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Abstract We consider piecewise linear embeddings of graphs in 3-space R
3. Such

an embedding is linkless if every pair of disjoint cycles forms a trivial link (in the
sense of knot theory). Robertson, Seymour and Thomas (J. Comb. Theory, Ser. B
64:185–227, 1995) showed that a graph has a linkless embedding in R

3 if and only
if it does not contain as a minor any of seven graphs in Petersen’s family (graphs
obtained from K6 by a series of Y� and �Y operations). They also showed that a
graph is linklessly embeddable in R

3 if and only if it admits a flat embedding into
R

3, i.e. an embedding such that for every cycle C of G there exists a closed 2-disk
D ⊆ R

3 with D ∩ G = ∂D = C. Clearly, every flat embedding is linkless, but the
converse is not true. We consider the following algorithmic problem associated with
embeddings in R

3:
FLAT EMBEDDING: For a given graph G, either detect one of Petersen’s family

graphs as a minor in G, or return a flat (and hence linkless) embedding of G in R
3.

The first outcome is a certificate that G has no linkless and no flat embeddings. Our
main result is to give an O(n2) algorithm for this problem. While there is a known
polynomial-time algorithm for constructing linkless embeddings (van der Holst in
J. Comb. Theory, Ser. B 99:512–530, 2009), this is the first polynomial-time algo-
rithm for constructing flat embeddings in 3-space. This settles a problem proposed
by Lovász (www.cs.elte.hu/~lovasz/klee.ppt, 2000).
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1 Introduction

1.1 Embedding Graphs in 3-Space

A seminal result of Hopcroft and Tarjan [14] from 1974 is that there is a linear-
time algorithm for testing planarity of graphs. This is just one of a host of results on
embedding graphs in surfaces. These problems are of both practical and theoretical
interest. The practical issues arise, for instance, in problems concerning VLSI, and
also in several other applications of “nearly” planar networks, as planar graphs and
graphs embedded in low genus surfaces can be handled more easily. Theoretical in-
terest comes from the importance of the genus parameter of graphs and from the fact
that graphs of bounded genus naturally generalize the family of planar graphs and
share many important properties with them. Recently, new and nontrivial linear-time
algorithms concerning graph embeddings have appeared [18, 22]. In addition, Mohar
[33, 34] gave a linear-time algorithm for testing embeddability of graphs in an ar-
bitrary surface and constructing an embedding, if one exists. This result generalizes
planarity algorithms [4, 14, 52]. Mohar’s algorithm is further simplified in [19].

In [41], Robertson and Seymour proved that for any fixed graph H there is a cubic-
time algorithm for testing whether H is a minor of a given graph G. This implies that
there is an O(n3) algorithm for deciding membership in any minor-closed family
of graphs, because such a family can be characterized by a finite collection of ex-
cluded minors [42]. Unfortunately, this approach is not explicit. More precisely, the
graph minor theorem is not constructive; in general, we do not know how to obtain
an excluded minor characterization of a given minor-closed family of graphs. In ad-
dition, Robertson and Seymour’s algorithm solves the decision problem, but it is not
apparent how to construct, e.g., an embedding from their algorithm.

In this paper, we consider embeddings of graphs in R
3, where all embeddings are

piecewise linear. There are many minor-closed families of graphs that arise in the
study of topological problems. An illustrative example is the class of linklessly em-
beddable graphs. We say that a pair of vertex-disjoint cycles drawn in R

3 is unlinked
if there is a 2-dimensional disk1 in R

3 that contains the first cycle and is disjoint from
the other one. Otherwise, the two cycles are linked. Intuitively, if two cycles in R

3

are linked, we cannot contract one into a single point without cutting the other. By
a linkless embedding we mean an embedding of a graph in R

3 in such a way that
no two vertex-disjoint cycles are linked. Linkless embeddings were first studied by
Conway and Gordon [8]. An algorithmic problem concerning linkless embeddings
is studied by Motwani, Raghunathan and Saran [36], who gave a partial result for
linkless embeddings and its algorithmic applications.

Robertson, Seymour and Thomas [47] proved that G is linklessly embeddable in
3-space if and only if G does not have any graph in the Petersen family as a minor.
By the Petersen family we mean the graphs that can be obtained from K6 by a series

1By a disk we always mean a piecewise linear 2-dimensional disk in R
3.
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Fig. 1 Petersen’s family

of Y� and �Y operations. See Fig. 1 for drawings of these graphs on the projective
plane; note that the graph in Fig. 1(c) cannot be embedded in the projective plane.
In the sequel, we will refer to this graph as K−

4,4. In the same paper [47] it is shown

that a graph is linklessly embeddable in R
3 if and only if it admits a flat embedding2

in R
3, i.e. an embedding such that for every cycle C of G, there exists a closed 2-

dimensional disk D ⊆ R
3 with D ∩G = ∂D = C. To refer to such a disk D we speak

about a panel for C and write D = D(C). Clearly, every flat embedding is linkless,
but the converse is not true. In many ways flat embeddings are nicer to work with,
and in this paper we will work with flat rather than linkless embeddings.

Linkless embeddings have received a lot of attention in the literature. Besides
those working on knot theory, many researchers working in discrete mathematics
are also interested in this topic. For example, Lovász and Schrijver [29, 30] proved
that two well-known invariants given by Colin de Verdière [5–7] are closely related
to linklessly embeddable graphs. The invariants are based on spectral properties of
matrices associated with a graph G.

Flat embeddings in 3-space are a generalization of embeddings in the plane. These
two embedding problems share an interesting property. The famous theorem by Whit-
ney which says that every 3-connected planar graph has a unique planar embed-
ding, can be generalized to the flat embedding case, i.e., every flatly embeddable
4-connected graph G has an “essentially unique” flat embedding in R

3, see [47].
Here, “essentially unique” means embeddings up to ambient isotopy, which we will
define later. In [28], Lovász asked for a polynomial-time algorithm for the following
problem:

FLAT AND LINKLESS EMBEDDING

INPUT: A graph G.
OUTPUT: Return either

(1) a member of Petersen’s family as a minor in G, or
(2) a flat (and hence linkless) embedding of G in R

3.

2In [47], the authors use the term paneled frame to describe a flatly embedded graph.
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1.2 Our Main Result

The main contribution of this paper is to give a polynomial-time algorithm for the flat
and linkless embedding problem. This result gives a positive answer to the question
of Lovász [28] mentioned above.

Theorem 1.1 There is an O(n2)-time algorithm for the FLAT AND LINKLESS EM-
BEDDING problem.

Let us observe that if the output of the algorithm is (1), i.e. a member of Petersen’s
family as a minor of G, then we have one of the excluded minors for linklessly em-
beddable graphs and hence this is a certificate that G has no linkless (nor flat) embed-
ding. As mentioned above, by Robertson and Seymour’s results in [41], we can test
whether or not an input graph has one of Petersen’s family graphs as a minor, but if
it does not contain any of them, that algorithm does not give the second conclusion,
i.e. does not produce a flat or linkless embedding.

In [15], van der Holst gives the first polynomial-time algorithm for deciding
whether a given graph has a linkless embedding and computing one, if it exists.
In this paper we give a different algorithm for producing flat (and hence linkless)
embeddings, which runs in quadratic time. Our algorithm is different from van der
Holst’s in several respects:

1. Our algorithm finds a flat embedding in R
3, while the algorithm from [15] finds

linkless embeddings that are not necessarily flat.
2. We improve on the time complexity as van der Holst’s algorithm needs at least

Ω(n5) steps whereas ours runs in O(n2).
3. The algorithm and the proof method in [15] are very algebraic and different from

our paper, which is more combinatorial and geometric.

There are many NP-hard problems which can be solved in polynomial time (often
even linear time) when considering planar graphs or “nearly” planar graphs. Even
for problems that remain NP-hard on planar graphs, we often have efficient approxi-
mation algorithms, e.g., INDEPENDENT SET, TSP, Weighted TSP, VERTEX COVER,
DOMINATION SET, etc. [2, 13, 24, 27]. We expect that most of these fast algorithms
for planar graphs can be generalized to linklessly embeddable graphs as well, using
our algorithm in Theorem 1.1 and a flat embedding. In addition, linklessly embed-
dable graphs have an interesting property for the well-known feedback arc set prob-
lem, i.e. the problem to compute in a given digraph G a minimum size set of edges
whose removal makes G acyclic. Seymour [50] proved that the minimum size of
a feedback arc set in an Eulerian linklessly embeddable digraph (i.e., the underly-
ing undirected graph is linklessly embeddable) is equal to the maximum number of
arc-disjoint directed cycles. This result can be compared to the well-known result by
Lucchesi and Younger [31], who proved that the same conclusion holds for any di-
rected planar graph. The proof given in [50] implies that, given a flat embedding of a
given Eulerian digraph G, there is a polynomial-time algorithm to find the minimum
size of a feedback arc set, which gives rise to the maximum number of arc-disjoint
directed cycles. Thus by Theorem 1.1, we can find such sets in polynomial time for
any Eulerian linklessly embeddable graph.
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1.3 Overview of the Flat Embedding Algorithm

At a high level of description, the algorithm for Theorem 1.1 proceeds as follows.
First, we iteratively reduce the size of the input graph until it is 4-connected and
reaches a graph of bounded tree-width. Then the algorithm solves the problem on
this graph of bounded tree-width.

Reduction step For the reduction step, the algorithm first handles small separations
and recursively proceeds to smaller graphs until these are 4-connected. Afterwards,
we involve the excluded grid theorem [12, 37, 39, 44]. If the tree-width of G is large
enough, then G contains a large grid minor. By combining the results in [41] and
[21], if an input graph does not contain a K6-minor, then, after deleting at most one
vertex, we can find a grid minor which is planarly drawn, i.e., up to 3-separations,
the grid minor induces a planar embedding. If there is a separation (A,B) of order at
most three in this planarly drawn grid, then this gives us a reduction (for details, we
refer to Sect. 3). Otherwise, this grid minor induces a 2-cell embedding in the plane
(and hence it is a planar subgraph).

A deep theorem in [41] tells us that every vertex “deep inside” this grid minor
is irrelevant with respect to all excluded minors in the Petersen family. (A shorter
proof of this fact is given in [23].) In addition, we prove that such a vertex v does
not affect our flat embedding in 3-space. Hence, we can remove v without affecting
flat embeddability of G. The main difficulty here is the proof of the existence of this
vertex. Once we have proved that there is an irrelevant vertex, algorithmically such
a vertex can be found in linear time. By repeating this step, we eventually obtain a
subgraph G′ of G of bounded tree-width such that any flat embedding of G′ can be
extended to a flat embedding of G, using the reverse steps of the reduction phase.
This concludes the reduction step for the proof of Theorem 1.1.

Bounded tree-width case This is the second step. Its proof of correctness uses two
deep results from [47]. The first one is that any Kuratowski graph, i.e., a subdivision
of K5 or K3,3, has a unique flat embedding in R

3, where uniqueness means “up to
an ambient isotopy”. The second ingredient is that if G is 4-connected and has a
flat embedding in R

3, then G has a unique flat embedding. By combining these two
results, we get the following strong fact:

Fix a flat embedding of a Kuratowski subgraph K of a 4-connected graph G

in R
3. Then the rest of the graph is uniquely attached to K , if G has a flat

embedding.

In general, this fact is not enough to derive a polynomial-time algorithm for construct-
ing flat embeddings. However, if the tree-width of a 4-connected graph is bounded,
we can construct a flat embedding in polynomial time using dynamic programming,
whenever one exists.

1.4 Basic Definitions

For basic graph theory notions, we refer the reader to the book by Diestel [11], for
topological graph theory we refer to the monograph by Mohar and Thomassen [35].
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Fig. 2 An (8 × 5)-wall and its
perimeter

A separation of a graph G is a pair (A,B) of subgraphs of G with A ∪ B = G

such that there is no edge between A−B and B −A. The order k of the separation is
|V (A ∩ B)|. The separation (A,B) is proper if A − B �= ∅ and B − A �= ∅. A proper
separation of order k is also called a k-separation. If (A,B) is a separation, we denote
by A+ the graph obtained from A by adding edges joining every pair of nonadjacent
vertices in V (A ∩ B). We define B+ analogously.

A tree-decomposition of a graph G is a pair (T ,B), where T is a tree and B

is a family {Bt | t ∈ V (T )} of vertex sets Bt ⊆ V (G), such that the following two
properties hold:

1.
⋃

t∈V (T ) Bt = V (G), and every edge of G has both ends in some Bt .
2. If t, t ′, t ′′ ∈ V (T ) and t ′ lies on the path in T from t to t ′′, then Bt ∩ Bt ′′ ⊆ Bt ′ .

The width of a tree-decomposition (T ,B) is max{|Bt | : t ∈ V (T )}−1. The tree-width
of G is defined as the minimum width taken over all tree-decompositions of G. Let
(T ,B) be a tree-decomposition of a graph G. By fixing a root r of T we give T an
orientation. For t ∈ V (T ) we define Tt to be the subtree of T rooted at t , i.e., the
subtree of T induced by the set of nodes s ∈ V (T ) such that the unique path from r

to s contains t . We define B(Tt ) := ⋃
s∈V (Tt )

Bs .
One of the most important results about graphs of large tree-width is the existence

of a large grid minor or, equivalently, a large wall. Let us recall that an (a × b)-
wall is a graph which is isomorphic to a subdivision of the following graph W(a,b).
We start with vertex set V = {(i, j) | 1 ≤ i ≤ a, 1 ≤ j ≤ b} and make two vertices
(i, j) and (i′, j ′) adjacent if one of the following possibilities holds: (1) i′ = i and
j ′ ∈ {j −1, j +1} or (2) j ′ = j and i′ = i+(−1)i+j . Some vertices of the so obtained
graph may be of degree 1. We remove them to obtain a 2-connected graph W(a,b).

It is easy to see that if a graph G contains an (a × b)-wall as a subgraph, then it
has an (
 1

2a� × b)-grid minor, and conversely, if G has an (a × b)-grid minor, then it
contains an (a × b)-wall. Let us recall that the (a × b)-grid is the Cartesian product
of paths, Pa �Pb . An (8 × 5)-wall is shown in Fig. 2. We refer to an (r × r)-wall as
a wall of height r . In this paper we use the term r-wall to denote the (2r × r)-wall.

Theorem 1.2 There is a function f : N → N such that if a graph G has tree-width
at least f (r), then G contains an r-wall.

The best known upper bound for f (r) is given in [12, 37, 44]. It shows that one
can take f (r) = 202r5

. The best known lower bound on possible values of f (r) is
Θ(r2 log r), see [44].
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1.5 Computational Complexity

Concerning the time complexity of our algorithms, we assume a random-access ma-
chine (RAM) model with unit cost for some basic operations. This model of compu-
tation was introduced by Cook and Reckhow [9]. It is known as the unit-cost RAM
where operations on integers, whose value is O(n) (and hence also integers of value
O(nk) for any fixed k), need only constant time; here n is the size of the input. The
same model of computation is used in most other embedding algorithms, for example
in known linear-time planarity testing algorithms [14].

An important issue is how to represent a spatial embedding of a graph. It turns
out that flat embeddings can be represented by integer coordinates in R

3, where each
coordinate is bounded by a polynomial in n. Although there are some (elementary)
geometric and algebraic details to be taken care of, we shall not dwell too much in
this direction. Instead, we refer to the section on graph drawing in [26].

Concerning the input size, it is proportional to n = |G|, the number of vertices of
the input graph. Namely, we first test for the presence of K6 as a minor. It is known
[32] that every graph of order n with at least 4n edges contains K6 as a minor. So we
may assume that the number of edges is ‖G‖ = O(n), and thus the input size is also
O(n).

2 Flatly and Linklessly Embeddable Graphs

In this section we recall some results about flatly embeddable graphs used later on.

2.1 Construction of Flat Embeddings

Recall that a piecewise linear embedding of a graph in R
3 is flat if every cycle of

the graph bounds a 2-dimensional disk disjoint from the rest of the graph. If C,C′
are disjoint simple closed curves in R

3, then their linking number is the number of
times (modulo 2) that C crosses C′ in a regular projection of C ∪ C′ onto some
hyperplane. It is easy to see that the linking number (modulo 2) is the same for every
such projection. The proof of the following result is easy and the details are left to
the reader.

Lemma 2.1 Let G be a graph, and σ be an embedding of G in R
3. Let C1,C2 be

disjoint cycles in G, and let P be a path in G that is disjoint from C1 ∪ C2, except
that its end vertices are in V (C1). Let C′

1,C
′′
1 be the two cycles in C1 ∪ P with

C′
1 ∩ C′′

1 = P . If the linking number of C1,C2 is nonzero, then also one of the linking
numbers of C′

1,C2 or C′′
1 ,C2 is nonzero.

Let v be a vertex of degree 3 in a graph G, with its three neighbors v1, v2, v3. Let
H be a graph obtained from G − v by adding three new edges v1v2, v2v3, v3v1. We
say that H is obtained from G by a Y� operation (at v), and G is obtained from H

by a �Y operation (at v1, v2, v3). If G′ can be obtained from G by a series of Y� or
�Y changes, we say that G and G′ are Y�-equivalent. The Petersen family is the set
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Fig. 3 The reduction of Lemma 2.3

of the seven graphs (up to isomorphism) that are Y�-equivalent to K6. One of these
is the Petersen graph; see Fig. 1.

The following result was proved in [47].

Theorem 2.2 Let H be a graph obtained from a graph G by a Y� operation. Then
G has a flat embedding in R

3 if and only if H has one.

For the purpose of this paper, we need to construct a flat embedding of G from a
flat embedding of H . The recipe is easy. The cycle C = v1v2v3 in H bounds a disk
in R

3 that is otherwise disjoint from G. All we have to do is to embed the vertex v

and the edges vv1, vv2, vv3 into this disk. The proof that this yields a flat embedding
is given in [47, Theorem (4.4)].

It is easy to see that vertices of degree one can be deleted and vertices of degree
two can be suppressed without affecting linkless or flat embeddability. Similarly, pos-
sible parallel edges or loops arising by these reductions can be eliminated. Thus it
follows from Theorem 2.2 that we may assume that each vertex has degree at least 4.
Furthermore, concerning vertices of degree 4, we have the following.

Lemma 2.3 Suppose that a graph G contains an edge uv, where degG(u) = 4 and
degG(v) = 5. Suppose, moreover, that N(u) = (N(v) ∪ {v}) \ {u,a} for some vertex
a in N(v), so there is a separation (A,B) of order four such that B −A consists of u

and v only. Then G has a flat embedding in R
3 if and only if for some (and hence for

every) vertex b ∈ N(u) \ {v}, the graph G′ obtained from G by contracting the edge
ub has a flat embedding.

Proof It is clear that if G has a flat embedding, then also each minor G′ has one.
Conversely, suppose that G′ has a flat embedding in R

3. Let b1, b2 be the vertices
in (NG(u) ∩ NG(v)) \ {b} (cf. Fig. 3) and consider the cycle C = bb1vb2b in G′.
Let D = D(C) be the panel disk for C in G′. If we put the vertex u and the edges
from u to V (C) into this disk, we obtain a flat embedding of G. For details, cf. [47,
Theorem (5.2)]. �

We now prove the following result, which is important for our application. A proof
is given in (4.6) in [47], but for completeness, we shall give a sketch of the proof.
Recall from above the definition of the graphs A+,B+ for a separation (A,B) of a
graph G.
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Theorem 2.4 Suppose G has a proper separation (A,B) of order k ≤ 4. Suppose,
furthermore, that G contains both A+ and B+ as minors and that in the case when
k = 4, A − B and B − A are both connected. Then G has a flat embedding in R

3 if
and only if both A+ and B+ have one.

Sketch of the proof Clearly, if G has a flat embedding, then so do its minors A+ and
B+. Suppose, conversely, that A+ and B+ have flat embeddings in R

3. Since the
proof is easy when k ≤ 2, we shall assume henceforth that k ≥ 3.

If k = 3, let C be the 3-cycle in A+ and B+ on vertices V (A ∩ B). We may
transform the flat embedding of A+ so that the panel D(C) is in a hyperplane in R

3

and so that A+ lies entirely in the “upper” half-space. If we make the same with B+,
where B+ lies in the “lower” half-space, we can combine both flat embeddings into
a embedding of A+ ∪ B+ by identifying D(C) in both embeddings. The proof that
this yields a flat embedding is given in [47, Theorem (4.6)].

Suppose now that k = 4. The panels for the four 3-cycles in the complete subgraph
K4 on A+ ∩ B+ in A+ can be selected so that their mutual intersection is only at the
common edges. Thus, they form a surface of the 2-sphere, which separates R

3 into
two regions. Since A − B is connected, we may assume that all edges and vertices of
A+ lie in the unbounded region. Similarly, we may get a flat embedding of B+ such
that the graph is disjoint from the exterior of the 2-sphere bounded by the panels of
K4. Again, both embeddings can be combined to obtain an embedding of G, which
is flat as proved in [47, Theorem (4.6)]. �

As we show now, the condition in Theorem 2.4, that A − B and B − A must be
connected (when k = 4), is automatically satisfied if the graph G does not contain
Petersen family minors. More precisely, it suffices to exclude the graphs K−

4,4 and

K+
3,4, where K−

4,4 is the graph isomorphic to K4,4 minus one of the edges, and K+
3,4

is obtained from K−
4,4 by a Y� operation at one of the two vertices of degree three.

See Fig. 1(c) for an illustration of K−
4,4 and Fig. 1(b) for a drawing of K+

3,4. Note that

K+
3,4 can be obtained from K3,4 by adding a triangle on three vertices in the partition

of size 4. This property, proved in the next theorem, will enable us not to impose
connectivity on A − B and B − A when using Theorem 2.4.

Theorem 2.5 Let G be a 4-connected graph and let (A,B) be a proper separation of
order 4. Suppose, furthermore, that G contains both A+ and B+ as a minor. If A−B

has more than one component, then G contains either K−
4,4 or K+

3,4 as a minor.

Proof We shall prove that G has K−
4,4 or K+

3,4 as a minor, where four vertices of
one bipartite class are rooted at V (A ∩ B). This means that each of the connected
subgraphs of G that are contracted to these four vertices contains one vertex in
V (A ∩ B). Since A−B has at least two components and G is 4-connected, the graph
A gives rise to the K2,4 minor rooted at V (A ∩ B). In the rest of the proof we shall
show that we can get the rest of the required rooted minor in B .

Let V (A ∩ B) = {a, b, c, d}. Let Bd = B+ − d . Since G is 4-connected, Bd is 3-
connected. As shown in [40] (cf. also [16]), there is a rooted K2,3-minor with vertices
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a, b, c being the roots for the vertices of degree two in K2,3, unless Bd is a planar
graph with a, b, c in the outer face boundary. If we get a rooted K2,3-minor, then it is
easy to get one additional path from d to one of the degree-3 vertices x in this minor
by using Menger’s theorem in the 4-connected graph G to get four internally disjoint
paths from x to V (A ∩ B). All of the above yields a K−

4,4 as a minor in G.
It remains to consider the case when Bd is planar and a, b, c lie on the same face

of the planar embedding. We may assume that the same property holds for other
subgraphs, Ba,Bb , and Bc .

Case 0: A ∩ B contains a 3-cycle. Then this cycle and 4 paths from a vertex x

in B − A to A ∩ B give rise to a K+
3,4 minor, where the partition with four vertices

is formed by {a, b, c, d} and the other partition is formed by x and two components
A1,A2 in A − B .

Case 1: B − A is 2-connected. Consider the embedding of Bd in the plane and
the induced embedding of B − A. The outer cycle C of B − A can be split into six
segments, Ca,Cab,Cb,Cbc,Cc,Cca , some of them possibly just a vertex, such that
Ca is the segment determined by the neighbors of a on C, etc.

Subcase 1.1: ab ∈ E(G). Let P be the path from a to b consisting of Cab and
the edges from a and b (respectively) to the ends of Cab . If d has a neighbor in
B − A − P , then there is a K+

3,4 minor. Otherwise, d is only adjacent to Cab . In this
case d can be added into the face containing all its neighbors, and it is easy to see
that we get a K+

3,4-minor in G.
Subcase 1.2: ab �∈ E(G). By symmetry among a, b, c, d , we may assume now

that there are no edges between any of a, b, c, d . In this case we obtain a K+
3,4-minor

again.
Case 2: B − A has a cutvertex v. Let Q,R be components of B − A − v. By

4-connectivity, each of Q and R is adjacent to at least three vertices in A ∩ B . If
these are the same three for Q and R, we get a K−

4,4 minor in the same way as at
the beginning of this proof. Thus, we may assume that Q is adjacent to a, b, c and
R to b, c, d . Since this holds for every cutvertex v, the block structure of B − A is
path-like, the two endblocks have neighbors in a, b, c and b, c, d (respectively), all
intermediate blocks have neighbors b and c, but not a or d . A short proof also shows
that B is planar with a, b, d, c on the outer face (in the order as listed). If ad ∈ E(G)

or bc ∈ E(G), we get a K+
3,4 minor (contract endblocks without their cutvertices to

see this). Otherwise, we get a contradiction to A+ being the rooted minor in G. �

2.2 Spatial Embeddings of 4-Connected Graphs

The aim of this section is to show that 4-connected linklessly embeddable graphs
have essentially unique flat embedding in R

3. The following results are proved in
[47] along with its companion papers [45, 46]. Readers not familiar with these results
may wish to consider the survey [48] which contains many of the results needed
below. We refer to the graphs K5, the complete graph on five vertices, and K3,3, the
complete bipartite graph with three vertices per partition, as the Kuratowski graphs.
A Kuratowski subgraph of a graph G is a subgraph of G isomorphic to a subdivision
of a Kuratowski graph. Let us recall that by a classic result of Kuratowski [25], a
graph is planar if and only if it contains no Kuratowski subgraph.



Discrete Comput Geom (2012) 47:731–755 741

An embedding φ of a graph in R
3 is spherical, if there exists a surface S ⊆ R

3

homeomorphic to the 2-sphere such that φ(G) ⊆ S .

Lemma 2.6 (Wu [53]) An embedding of a planar graph in R
3 is flat if and only if it

is spherical.

Let φ1, φ2 be embeddings of a graph in R
3. We say that φ1 and φ2 are ambient

isotopic, written as φ1 ∼=a.i. φ2, if there exists an orientation-preserving homeomor-
phism from R

3 to R
3 mapping φ1 onto φ2. We will generally not distinguish between

two ambient isotopic embeddings and consider them to be equivalent.
An important fact we will be using below is that 4-connected linklessly embed-

dable graphs have (essentially) a unique flat embedding into 3-space (up to ambient
isotopy). Precisely, if φ1, φ2 are flat embeddings of a 4-connected graph in R

3, then
either φ1 ∼=a.i. φ2 or φ1 ∼=a.i. −φ2, where −φ2 is the composition of φ2 and the an-
tipodal map. This is a consequence of the following lemmas.

Lemma 2.7 Any two flat embeddings of a planar graph are ambient isotopic.

In fact, a graph has a unique flat embedding if and only if it is planar. Note that
this lemma does not require 4-connectivity. For the purpose of describing a flat em-
bedding of a planar graph, all we have to do is to embed the graph into a plane in
R

3.
The following is Theorem (7.7) from [47] (see also Theorem (3.4) in [48]).

Lemma 2.8 The graphs K5 and K3,3 have exactly two non-ambient isotopic flat
embeddings.

Sketch of proof Let G be a Kuratowski graph and let e ∈ E(G). Then G− e is planar
and, by Lemma 2.7, has a unique flat embedding φ into R

3. In fact, by Lemma 2.6,
φ(G) ⊆ S for a surface S ⊆ R

3 homeomorphic to the 2-sphere. Essentially, we have
two choices where to draw the edge e, namely inside either of the two components of
R

3 − S , as any two flat embeddings of the edge in the same component yield ambient
isotopic embeddings. �

If φ is an embedding of a graph G and H ⊆ G, we write φ|H for the restriction of
φ to H . The next lemma is Theorem (3.5) in [48].

Lemma 2.9 Let φ,φ′ be flat embeddings of a graph G which are not ambient iso-
topic. Then there is a Kuratowski subgraph H of G for which φ|H and φ′|H are not
ambient isotopic.

We now define a neighborhood relation between Kuratowski subgraphs of a graph
G. Let H1,H2 ⊆ G be Kuratowski subgraphs of G such that H1 �= H2. The subgraphs
H1 and H2 are 1-adjacent if there exist a path P ⊆ G and an i ∈ {1,2} such that P

has only its end points in common with Hi and such that H3−i ⊆ Hi ∪ P .
H1 and H2 are 2-adjacent if there are distinct vertices v1, . . . , v7 ∈ V (G) and pair-

wise internally vertex-disjoint paths Li,j , for (i, j) ∈ {1, . . . ,4} × {5,6,7} ∪ {(3,4)}
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Fig. 4 2-adjacent Kuratowski
subgraphs H1 and H2

linking vi and vj such that H1 = ⋃{Li,j | (i, j) ∈ {2,3,4} × {5,6,7}} and H2 =⋃{Li,j | (i, j) ∈ {1,3,4} × {5,6,7}}. See Fig. 4 for an illustration. The path L3,4,
illustrated by the dotted edge in Fig. 4, is not used here but is required to exist. Note
that if H1,H2 are 2-adjacent, then they are both isomorphic to subdivisions of K3,3.
H1 and H2 are adjacent if they are 1- or 2-adjacent. The following result is (3.7)
in [48].

Lemma 2.10 Let φ,φ′ be flat embeddings of G and let H,H ′ be adjacent Kura-
towski subgraphs of G. If φ|H ∼=a.i. φ

′|H then φ|H ′ ∼=a.i. φ
′|H ′ .

We say that H and H ′ communicate if there are Kuratowski subgraphs H =
H1, . . . ,Hk = H ′ of G such that Hi and Hi+1 are adjacent for all 1 ≤ i < k.

The following result is proved in [45].

Lemma 2.11 If G is 4-connected, then all pairs of Kuratowski subgraphs of G com-
municate.

In fact, the stronger statement holds: that Kuratowski subgraphs communicate for
all graphs which are Kuratowski 4-connected, which essentially says that no two Ku-
ratowski subgraphs can be separated by a separation of order at most 3. For our pur-
poses it suffices to note that any 4-connected graph is also Kuratowski 4-connected.
The previous lemmas imply the following result about uniqueness of embeddings for
4-connected graphs. The next result was proved by Robertson et al., see [47, 48].

Lemma 2.12 If φ,φ′ are flat embeddings of a 4-connected graph G, then φ ∼=a.i. φ
′

or φ ∼=a.i. −φ′.

Proof If G is planar then by Lemma 2.7 there is only one flat embedding (up to
ambient isotopy). Otherwise, G contains a Kuratowski subgraph K . By Lemma 2.8
either φ|K ∼=a.i. φ′|K or φ|K ∼=a.i. −φ′|K . By going from φ′ to −φ′ if necessary, we
can assume that φ|K ∼=a.i. φ′|K . By Lemmas 2.10 and 2.11 φ|H ∼=a.i. φ′|H for all
Kuratowski subgraphs H ⊆ G. Hence, by Lemma 2.9, φ ∼=a.i. φ

′. �

For the purpose of this paper this suggests the following algorithm for determining
a flat embedding of a graph G. We first choose a Kuratowski subgraph H of G and fix
a flat embedding of H . We then choose an adjacent Kuratowski subgraph H ′ of G and
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extend the flat embedding of H to H ∪H ′ ∪L (where L = L3,4 is the additional path
in the case of 2-adjacency, and L = ∅ in case of 1-adjacency). This extension is es-
sentially unique. For, suppose there were two non-ambient-isotopic flat embeddings
φ1, φ2 of H ∪H ′ ∪L extending the embedding of H . As φ1, φ2 agree (up to ambient
isotopy) on H , and H and H ′ are adjacent in H ∪ H ′ ∪ L, Lemma 2.10 implies that
they also agree on H ′. But then, by Lemma 2.9, as they agree on all Kuratowski sub-
graphs, φ1, φ2 agree on H ∪ H ′ ∪ L. Note that Lemma 2.10 and Lemma 2.9 do not
require the graph to be 4-connected.

However, if G is 4-connected, then by starting from one Kuratowski subgraph,
whose embedding we fix, and iteratively proceeding to adjacent Kuratowski sub-
graphs, we can embed all Kuratowski subgraphs of G. As shown in the next lemma,
each edge of a 4-connected non-planar graph is contained in a Kuratowski subgraph.
Thus, the above procedure provides a unique extension to the whole graph. We will
employ this idea in Sect. 4.

Lemma 2.13 Each edge in a 4-connected non-planar graph is contained in some
Kuratowski subgraph.

Proof Let K be a Kuratowski subgraph of G, let U be the set of vertices of degree 3
or 4 in K , and let uv ∈ E(G)\E(K). If u,v ∈ U , then K +uv contains a Kuratowski
subgraph that includes the edge uv, unless K is a subdivision of K3,3 and u,v are its
vertices of degree three in the same bipartite class. Let us call such a pair of vertices
a bad pair in K . Suppose now that u /∈ U . Since G is 4-connected, there are four
internally disjoint paths connecting {u,v} and K , where one of them starts at v and
three start at u. The path from v plus one of the paths from u make a path P in G

that does not connect a bad pair of vertices in U . Then it is easy to see that K + P

contains a Kuratowski subgraph that includes the edge uv.
Suppose now that the edge uv joins a bad pair in every Kuratowski subgraph of G.

Then G′ = G − u is planar. Since G′ is 3-connected, it has a unique embedding in
the plane. Let v and v1, . . . , vr (r ≥ 3) be the neighbors of u in G. If G′ + uv + uvi

or G′ + uvi + uvj is non-planar, then the added edges give rise to a Kuratowski
subgraph of G in which the edge uv does not connect a bad pair. The same conclusion
holds by adding three edges uv,uvi, uvj . This means that any three vertices v, vi, vj

(1 ≤ i < j ≤ r) lie in the same face of G′. As G is non-planar, not all neighbors of
u can lie in the same face of G′. But this is possible only if r = 3, deg(v) = 3 and
v1, v2, v3 are neighbors of v. See Fig. 5 for an illustration. In this case, v1, v2, v3
separate the graph G, and this contradiction completes the proof. �

2.3 Separations of Small Order

Finally, we summarize some purely graph theoretic results concerning separations of
order at most four that were proved in [43]. They will be needed later.

Theorem 2.14 Let G be a connected graph and let v1, v2, v3 be vertices in G. Sup-
pose G has no separation (A,B) of order at most two such that {v1, v2, v3} ⊆ V (B)

and A − B �= ∅. Then either
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Fig. 5 Separation of G by
{v1, v2, v3}

1. G contains disjoint trees T1, T2, T3 such that Ti contains vi for i = 1,2,3, and for
all 1 ≤ i < j ≤ 3, there is an edge between Ti and Tj , or

2. G is isomorphic to the star K1,3 in which v1, v2, v3 are the vertices of degree one.

Theorem 2.15 Let G be a connected graph and v1, v2, v3, v4 be four vertices
in G. Suppose G has no separation (A,B) of order at most three such that
{v1, v2, v3, v4} ⊆ V (B) and A − B �= ∅. Then one of the following cases holds:

1. G has disjoint trees T1, T2, T3, T4 such that Ti contains vi for i = 1,2,3,4, and
for all 1 ≤ i < j ≤ 4, there is an edge between Ti and Tj .

2. G − {v1, v2, v3, v4} has at most two vertices, and each of them has degree at least
four in G.

3. G can be drawn in a disk such that v1, v2, v3, and v4 are on the boundary of the
disk.

The above results imply the following:

Theorem 2.16 Let G be a graph of minimum degree at least 4. If G has no proper
separation (A,B) of order at most three such that G contains both A+ and B+ as a
minor, then G is 4-connected.

Proof Suppose G has a proper k-separation (A,B) with k ≤ 3. We take such a sep-
aration of minimum order. If k ≤ 2, then we can easily find both A+ and B+ as a
minor. Thus, we may assume that k = 3. By Theorem 2.14 applied to the graph B

with {v1, v2, v3} = V (B) ∩ V (A), if G does not contain A+ as a minor (i.e., exclud-
ing case (1) of the theorem), then case (2) holds, so B −A consists of a single vertex,
which is impossible, because the minimum degree of G is at least 4. Similarly, we
argue that G contains B+ as a minor. This contradiction to the assumptions proves
that G is 4-connected. �

2.4 Societies and Embeddability up to 3-Separations

We use the notion of a “society” introduced by Robertson and Seymour in [40]. Let
Ω be a cyclic permutation of the elements of some set; we denote this set by V (Ω).
A society is a pair (G,Ω), where G is a graph and Ω is a cyclic permutation with
V (Ω) ⊆ V (G). A cross in a society (G,Ω) is a pair of disjoint paths P1 and P2 in G

such that each Pi has its endpoints in V (Ω) and no other vertex in V (Ω), and further,
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if we let si and ti be the ends of Pi for i = 1,2, then s1 ≤ s2 ≤ t1 ≤ t2 in the order
Ω . A society is cross-free if it has no crosses. A society (G,Ω) is rural if G can be
drawn in a disk with V (Ω) drawn on the boundary of the disk in the cyclic order given
by Ω . Clearly, a rural society is cross-free. A theorem of Robertson and Seymour [40]
says that this is essentially the only obstruction. First we give a definition. A society
(G,Ω) is rurally 4-connected if for every separation (A,B) of order at most three
with V (Ω) ⊆ A, the graph B can be drawn in a disk with the vertices of A∩B drawn
on the boundary of the disk. The next result follows from [40].

Theorem 2.17 Every cross-free rurally 4-connected society is rural.

The notion of a rurally 4-connected society involves separations of order at most
three. In order to control crosses when we leave out the requirement that the part
B in those separations is planar, we introduce another notion of an embedding up
to 3-separations. We say that the society (G,Ω) can be embedded into the disk up
to 3-separations, if for some k ≥ 0, there are pairwise disjoint sets A1, . . . ,Ak ⊆
V (G) \ V (Ω) such that

(1) for 1 ≤ i, j ≤ k with i �= j , N(Ai) ∩ Aj = ∅,
(2) for 1 ≤ i ≤ k, |N(Ai)| ≤ 3, and
(3) if G′ is the graph obtained from G by deleting A1 ∪ · · · ∪ Ak and adding new

edges joining every pair of distinct vertices in N(Ai), for i = 1, . . . , k, then the
induced society (G′,Ω) is rural.

Let us observe the following. Let A = {A1, . . . ,Ak}. Then we can choose A so
that, subject to (1)–(3), the following property holds:

(4) If |N(Ai)| = 3, then N(Ai) induces a facial triangle in the rural disk embedding
of G′.

To see this, we choose A such that, subject to (1)–(3), the number of non-facial
triangles in G′ induced by members of A is minimum. Suppose, without loss of
generality, that |N(A1)| = 3 and N(A1) induces a triangle T1 in G′, which is not
facial. Let D1 ⊆ V (G′) be such that, for each x ∈ V (G), x ∈ D1 if and only if x

is contained in the closed disk bounded by T1. Define A′
1 ⊆ V (G) such that, for

each x ∈ V (G), x ∈ A′
1 if and only if x ∈ D1 \ N(A1) or x ∈ Aj for some Aj with

N(Aj ) ⊆ D1. Let A′ = (A \ {Aj | N(Aj ) ⊆ D1}) ∪ {A′
1}. Then (1)–(3) hold for A′,

but the number of non-facial triangles in G′ is smaller, a contradiction.
We may also assume the following:

(5) If |N(Ai)| = j , then there is no separation (A,B) of order at most j − 1 in G′
such that N(Ai) ⊆ A and V (Ω) ⊆ B .

To see this, observe that otherwise, we could have replaced Ai by (A − B) ∪ Ai .
In the notion of embeddings up to 3-separations, we shall omit the reference to the

society Ω if this is clear from the context.
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3 Bounding the Tree-Width

In this section we will present the reduction step of the general algorithm for solving
the FLAT AND LINKLESS EMBEDDING problem as presented in Sect. 5. Let us ob-
serve that by Theorem 2.2 and Lemma 2.3 (and remarks preceding Lemma 2.3), we
may assume that every vertex in the given graph G has minimum degree at least 4,
and no vertex of degree 4 satisfies the assumptions of Lemma 2.3.

Let us define the nails of a wall W to be the vertices of degree three in W . To
exclude trivial cases, we shall assume that all walls and subwalls treated in the sequel
are large enough. Let us say they have height at least five. As walls are subdivisions of
3-connected graphs, Whitney’s theorem implies that every wall has a unique planar
embedding. The perimeter of a wall W , denoted per(W), is the unique cycle of W

bounding the face in the planar embedding of W which contains more than 6 nails;
see Fig. 2. The bricks of a wall are the faces containing at most 6 nails. For any
wall W contained in a graph H , there is a unique component U of H − per(W)

containing W −per(W). The compass of W , denoted comp(W), consists of the graph
with vertex set V (U) ∪ V (per(W)) and edge set E(U) ∪ E(per(W)) ∪ {xy ∈ E(G) |
x ∈ V (U), y ∈ V (per(W))}. A subwall W ′ of a wall W is a wall which is a subgraph
of W . A subwall of W is proper if it consists of consecutive bricks in consecutive
rows of W . The exterior of W ′ is W − W ′. A proper subwall is dividing in H if its
compass is disjoint from its exterior. We say that a proper subwall W ′ is dividing
in a subgraph H ′ of H if W ′ ⊆ H ′ and the compass of W ′ in H ′ is disjoint from
(W − W ′) ∩ H ′.

A wall is cross-free if its compass does not contain two vertex-disjoint paths hav-
ing their ends on the perimeter of the wall, where they appear in the interlaced order.
Note that if the compass of W has a planar embedding whose infinite face is bounded
by the perimeter of W , then W is cross-free.

Seymour [49], Thomassen [51], and others proved that a wall W is cross-free if
and only if its compass can be embedded into the plane up to 3-separations such that
its perimeter is the outer face boundary (and plays the role of the cyclic order in the
society).

It is easy to see that any subwall of a cross-free wall must be both cross-free and
dividing. Furthermore, if x and y are two vertices of a cross-free wall W and the
graph H contains a path between them which is internally disjoint from W , then
either x and y are both on per(W) or some brick contains both of them. If W ′,W ′′
are subwalls of W , the face-distance of W ′ and W ′′ is the minimum number r of
bricks B1, . . . ,Br in W such that W ′ ∪ W ′′ ∪ B1 ∪ · · · ∪ Br is connected.

Robertson and Seymour [41] proved:

Theorem 3.1 For every pair of positive integers l and t , there exist integers w(l, t) >

w′(l, t) > l + t such that the following holds. Let K be a graph of order t . If the tree-
width of a graph H is at least w(l, t), and H has no K-minor, then there is a wall
W ⊆ H of height w′(l, t), and for some subset X of less than

(
t
2

)
vertices of H there

are 10 disjoint proper subwalls W ′ (of the wall W ) of height l, which are disjoint from
X and are cross-free and dividing in H − X. In addition, these subwalls of height l

have face-distance at least t10 from each other in the wall W .
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Explicit bounds for w(l, t) are known. Combining the bound for the grid theorem

in [44], the proof of Theorem 3.1 in [41] implies that w(l, t) ≤ 101010q

, where q = lt .
Let us observe that the constants 10 and 10t in Theorem 3.1 can be replaced by any
other prescribed constants (as proved in [41]); such a change only affects the integers
w(l, t) and w′(l, t).

When we consider the presence of some fixed graph M as a minor in G, a vertex
v ∈ V (G) is said to be irrelevant (with respect to existence of M minors) if G has
an M-minor if and only if G − v has one. The following result was proved in [41]
(a shorter proof appears in [23]).

Theorem 3.2 There is a computable function f : N → N satisfying the following.
Let t and l ≥ f (t) be positive integers, and let H,W,X,K,w(l, t), and w′(l, t) be
as in Theorem 3.1. Then there is a proper subwall W ′ of the wall W of height at least
l, which is disjoint from X and is cross-free and dividing in H − X, such that every
vertex that has face-distance in W ′ at least l/2 from the perimeter of W ′ is irrelevant
with respect to existence of K-minors.

For the special case when K = K6 in Theorem 3.2, a stronger version given below
is proved in [21]. One strengthening is that in this case we have |X| ≤ 1, so we may
assume that X consists of a single vertex. Secondly, a K6-minor-free graph cannot
have three subwalls of a large wall W that are pairwise at face-distance at least two
and are dividing but not cross-free in H − X. So, we can find a subwall W ′ that is
dividing and cross-free in H − X, and in W ′ we can find irrelevant vertices. In the
sequel we show how one can find W ′ (and hence also irrelevant vertices) in linear
time.

Theorem 3.3 There exists an integer f0 such that for every l ≥ f0, there are integers
w(l) > w′(l) > l satisfying the following. Let H be a graph that does not contain
a K6-minor and whose tree-width is at least w(l). Then H contains a wall W of
height w′(l) and also contains a vertex x ∈ V (H) such that W contains a subwall
W ′ of height l that is cross-free and dividing in H − x. Given the wall W , either a
K6-minor or the vertex x and the subwall W ′ can be found in linear time.

We now address how one can obtain the algorithmic result, as claimed at the end
of Theorem 3.3. First, it is easy to see that if H has at least 64|H | edges, then one
can find a K6-minor in H in linear time; see [38]. If so, we are done. So, a flatly
embeddable graph H has at most 64|H | edges, which we assume henceforth. Second,
we apply the algorithmic version of Theorem 3.2. Results in [20], which generalizes
the result in [41], yield an algorithm, whose running time is O(‖H‖) = O(|H |), to
get the subset X and subwall W ′ as in Theorem 3.2. A possible drawback is that |X|
could be as many as

(
t
2

)
, as in Theorem 3.1. However, when t = 6, it is then easy to

adapt the algorithm to obtain Theorem 3.3 since, as shown in [21], a graph without
K6 minor can have at most two subwalls at face-distance at least two that are not
cross-free.

We now prove the following result concerning flat embeddings. Recall from the
beginning of this section that we may assume that a graph G has minimum degree at
least 4.
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Theorem 3.4 There is a constant f satisfying the following. Let G be a given input
graph of minimum degree at least 4, and let W,w(l),w′(l) be as in Theorem 3.3 with
l ≥ f . Then one of the following holds:

1. G contains K6, K−
4,4 or K+

3,4 as a minor.
2. For some vertex x ∈ V (G), there is a proper subwall W ′ (of the wall W ) of height

more than l in G − x that is dividing and cross-free in G − x. Moreover, every
vertex v which has face-distance at least l/2 from per(W ′) in the wall W ′ is ir-
relevant with respect to the existence of K-minors, where K is any graph in the
Petersen family. Furthermore, for every flat embedding of the graph G − v in R

3,
the embedding of G − v can be extended to a flat embedding of G.

3. There is a reduction as in Lemma 2.3.
4. There is a separation (A,B) of order at most four in G such that x ∈ V (A ∩ B)

and V (A∩B)\{x} ⊆ comp(W) (where the vertex x is as above) and per(W) ⊆ B .
Moreover, G contains both A+ and B+ as minors. In particular, the separation
(A,B) gives rise to a reduction as in Theorem 2.4.

Proof By Theorem 3.3, if G does not contain K6 as a minor, then there exists a vertex
x ∈ V (G) such that there is a proper subwall W ′ (of the wall W ) of height l in G − x

that is cross-free and dividing in G − x. We observe that W ′ is not dividing in G, if
x exists.

Suppose first that comp(W ′) is not cross-free. Let us observe that the pair
(comp(W ′),per(W ′)) is a society in G − x, where we use the cyclic order of ver-
tices on the cycle per(W ′). Since comp(W ′) is cross-free and dividing in G − x,
the society (comp(W ′),per(W ′)) is rurally 4-connected by Theorem 2.17. We may
assume that there is a separation (A′,B ′) of order at most three in the society
(comp(W ′),per(W ′)) such that B ′ contains all vertices of per(W ′), and in addition,
A′ does not have an embedding in the plane with V (A′ ∩B ′) in the outer face bound-
ary. (For otherwise, comp(W ′) would be cross-free in G − x.)

By Theorem 2.16 and since the minimum degree of G is at least 4, it follows that
G is 4-connected.

Therefore, if |V (A′ ∩ B ′)| ≤ 2, then adding x to both A′ and B ′ would yield a
separation of order at most three in the original graph G. Furthermore, if x /∈ N(A′ −
B ′), then again, (A′,B ′ + x) would be a separation of order at most three in G. Thus
we may assume that |V (A′ ∩ B ′)| = 3, and x has a neighbor in A′ − B ′. We set
A = A′ + x and B = B ′ + x. By the 4-connectivity of G and the rural 4-connectivity
of the society (comp(W ′),per(W ′)), it follows that B contains a K4-minor rooted at
V (A ∩ B) and that B − A is connected. In particular, G contains A+ as a minor. If
A − B is disconnected, then we are done, as there is a K6, K−

4,4 or K+
3,4 minor in G

by Lemma 2.13. Thus A−B is connected. If G also contains B+ as a minor, we have
the last outcome of the theorem. Therefore, we assume henceforth that B+ is not a
minor in G.

Since B+ is not a minor in G, by Theorem 2.15 and the fact that A cannot be
drawn in the plane in such a way that V (A ∩ B) appears on the outer face boundary,
we conclude that A − B consists of exactly two vertices v, v′. If both have degree
5 in G, then the K4-minor in B rooted at V (A ∩ B), together with v, v′, gives rise



Discrete Comput Geom (2012) 47:731–755 749

to a K6-minor. Thus it follows that the degree of v is 5, the degree of v′ is 4, and
vv′ ∈ E(G). But in this case, we can make a reduction as in Lemma 2.3.

Thus we may assume that the comp(W ′) in G − x has a 2-cell embedding in a
plane with per(W ′) in the outer face boundary. The vertex v in the second conclusion
of Theorem 3.4 is irrelevant with respect to any minor of the graphs in the Petersen
family, as proved in [41] (cf. also [23]).

It remains to prove that for every flat embedding of the graph G−v in R
3, the em-

bedding of G− v can be extended to a flat embedding G. It follows from Lemma 2.6
that the planar graph comp(W ′) − x − v has a unique spherical embedding. Thus the
unique face F that has all the neighbors of v bounds the panel D = D(F) in the flat
embedding of G − v. Then we can embed the vertex v and its incident edges into the
disk D. It is easy to see that the resulting embedding of G is still flat. �

Theorem 3.5 Let G,W,f, l,w(l),w′(l) be as in Theorem 3.4. Suppose the wall W

is given. Then there is an O(n)-time algorithm, where n = |G|, that returns one of
the following outcomes:

1. One of the graphs in the Petersen family as a minor in G.
2. A vertex x ∈ V (G) and a proper subwall W ′ (of the wall W ) of height l in G − x

that is dividing in G−x, and is cross-free in G−x. Moreover, we find an irrelevant
vertex v as in the conclusion of Theorem 3.4.

3. A reduction as in Lemma 2.3.
4. A separation (A,B) of order at most four in G such that x ∈ V (A ∩ B) and

V (A ∩ B) \ {x} ⊆ comp(W) (where the vertex x is as above) and per(W) ⊆ B .
Moreover, G contains both A+ and B+ as minors. In particular, the separation
(A,B) gives rise to a reduction as in Theorem 2.4.

Proof We can get the conclusion of Theorem 3.3 in linear time. If we find a K6-
minor, we stop. Otherwise, we obtain x and W ′.

By applying the planarity algorithm [4, 14, 52], for any proper subwall W ′ in the
conclusion of Theorem 3.3, we can test whether or not the compass comp(W ′) is pla-
nar in G − x with per(W ′) in the outer face boundary. Suppose there is a Kuratowski
subgraph K ′, i.e., either a K5-subdivision or a K3,3-subdivision.

We first observe that the pair (comp(W ′),per(W ′)) is a society in G − x, whose
cyclic order is the cyclic permutation of vertices on the cycle the per(W ′). If there
is a separation (A,B) of order at most three in the society (comp(W ′),per(W ′)) in
G − x such that B contains all the vertices of per(W ′) and at least two nodes of the
Kuratowski subgraph K ′ are contained in A−B , then, as in the proof of Theorem 3.4,
we can get the third or the fourth conclusion of Theorem 3.5 or we can get a K−

4,4 or

K+
3,4 minor. Suppose such a separation does not exist. This implies that the society

(comp(W ′),per(W ′)) in G − x is not rurally 4-connected. So by Theorem 2.17, the
compass comp(W ′) is not cross-free, because we can find two vertex-disjoint paths
connecting the diagonally opposite corners in the wall W ′.

Let us consider the algorithmic aspect of the previous argument. Let us observe
that, for each proper subwall W ′, once we are given a Kuratowski graph K ′, we can
test whether or not such a separation (A,B) in the last conclusion of Theorem 3.5
exists in comp(W ′) in G − x, in linear time. If such a separation does not exist, by
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using the standard technique in [41], we can find two vertex-disjoint paths connecting
the diagonally opposite corners in the wall W ′ in linear time, using the Kuratowski
graph K ′.

If there are three disjoint proper subwalls that are not cross-free and are pairwise
at face-distance at least two, then there is a K6-minor by the result in [21] (and such
a K6-minor can be found in linear time using the three Kuratowski graphs in these
three proper subwalls).

Thus we may assume that there is a proper subwall W ′ in the conclusion of Theo-
rem 3.3 such that the comp(W ′) in G− x has a 2-cell embedding with per(W ′) in the
outer face boundary (and such a 2-cell embedding can be found in linear time by the
planarity algorithm [4, 14, 52]). In this case, by Theorem 3.5, we can find the vertex
in the second conclusion of Theorem 3.4 in linear time. �

4 Flat Embedding when the Tree-Width Is Bounded

In this section we present a quadratic-time algorithm for the FLAT AND LINKLESS

EMBEDDING problem on graph classes of bounded tree-width. The algorithm is
based on various results about flat embeddings presented in Sect. 2.2.

4.1 4-Connected Graphs of Bounded Tree-Width

As a first step, we show how to compute flat embeddings (if they exist) of 4-connected
graphs of bounded tree-width.

Lemma 4.1 There is an algorithm which for a given 4-connected graph G either
returns a flat embedding of G or finds a minor H of the Petersen family in the graph
G, in time f (tw(G)) · |G|2, for some computable function f : N → N.

Proof Given G, we first test in linear time f (tw(G)) · |G| (for instance by using
Courcelle’s theorem [10]) if any graph in the Petersen family is a minor of G. If no
such minor is found, we compute a flat embedding of G. The lemmas outlined in
Sect. 2.2 and the discussion at the end of that section suggest the following algorithm
for constructing a flat embedding of a 4-connected graph in R

3.

1. If G is planar, compute the unique flat embedding of G in R
3 and stop. Otherwise,

choose a Kuratowski subgraph of G and embed it flatly into R
3.

2. As long as there is a Kuratowski subgraph K of G that is not yet embedded, com-
pute two adjacent Kuratowski subgraphs H,H ′ so that H is already embedded
but at least one edge of H ′ is not yet embedded. At the same time we find the
additional path L = L3,4 from the definition of 2-adjacency, and set L = ∅ in case
of 1-adjacency of H and H ′. As discussed in Sect. 2.2, there is a unique way of
extending the embedding of H to an embedding of H ∪ H ′ ∪ L which can be
determined as explained in Sect. 2.2.

First of all, Lemma 2.13 implies that the algorithm returns a flat embedding of
the whole graph G. Next, we claim that this algorithm can be implemented to run
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in time f (tw(G)) · |G|2, where f : N → N is a computable function. Given a 4-
connected graph G, first use Bodlaender’s algorithm [3] to compute an optimal tree-
decomposition of G in time g(tw(G)) · |G|, where g : N → N is some computable
function. Using known planarity algorithms [4, 14, 52], we can find a Kuratowski sub-
graph K of G required in Step 1 in linear time, or conclude that G is planar, in which
case we can easily determine the unique embedding into R

3. Towards the second step,
note that the while loop can take at most ‖G‖ iterations as each iteration embeds at
least one new vertex or edge. In each iteration we have to find the two Kuratowski
subgraphs H and H ′. Since G has bounded tree-width, this can be done in linear
time, either by dynamic programming or by realizing that the condition “H,H ′ are
adjacent Kuratowski subgraphs such that H is already embedded and H ′ is not” has
a straightforward definition in monadic second-order logic (MSO). It follows from a
result by Arnborg, Lagergren and Seese [1] that given the MSO-definition, the graphs
H,H ′ can be computed in time h(tw(G)) · ‖G‖. As for all graphs ‖G‖ ≤ tw(G) · |G|,
the result follows. �

4.2 Flat Embeddings in Quadratic Time on Graph Classes of Bounded Tree-Width

We are now ready to present the complete quadratic-time algorithm for computing
flat embeddings of linklessly embeddable graphs of bounded tree-width.

Lemma 4.2 There is an algorithm which, on input G, solves the FLAT AND LIN-
KLESS EMBEDDING problem for G in time f (tw(G)) · |G|2, for some computable
function f : N → N.

Proof Let G be given. Using Bodlaender’s algorithm [3], we first compute a tree-
decomposition of G of width tw(G) in time g(tw(G)) · |G|. The next step is to test
if any graph of the Petersen family is a minor of G. Again, this can be done in time
g′(tw(G)) · |G|. If G contains a Petersen minor, we can conclude that G has no
linkless embeddings and return the minor. Otherwise, we perform a preprocessing to
break the graph into 4-connected components.

Step 1. We first compute the 2-connected components of G and perform the al-
gorithm recursively on each component. Once flat embeddings of all 2-connected
components have been computed, we can combine them to a flat embedding of G in
an obvious way.

Step 2. Now suppose there are no 1-separations of G. The next step is to elimi-
nate 2-separations. Using dynamic programming, we can easily find the 3-connected
components of G in linear time. Let (A,B) be a separation of order two with
{u,v} = V (A ∩ B). As there are no 1-separations in G, u and v are connected by
a path in A and in B , thus A+ and B+ are minors in G. Hence, if G is flatly embed-
dable then so are A+ and B+. Their flat embeddings can be computed recursively.
We can then combine these embeddings as shown in the proof of Theorem 2.4.

Step 3. Now suppose there are no separations of order ≤ 2 left in G. The final
step is to decompose the graph into 4-connected components. Again, using dynamic
programming we can find 4-connected components of G easily. Now let (A,B) be
a separation of order three, and let S = {u,v,w} = V (A ∩ B). As there are no sep-
arations of order ≤ 2 in G, we can apply Theorem 2.14 to each of graphs A and B .
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If one of A or B (say B) satisfies conclusion (2) of Theorem 2.14, then B − A is a
single vertex of degree three in G, and we can make a Y�-reduction at this vertex.
We perform the algorithm recursively on the smaller graph and then use Theorem 2.2.
Otherwise, A and B satisfy conclusion (1) of Theorem 2.14, which implies that A+
and B+ are both minors of G. Thus, we can apply Theorem 2.4 to get a flat embed-
ding of G from recursively constructed flat embeddings of A+ and B+. Finally, if G

is 4-connected, then we get a flat embedding by using Lemma 4.1. �

Using dynamic programming techniques, it is possible to design a linear-time al-
gorithm for computing a flat embedding of a graph of bounded tree-width, or decide
correctly that no such embedding exists. The algorithm was sketched in [17] but a full
description of the algorithm would be technical and long. As linear time is not needed
for the main result of the paper, we refrain from giving the details of the algorithm
here.

5 Algorithm

Finally, we are ready to present the complete algorithm.

FLAT AND LINKLESS EMBEDDING

INPUT: A graph G of order n.

OUTPUT: Either detect one of Petersen’s family graphs as a minor in G or return
a flat (and hence also linkless) embedding of G in R

3.

RUNNING TIME: O(n2).

DESCRIPTION:
Step 1. Initially, we delete all vertices of degree at most 1. Also, if there is a vertex

v of degree 2, then we just contract vu, where u is one of the two neighbors of v. Thus
we may assume that the minimum degree is at least 3. If there is a vertex v of degree
3, then we perform a Y� operation at v. We also delete parallel edges or loops if they
arise after performing the reductions. We repeat doing this as long as there are some
vertices of degree ≤ 3. Hereafter, we may assume that the minimum degree of the
resulting graph G is at least 4. We make the same reductions at any time later if the
minimum degree falls below four.

Step 2. Test if the tree-width of the current graph G is small or not, say smaller
than some value f , where f comes from Theorem 3.4. This can be done in linear
time by the algorithm of Bodlaender [3]. If the tree-width is at least f , then go to
Step 3. Otherwise we use the algorithm described in Lemma 4.2 to compute a flat
embedding in quadratic time or certify that no such embedding exists by computing
a minor of G in the Petersen family.

Step 3. It is easy to see that if the current graph G has at least 26|G| edges, then
one can easily find a K6-minor in linear time (see [38]). So we may assume that the
current graph G has at most 26|G| edges.
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At this moment, the tree-width of the current graph G is at least f . Use the algo-
rithm of Bodlaender [3] (or the algorithm of Robertson and Seymour [41]) to con-
struct a wall W of height at least w′(l), where w′(l) is as in Theorem 3.3. Perform the
algorithm of Theorem 3.5 to find a separation or reduction as in the third conclusion
of Theorem 3.5, or an irrelevant vertex v, or a minor of a graph in the Petersen family.
If the third outcome occurs, then output the minor. If the second one happens, then
we recurse this algorithm to G − v. If the first one happens, then we reduce the size
of the current graph G as in the proof of Theorem 3.5. This completes the description
of the algorithm. �

The correctness of Steps 2 and 3 follow from Sects. 3 and 4. It is easy to see that
degree 1 vertices can be deleted, degree 2 vertices can be contracted, parallel edges
and loops can be removed, and Y� operation can be performed (Theorem 2.2). Thus
the correctness of Step 1 follows.

The time complexity of the algorithm can be estimated as follows. All individ-
ual reduction steps in the above algorithm can be done in linear time. Applying the
recursion results in another factor of n. So in tine O(n2) we reduce the problem to
the case of bounded tree-width graphs. Applying the algorithm once the tree-width is
bounded can be done in quadratic time. Thus, the time complexity is O(n2).
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