conflict-free with
respect to a coloring χ if either T ∩ P = ∅, or there exists a point p ∈ P ∩ T such
that χ(p) �= χ(p′) for all points p′ ∈ P ∩ T , distinct from p. A coloring χ is said to
be conflict-free (w.r.t. R) if every rectangle T ∈ R is conflict-free w.r.t. χ .

In this paper, we shall say that a given procedure is an f (n)-CF-coloring algorithm
if it conflict-free colors any set of points of size n with at most f (n) colors. It will
be convenient to think of the set of colors N , which we use to color the points, as
a subset of the sequences of natural numbers N∗ = N ∪ N

2 ∪ . . . This allows us to
take unions and products of colors. More precisely, for disjoint subsets P ′,P ′′ ⊆ P

and colorings χ ′ : P ′ 	→ N∗ and χ ′′ : P ′′ 	→ N∗, we let χ ′ + χ ′′ denote the coloring



42 Discrete Comput Geom (2012) 48:39–52

Fig. 1 Boundary sets: the
shaded region represents the
lower right quadrant, and the
solid black points represent the
boundary set D3(P ) of type 3

χ : P ′ ∪ P ′′ 	→ N∗ defined by χ(p) = χ ′(p) if p ∈ P ′ and χ(p) = χ ′′(p) if p ∈ P ′′.
For two colorings χ ′, χ ′′ : P 	→ N∗, we denote by χ ′ × χ ′′ the coloring χ : P 	→ N∗
given by χ(p) = (χ ′(p),χ ′′(p)) for p ∈ P .

Definition 2.2 (Boundary sets) For a point p = (px,py) ∈ R
2, define W1(p) = {q ∈

R
2|qx ≥ px, qy ≥ py} to be the upper-right quadrant defined by p. Similarly, let

W2(p),W3(p), and W4(p) be the upper-left, lower-right and lower-left quadrants,
respectively. Define the boundary set of type i for P , denoted by Di(P ), 1 ≤ i ≤ 4,
as follows:

Di(P ) = {
p ∈ P | Wi(p) ∩ P = {p}}.

Definition 2.3 (Monotonic sets) Let P = {p1,p2, . . . , pk} be a set of points that
is sorted by x coordinate. P is (resp. monotonic nonincreasing) if p

y
j ≥ p

y
i (resp.

p
y
j ≤ p

y
i ) for all 1 ≤ i < j ≤ k.

It is easy to see that the boundary set of type 2 and 3 (resp. type 1 and 4) are
monotonic nondecreasing (resp. nonincreasing); see Fig. 1.

Definition 2.4 (r-Grid) Let r ∈ Z>0 be a positive integer. An r-grid on P (see Fig. 2),
denoted by Gr = Gr(P ), is an r × r axis-parallel grid containing all points of P . For
i = 1, . . . , r , denote by Ri and Ci the subsets of P lying in the ith row and column
of Gr , respectively. Denote by B(Gr) the maximum number of points of P in a row
or a column of Gr . For 1 ≤ h ≤ 2r − 1, let M1

h (resp. M2
h) be the set of grid cells

lying along a diagonal h of positive slope (resp. negative slope) in Gr . For l = 2,3
(resp. l = 1,4), let Dh

l = ⋃
(i,j)∈M1

h
Dl(Ri ∩Cj ) (resp. Dh

l = ⋃
(i,j)∈M2

h
Dl(Ri ∩Cj))

be the union of boundary sets of type l over grid cells in M1
h (resp. M2

h). Let Dl =⋃
(i,j)∈Gr

Dl(Ri ∩ Cj ) be the union of boundary sets of type l over all the grid cells
in Gr .



Discrete Comput Geom (2012) 48:39–52 43

Fig. 2 r-grid Gr : r = 4,
B(Gr) = 24, the four types of
boundary sets are shown as solid
circles in four different colors,
and the remaining points are
shown as hollow circles. The
shaded cells represent the set
M1

h
for h = 3. Note that some

points may be in many different
boundary sets. In this figure, a
point belonging to multiple
boundary sets is colored by the
color of either one of them
(Color figure online)

Note that, for l = 2,3 and 1 ≤ h ≤ 2r − 1, Dh
l is monotonic nondecreasing, since

the grid cells in M1
h , which lie along the diagonal of positive slope, are horizontally

and vertically separated, and hence the union of Dl(Ri ∩ Cj ) (which are monotonic
nondecreasing) is also monotonic nondecreasing. By a similar argument, for l = 1,4
with M2

h and 1 ≤ h ≤ 2r − 1, Dh
l is monotonic nonincreasing.

Definition 2.5 (Quasi-conflict-free coloring) Given a grid Gr on P , we call a color-
ing χ : P 	→ N quasi-conflict-free with respect to Gr if every axis-parallel rectangle
which contains points only from the same row or the same column of Gr is conflict-
free.

Let Gr be an r-grid on a point set P such that B(Gr) = B . It is shown in [8] that
there exists a quasi-conflict-free coloring of Gr requiring Õ(B3/4) colors.1

3 A Simple Conflict-Free Coloring Algorithm Using Õ(n6/13) Colors

In this section, we sketch a simple algorithm for CF-coloring P in order to illustrate
the main ideas. This algorithm CF-colors P using Õ(n6/13) colors. We deliberately
skip some technical details in order to make the main idea as clear as possible. The
later sections contain a more detailed analysis.

It will be useful first to illustrate the idea behind the O(n1/2)-CF-coloring algo-
rithm in [12]. By the Erdős–Szekeres theorem [10], the set of points P , regarded as
sequence when ordered by the x-coordinate, has a monotone subsequence of size

√
n.

Clearly, the set I consisting of every other point in this monotone sequence defines an
independent set in the conflict-free graph of P . We color all the points in I with one
color and then recurse on the rest of the points with a different set of colors. One can

1Just as O-notation hides constant factors, Õ hides the poly-logarithmic factors.
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easily argue that the resulting coloring will be conflict free since I is an independent
set, and that the total number of colors needed is O(n1/2).

Let A be an O(n1/2) conflict-free coloring algorithm (as the one described above).
To reduce the number of colors needed below O(n1/2), we proceed as follows. Set
t = n7/13. As long as the current point set contains a monotonic sequence of size t ,
we color alternate points in that sequence with the same color, remove them, and
continue with the remaining points using new colors. Since we remove Ω(t) points
every time, the number of colors used in this process is O(n6/13). Let Q be the set

of points left after this step, and let m = |Q|. Now, let r = m
5
13 . Grid Q using Gr

such that each row and column has B = m
8
13 points of P . Compute the boundary sets

Dl (Q),1 ≤ l ≤ 4, and let D = ⋃4
l=1 Dl(Q) and Q′ = Q \ D. We quasi-CF color Q′

with Õ(B3/4) colors using the algorithm of [8] (which uses A as subroutine). Then,
we CF-color D using A with a different set of colors.

Lemma 3.1 The above coloring of P is conflict-free.

Proof Let T ∈ R be a rectangle such that T ∩ P �= ∅. We show that T contains a
point of unique color among the points in T ∩ P .

We consider 3 cases:

Case 1. A monotone sequence of size t is found, and we colored every other point in
the sequence (set I ) with one color: if (T ∩P) \ I �= ∅, then by induction and the fact
that I and P \ I are colored with distinct sets of colors, we know that T ∩P contains
a point of a unique color. If T ∩ P ⊆ I , then |T ∩ P | = 1 (since I consists of every
other point in a monotone sequence), and the statement trivially holds.

Case 2. T ∩D �= ∅: The CF-coloring of D guarantees that there is a point p of unique
color among points in T ∩ D. Since D and Q′ = Q \ D are colored with distinct sets
of colors, p is a point of unique color among points in T ∩ P also.

Case 3. T ∩ D = ∅: Let (i, j) be a grid cell of Gr defined by the intersection of
row Ri and column Cj . If T contains at least one corner of some grid cell (i, j),
T ∩ Dl(Ri ∩ Cj ) �= ∅ for some l ∈ {1, . . . ,4}, contradicting the fact that T ∩ D = ∅.
Therefore, in this case, T lies completely within one row or one column of Gr . Since
T ∩ P �= ∅ and T ∩ D = ∅, we have T ∩ Q′ �= ∅. The quasi-CF coloring of Q′
guarantees that there is a point p of unique color among the points in T ∩ Q′. p is
also a point of unique color among points in T ∩ P . �

We now bound the total number of colors used by our algorithm. As argued before,
the number of colors used in the first step (removing monotonic sequences of size t) is

Ω(n6/13). Quasi-CF-coloring of Q requires Õ(n
8
13 × 3

4 ) = Õ(n6/13) colors. To bound
the number of colors used in CF-coloring D, we first bound the size of D: |Dh

l | ≤ t

for all h and l, because each Dh
l is a monotonic sequence. Since D = ⋃

l,h Dh
l over

1 ≤ h ≤ 2m5/13 − 1, and 1 ≤ l ≤ 4, we have |D| = O(n12/13). Thus, the CF-coloring
of D (using the O(n1/2)-coloring algorithm A) requires O(n6/13) colors. The total
number of colors used by our algorithm is thus Õ(n6/13).
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4 Improved Conflict Free Coloring

In the algorithm described in Sect. 3, we used an O(n1/2)-“black-box” A for CF-
coloring the boundary set D and the quasi-CF-coloring of P ′. As a result, we ob-
tained an Õ(n6/13) CF-coloring algorithm. We can improve this coloring further by
using this Õ(n6/13) as a new black-box for CF-coloring the boundary set D and
quasi-CF-coloring of P ′. An easy calculation shows that the number of colors used
is asymptotically smaller than Õ(n6/13).

This bootstrapping approach can be taken to the limit. This results in a sequence
of strictly improved algorithms, A = A0, A1, A2, . . . . For k = 1,2, . . . , the structure
of Ak is similar to the algorithm described in Sect. 3: Grid the point set P using Gr ,
where r = n1−αk for some αk ; Partition P into boundary set D and P ′ = P \ D

and use algorithm Ak−1 for CF-coloring D and quasi-CF-coloring P ′. We choose
the parameter αk such that both the CF-coloring of D and quasi-CF-coloring of P ′
balance-out into using Õ(nβk ) colors for some βk as small as possible.

Ideally, one would like to always recursively apply algorithm A∞ to get a bound
of Õ(nβ∞) on the number of colors (assuming that these limits exist). However, there
is a technical problem with such a recursion: the sublinearity of the bound on the
number of colors implies that the power of the logarithmic factor increases exponen-
tially2 with k. To solve this problem, we can stop the recursion at a level of O(log 1

ε
),

settling at a bound of Õ(nβ∞+ε) for any arbitrarily small constant ε > 0. Analyz-
ing this approach3 is however technically complicated, and we present an alternate
method here, which is asymptotically better in terms of the number of colors, but
with possibly worse constants.

In the rest of the paper, logarithms are with base 2. Let β∗ = (3 − √
5)/2, α∗ =

1 − β∗, c = 219, and n0 = 2(14c)2
. Define the functions α(n) = α∗ − 5c/

√
logn,

β(n) = β∗ + 9c/
√

logn, and γ (n) = α∗ − 7c/
√

logn.
Let P be a set of n points. If n ≤ n0, we use any CF-coloring algorithm to color P .

Otherwise, we use the same approach as in Sect. 3. Namely, if P contains a mono-
tonic chain of points of size m = 2nγ (n), then we color alternate points of the chain
with one color and recursively color the rest of the points in P using a new set of
colors. Otherwise (the size of any monotonic chain in P is at most m), we construct
a grid G so that each row and column of G contains at most nα(n) points. Let D be
the set of all points belonging to the boundary sets of the cells of G. We conflict free-
color D recursively using our CF-coloring procedure, and quasi-CF-color the rest of
the points using a different set of colors. In the quasi conflict-free coloring algorithm,
we use a recursive call to the conflict-free coloring procedure. (However, since we
are calling the quasi conflict-free coloring algorithm only for smaller-size point sets,
there is no circularity here.) The coloring procedure is given as Algorithm 1.

The structure of the above algorithm is the same as the algorithm described in
Sect. 3. Hence, by Lemma 3.1 the coloring returned by the algorithm is conflict-free.

2This is essentially a byproduct of the fact that n
β
1 + n

β
2 > (n1 + n2)β for 0 < β < 1.

3We refer the interested reader to the conference version of this paper [1] for the details of such a boot-
strapping approach.
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Algorithm 1 Procedure A(P,S)

Input: A point set P ⊆ R
2, |P | = n, a set of colors S

Output: A CF-coloring χ : P 	→ S

1. if n ≤ n0 then
2. return a coloring of P using the O(

√
n)-coloring algorithm

3. else
4. Set α = α∗ − 5c/

√
logn, γ = α∗ − 7c/

√
logn and r ← �n1−α�

5. if ∃ a monotonic sequence L of size 2nγ in P then
6. Let I be the set consisting of every other point of L

7. Color every point of I with the same color i ∈ S, i.e., set χ ′(p) ← i for all
p ∈ I

8. χ ′′ ← A(P \ I, S \ {i})
9. return χ ′ + χ ′′

10. else
11. Grid P using Gr

12. Compute the boundary set D w.r.t. Gr

13. χ ′ ←QCFC(P \ D, A,Gr, S)

14. χ ′′ ← A(D,S \ range(χ ′))
15. return χ := χ ′ + χ ′′

In the next section, we bound the number of colors needed by the quasi-CF-
coloring algorithm. We use this result in Sect. 6 to analyze the number of colors
needed by Algorithm 1.

5 Generalized Quasi-conflict Free Coloring

Given an r-grid Gr on point set P , we start by coloring the points of each column,
using a CF-coloring algorithm A as a black-box. We use the same set of colors for
all columns. Then randomly and independently for each column, we redistribute the
colors on the different color classes of the column. Finally, a recoloring step is applied
on each monochromatic set of points in each row, again using algorithm A as the CF-
coloring procedure. The color assigned to a point is the concatenation of its first and
second colorings. A formal description of this procedure is given as Algorithm 2.

The following is a straightforward generalization of Theorem 3 in [8], in which A
is used as the CF-procedure (instead of the

√
n-procedure used in [8]).

Theorem 5.1 Given any point set P ⊆ R
2, a grid Gr with B = B(Gr) on P , and an

f (·)-conflict-free coloring algorithm A such that B ≥ 4 and

r · f (B)(logB)(− logB)/8 ≤ 1

2
, (1)

procedure QCFC returns a quasi-conflict-free coloring of Gr using

q(B) = f (B)f

(
B logB

f (B)

)
(2)

colors, in expected polynomial time.
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Algorithm 2 Procedure QCFC(P, A,Gr, S)

Input: A point set P ⊆ R
2, an f (·)-CF-coloring algorithm A, an r-grid Gr on P ,

and a set of possible colors S

Output: A quasi-CF-coloring χ : P 	→ S of P w.r.t. Gr

1. Let h = f (B(Gr)); N = {1, . . . , h}
2. for j = 1, . . . , r do
3. χj ← A(Cj ,N)

4. Let π ∈ Sh be a random permutation
5. for all p ∈ Cj do
6. χ ′

j (p) ← π(χj (p))

7. χ ′ ← ∑r
j=1 χ ′

j

8. for i = 1, . . . , r do
9. for 	 = 1, . . . , h do

10. P 	
i ← {p ∈ Ri : χ ′(p) = 	}

11. χ ′′
i,	 ← A(P 	

i , S)

12. χ ′′ ← ∑r
i=1

∑h
	=1 χ ′′

i,	

13. return χ := χ ′ × χ ′′ (mapped to S)

6 Analysis

We now show an improved bound on the number of colors required for conflict free
coloring a set of n points. Namely, we show that any set of points n can always be
conflict-free colored with f (n) := nβ(n) colors. The function f (n) is clearly mono-
tonically increasing and is chosen so that it satisfies the following.

Claim 6.1 For n > n0, f (n),α(n), and γ (n) satisfy the following inequalities:4

f (n) ≥ 1 + f
(
n − nγ (n)

)
, (3)

f (n) ≥ f
(
16 · n1−α(n)+γ (n)

) + f
(
nα(n)

) · f
(

nα(n) lognα(n)

f (nα(n))

)
, (4)

n1−α(n) · f (
nα(n)

) · (lognα(n)
)(− lognα(n))/8 ≤ 1

2
. (5)

We defer the proof of the above inequalities and first show the following.

Theorem 6.1 Any set of n points can be conflict-free colored using f (n) colors.

Proof We show that Algorithm 1 requires f (n) colors to CF-color any point set P

of size n. The proof is by induction on n. The theorem is trivially true for n ≤ n0

4It may appear that the first two inequalities are in the wrong direction, i.e., instead of ≥, there should be
≤ in these inequalities. However, we stress that these are not recurrence relations. The function f (n) gives
an upper bound on the number of colors required. Hence, it makes sense to argue that f (n), the number of
colors allowed, is large enough so that we may conflict-free color any set of n points with so many colors.
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since for such n, β(n) > 1, and therefore f (n) > n. Let P be a set of n > n0 points
and assume that for point sets of smaller size, the statement is true. If P contains
a monotonic chain of points of size u = 2nγ (n), then the algorithm colors alternate
points of the chain with one color and recursively colors the rest of the points in P

using a new set of colors. Thus we have colored the point set using 1 + f (n − nγ (n))

colors which by the first inequality in Claim 6.1 is at most f (n). On the other hand,
if the size of any monotonic chain in P is at most u, then we construct a grid G

so that each row and column of G contains at most nα(n) points. There are n1−α(n)

rows and columns in G. Let D be the set of all points belonging to the boundary
sets of the cells of G. Since D can be partitioned into at most 8 · n1−α(n) monotonic
sets, we have |D| ≤ u · 8 ·n1−α(n) ≤ 16 ·n1−α(n)+γ (n). We conflict-free color D using
f (16 · n1−α(n)+γ (n)) colors and quasi-conflict-free color the rest of the points using
a different set of colors. For this, we invoke the algorithm described in Sect. 5 with
the grid G. Since by (5), condition (1) is satisfied, we are guaranteed by Theorem 5.1

to use at most f (nα(n)) · f (
nα(n) lognα(n)

f (nα(n))
) colors for the quasi-conflict-free coloring

step. By the second inequality in Claim 6.1 the total number of colors used is at most
f (n). �

Proof of Claim 6.1 For brevity of notation, we denote, respectively, α(n), β(n), and
γ (n) by α, β , and γ , whenever convenient. Let us start with the first inequality:

f (n) − f
(
n − nγ

)

= nβ − mβ(m)
(
where m = n − nγ

)

= 2β(n) logn − 2β(m) logm = 2β(m) logm
(
2β(n) logn−β(m) logm − 1

)

≥ f (m) · (2β∗ log (n/m) − 1
) (

using the expressions for β(m) and β(n) and

that m < n
)

≥ f (m) · β∗ log (n/m)/2
(
since 2x − 1 ≥ x/2 for all x

)

= 0.5β∗ · f (m) · log
(
1 + nγ /m

)

≥ 0.5β∗ · f (m) · nγ

m

(
since log2 (1 + x) ≥ x for 0 ≤ x ≤ 1 and nγ ≤ m

for n > n0
)

≥ 0.5β∗ · f (m) · mγ

m
(since m < n)

= 0.5β∗ · m(β∗+9c/
√

logm)+(α∗−7c/
√

logn)−1 = 0.5β∗ · m9c/
√

logm−7c/
√

logn

≥ 0.5β∗ · m2c/
√

logm (since m < n)

≥ 1 (for n > n0).

The first inequality follows by rearranging the terms. We prove the second inequality
in two parts. We show that the quantities f (16 · n1−α+γ ) and f (nα) · f (

nα lognα

f (nα)
) are

both at most f (n)/2. It follows that their sum is at most f (n). We first observe some
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simpler inequalities that we need. For any λ > 0,

f
(
nλ

) = (
nλ

)β∗+9c/
√

lognλ = nλβ∗+9c
√

λ/
√

logn. (6)

Using the above with λ = α, we have

f
(
nα

) = nαβ∗+9c
√

α/
√

logn = nα∗β∗+(9c
√

α−5cβ∗)/
√

logn. (7)

It follows from the above that

f
(
nα

) ≤ nα∗β∗+(9c
√

α∗−5cβ∗)/
√

logn
(
since α∗ ≥ α

)
, (8)

f
(
nα

) ≥ nα∗β∗ (
since

(
9
√

α − 5β∗) ≥ 0 for n > n0
)
. (9)

From the above we get

nα lognα

f (nα)
≤ nα lognα

nα∗β∗ ≤ nα∗(1−β∗)−5c/
√

logn+log lognα/ logn

≤ nα∗(1−β∗)−(5c−1)/
√

logn
(
since 1/

√
logn ≥ log lognα/ logn

for n > n0
)
.

(10)

Therefore,

f

(
nα lognα

f (nα)

)

≤ f
(
nα∗(1−β∗)−(5c−1)/

√
logn

)

= nτβ∗+9c
√

τ/
√

logn
(
using (6) with λ = τ, where τ = α∗(1 − β∗)

− (5c − 1)/
√

logn
)

≤ nα∗β∗(1−β∗)−(5c−1)β∗/
√

logn+9c
√

α∗(1−β∗)/
√

logn

= nα∗β∗(1−β∗)+(9cα∗−(5c−1)β∗)/
√

logn)
(
since 1 − β∗ = α∗). (11)

Using (8) and (11), we have

f
(
nα

) · f
(

nα lognα

f (nα)

)

≤ nα∗β∗(2−β∗)+(9c(α∗+√
α∗)−(10c−1)β∗)/

√
logn

≤ nβ∗+(9c−1)/
√

logn
(
since

(
9c

(
α∗ + √

α∗) − (10c − 1)β∗) ≤ 9c − 1 and

α∗β∗(2 − β∗) = β∗)

= nβ−1/
√

logn

≤ nβ/2 (for n > n0). (12)



50 Discrete Comput Geom (2012) 48:39–52

On the other hand,

f
(
16 · n1−α+γ

) = f
(
16 · n1−2c/

√
logn

) ≤ f
(
n1−c/

√
logn

) (
since nc/

√
logn ≥ 16

for n > n0
)

= nβ∗(1−c/
√

logn)+9c
√

1−c/
√

logn/
√

logn
(
using (6)

)

≤ nβ∗−cβ∗/
√

logn+9c/
√

logn = nβ−cβ∗/
√

logn

≤ nβ/2 (for n > n0). (13)

From (12) and (13) we conclude the second inequality in the claim.
Finally, it remains to verify the third inequality:

n1−α · f (
nα

) · (lognα
)(− lognα)/8

≤ n1−α+α∗β∗+(9c
√

α∗−5cβ∗)/
√

logn− α log lognα

8
(
using (8)

)

= n1−α∗+5c/
√

logn+α∗β∗+(9c
√

α∗−5cβ∗)/
√

logn− α log lognα

8

≤ n0.62+10.2c/
√

logn− 1
32 log logn1/4

(
since α ≥ 1

4
for n > n0

)

≤ n1.35− 1
32 log logn1/4

(since
√

logn ≥ 14c for n > n0)

≤ n1.35−43.6/32 (
since log logn1/4 ≥ 43.6 for n > n0

)

≤ n−0.01 <
1

2
(for n > n0).

The claim follows. �
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Appendix: Proof of Theorem 5.1

Let χi,χ
′, χ ′′, h,P 	

i be as defined in the procedure, and χ = χ ′ ×χ ′′ be the coloring
returned in Step 13. The theorem follows from the following two claims.

Claim A.1 ([8]) χ is quasi-conflict-free.

Proof Let T ∈ R be any rectangle that lies completely inside a row or a column of
Gr and such that T ∩ P �= ∅. If T contains only points belonging to a single column
Cj of Gr , then the fact that algorithm A returns a conflict-free coloring of Cj and the
definition of χ ′

j imply that T contains a point p ∈ T ∩ Cj such that χ ′
j (p) �= χ ′

j (p
′)
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for all p′ ∈ T ∩ P , p′ �= p. Then χ ′(p) and hence χ(p) are different in the first
coordinate from χ(p′) for every p′ ∈ T ∩ P , p′ �= p. Now assume that T contains
only points belonging to a single row i of Gr . Since T ∩ P �= ∅, there is an 	 ∈ [h]
such that T ∩ P 	

i �= ∅. Since A returns a conflict-free coloring χ ′′
i,	 of P 	

i , there is a

point p ∈ T ∩ P 	
i such that χ ′′

i,	(p) �= χ ′′
i,	(p

′) for all p′ ∈ T ∩ P 	
i , p′ �= p. Thus, if

p′ ∈ T ∩ Ri , then either p′ ∈ P 	′
i for 	′ �= 	 in which case χ ′(p′) �= χ ′(p), or p′ ∈ P 	

i

but χ ′′(p′) �= χ ′′(p). In both cases χ(p′) �= χ(p). �

Claim A.2 With probability at least 1/2, | range(χ)| ≤ q(B) given by (2).

Proof Fix a row i ∈ [r]. For a column j ∈ [r] and a color 	 ∈ [h], let A	
i,j = {p ∈

Ri ∩ Cj : χj (p) = 	} be the set of points in cell (i, j) assigned color 	 by the initial
(column) coloring χj . We may assume5 that Algorithm 1 produces a coloring such
that all color classes have a size bounded by 2B/h:

∣∣A	
i,j

∣∣ ≤ 2B/h. (14)

Recall that, for any j ∈ [r] and 	 ∈ [h], all the points p ∈ A	
i,j get the same random

color χ ′
j (p) in Step 6. Thus we can think of the coloring in Step 6 as of permuting

randomly the colors to the sets A	
i,j and may use χ ′(A	

i,j ) to denote the color assigned

in Step 6 to all points in A	
i,j .

For j ∈ [r] and 	, 	′ ∈ [h], let Y
	′,	
i,j be the indicator random variable that takes

value 1 if and only if χ ′
j (A

	′
i,j ) = 	, i.e., if all the points in column j assigned initially

color 	′ are reassigned color 	 by χ ′
j (if A	′

i,j is empty, then the corresponding random

variable is 0 with probability 1). Let Y 	
i = |P 	

i | = ∑r
j∈[r], 	′∈[h] |A	′

i,j |Y 	′,	
i,j be the

random variable giving the number of points of row i colored 	 by χ ′. Then an easy
calculation shows that

E
[
Y 	

i

] =
∑

j∈[r], 	′∈[h]

∣∣A	′
i,j

∣∣ · E
[
Y

	′,	
i,j

] =
∑

j∈[r], 	′∈[h]

|A	′
i,j |
h

≤ B

h
, (15)

since the total number of points in row i of Gr is at most B .
Note that the variable Y 	

i is the sum of negatively correlated random variables,6

and thus applying the Chernoff bound,7 by (15) and (14) we get

Pr

[
Y 	

i ≥ B

h
· logB

]
≤ e− logB ln(logB)

8 . (16)

5First split all color classes that have size larger than B/h into classes of size at most B/h each. Then pack
these classes together into new classes of sizes between B/h and 2B/h. It follows that the total number
of classes obtained is h and each class has size at most 2B/h.
6That is, for any subset {Xi : i ∈ S} of these variables, Pr[∧i∈S(Xi = 1)] ≤ ∏

i∈S Pr[Xi = 1].
7In particular, the following version [13]: Let X = ∑n

i=1 aiXi be the weighted sum of negatively cor-

related random variables Xi ∈ {0,1}. Then Pr[X ≥ (1 + θ)μ] ≤ e
− μ

4a
(1+θ) ln(1+θ) for θ ≥ 1, a ≥

max{a1, . . . , an}, and μ ≥ E[X].
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Thus, the probability that there exist i and 	 such that Y 	
i >

B logB
h

is at most

rh(logB)−(logB)/8 ≤ 1

2
,

by condition (1). Therefore with probability at least 1/2, |P 	
i | ≤ B logB/h for all

i and 	. Since algorithm A has guarantee f (·), with constant probability, the total
number of colors needed is

∣∣range(χ)
∣∣ ≤

h∑

	=1

f
(∣∣P 	

i

∣∣) ≤ h · f (B logB/h) = q(B),

as claimed. �
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