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Abstract Schulte classified the discrete chiral polyhedra in Euclidean 3-space and
showed that they belong to six families. The polyhedra in three of the families have fi-
nite faces and the other three families consist of polyhedra with (infinite) helical faces.
We show that all the chiral polyhedra with finite faces are combinatorially chiral.
However, the chiral polyhedra with helical faces are combinatorially regular. More-
over, any two such polyhedra with helical faces in the same family are isomorphic.

Keywords Combinatorially chiral · Geometrically chiral · Chiral polyhedron ·
Geometric polyhedron

1 Introduction

The main object of this paper is to examine chiral polyhedra in Euclidean 3-space
from both abstract and geometric point of view. The term “chiral” has been used for
geometric figures which are symmetrical by rotations but not by reflections. An exam-
ple of such object is the snub cube. However, the term chiral map (or abstract chiral
polyhedron, as we shall prefer to call them) is commonly used to describe a map
on a surface whose symmetry group contains all cyclic permutations of consecutive
edges through any vertex and of consecutive edges on any face. Many examples, in-
cluding infinite families, of chiral finite (abstract) polyhedra are known to exist (see
[1, 2, 4]). This naturally leads to the question whether there are any infinite chiral
(abstract) polyhedra which we answer in affirmative in Corollary 6.1.

We start with a brief historical note on geometric regular and chiral polyhedra in
Euclidean 3-space.
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A polyhedron is geometrically regular if its geometric symmetry group is transi-
tive on its flags. The only finite regular polyhedra in E

3 are the platonic solids, the
Kepler–Poinsot polyhedra and their Petrials (see [8, Theorem 7E4]). In 1926, Petrie
and Coxeter discovered the three discrete infinite regular polyhedra in E

3 with convex
faces (see [3]). Grünbaum was the first to attempt the classification of infinite, non-
planar regular polyhedra with non-planar polygons or apeirogons (infinite polygons)
as faces (see [7]). He listed 23 such polyhedra and the classification was completed
by Dress (see [5, 6]) by addition of a single polyhedron.

A polyhedron is geometrically chiral if its geometric symmetry group has pre-
cisely two orbits on the flags such that adjacent flags are in distinct orbits. In [10]
and [11], Schulte enumerates the discrete chiral polyhedra in E

3. In [10], he shows
that no geometric chiral polyhedron in E

3 can be finite and determines all infinite
polyhedra with finite (skew) faces. He also shows that such infinite polyhedra belong
to three families of polyhedra of Schläfli types {6,6}, {4,6} and {6,4}. In [11], he
completes the enumeration by showing that there are no additional chiral polyhedra
with finite faces and that any chiral polyhedron with infinite (helical) faces must be
in one of three families, two of type {∞,3} and one of type {∞,4}.

The main purpose of this paper is to investigate the combinatorial structure of
Schulte’s geometrically chiral polyhedra in E

3. For each such polyhedron, we pro-
vide a presentation of the automorphism group. In Sect. 4, we prove that every such
polyhedron with finite faces is combinatorially chiral. Schulte’s chiral polyhedra with
infinite faces are shown in Sect. 5 to be combinatorially regular. Furthermore, any two
chiral polyhedra with infinite faces in the same family are isomorphic. We provide
both, an algebraic proof of this fact as well as a geometric interpretation of the result.
We show that the vertices and edges of any geometric chiral polyhedron in a family
can be moved continuously to coincide with the vertices and edges of any other chiral
polyhedron in the same family.

2 Regular and Chiral Polyhedra and Their Realizations

We begin by briefly outlining some basic theory of abstract polytopes of rank 3 re-
ferring to [8] and [12] for more details.

An abstract polygon P is a connected (may be infinite) graph with the property
that every vertex is contained in exactly two edges.

An abstract polyhedron K is a partially ordered set satisfying the following con-
ditions. The maximal totally ordered subsets of K (also called flags) contain ex-
actly three elements. This induces a rank function from the elements of K to the
set {0,1,2}. The elements of rank 0 are called vertices, the elements of rank 1 are
called edges, and the elements of rank 2 are called faces. The vertex figure at a vertex
v consists of the edges and faces containing v. Note that the vertex and edge set of
any polyhedron K naturally induces a graph, called the 1-skeleton of K. For K to
be a polyhedron we require that every edge of K contains exactly two vertices and
to be contained in exactly two faces. The 1-skeleton of any polyhedron K must be
connected. We also require that (the section consisting of every vertex and edge con-
tained in) every face and every vertex-figure of K is isomorphic to a polygon. A more
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general definition of abstract polytope can be found in [8, Chap. 2A]. In the notation
of [8], polygons are 2-polytopes and polyhedra are 3-polytopes.

As a consequence of the definition of abstract polyhedron, for any flag Φ there
exist three distinguished flags: the 0-adjacent flag obtained from Φ by preserving the
edge and face but changing the vertex, the 1-adjacent flag obtained by preserving
the vertex and the face but changing the edge, and the 2-adjacent flag obtained by
preserving the vertex and the edge but changing the face.

The dual of a polyhedron K is the polyhedron obtained by preserving the elements
of K while reversing the partial order. A polyhedron is said to be self-dual if it is
isomorphic to its dual.

Whenever a polyhedron K has the property that every face contains the same num-
ber p of edges and every vertex is contained in the same number q of edges we say
that K is equivelar. In this case, we say that the Schläfli type of the polyhedron is
{p,q}. Regular and chiral polyhedra defined below are examples of equivelar poly-
hedra. In general, p and q may be ∞; however, in this paper q will always be finite.

An automorphism of a polyhedron K is an order preserving permutation of its ele-
ments. The group consisting of all the automorphisms of K, called the automorphism
group of K, is denoted by Γ (K).

A polyhedron K is said to be regular if its automorphism group Γ (K) is transitive
on its flags. In this case, for any given base flag Φ , there are three special involu-
tory automorphisms ρ0, ρ1 and ρ2 that map Φ into its 0-, 1- and 2-adjacent flag,
respectively. These involutions generate Γ (K) and satisfy at least the relations

ρ2
i = (ρ0ρ2)

2 = (ρ0ρ1)
p = (ρ1ρ2)

q = ε, (1)

as well as the intersection condition given by 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 = 〈ρ1〉. Note that if
p is ∞, the relation (ρ0ρ1)

p = ε is omitted.
Whenever the relations in (1) completely determine Γ (K) we simply denote K by

{p,q}. In this case, we refer to K as the universal (regular) polyhedron of Schläfli
type {p,q}, and to its automorphism group as the Coxeter group [p,q].

Given a regular polyhedron K with automorphism group Γ (K) = 〈ρ0, ρ1, ρ2〉
we define two special automorphisms which we shall call distinguished rotations
σ1 := ρ0ρ1 and σ2 := ρ1ρ2. Note that these automorphisms are not necessarily geo-
metric rotations. The rotations σ1, σ2 generate the even subgroup Γ +(K) of Γ (K)

and satisfy at least the relations

σ
p

1 = σ
q

2 = (σ1σ2)
2 = ε, (2)

and the intersection condition

〈σ1〉 ∩ 〈σ2〉 = {ε}. (3)

Similarly as above, if p = ∞ then the relation σ
p

1 = ε is omitted. Note that the index
of Γ +(K) in Γ (K) is at most 2. If this index is 2, we say that K is orientably regular
or, as in the language of [8] and [12] directly regular, otherwise we say that K is
non-orientably regular.

The even subgroup of the automorphism group of the universal polyhedron {p,q}
is denoted by [p,q]+.
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A polyhedron K is said to be chiral whenever there are two orbits of flags under
Γ (K) such that adjacent flags belong to different orbits. Choosing a base flag Φ , the
automorphism group of a chiral polyhedron K is generated by two automorphisms
σ1 and σ2, which will also be referred to as distinguished rotations, that cyclically
permute the edges of the face in Φ and the edges around the vertex in Φ , respectively.
These generators satisfy at least the relations (2) as well as the intersection condition
given by (3). Each chiral polyhedron occurs in two enantiomorphic forms, in a sense
in a right and left handed version which can be thought of as mirror images of each
other. For details we refer to [13].

Note that the dual of a regular or chiral polyhedron of type {p,q} is a regular or
chiral polyhedron of type {q,p}.

In [12], Schulte and the second author provide a construction of chiral or ori-
entably regular abstract polytopes from groups generated by “rotations” satisfying
an intersection condition (above stated for rank 3). The polyhedra so constructed are
shown to be regular if an only if there exists an involutory group automorphism ρ̂1
such that

σ1ρ̂1 = σ−1
1 and σ2ρ̂1 = σ−1

2 . (4)

If K is non-orientably regular then the distinguished generators of its automorphism
group satisfy (2), (3) and Γ (K) coincides with its even subgroup. The above con-
struction can then be used to construct a directly regular polyhedron, called the ori-
entably regular double cover of K, whose even subgroup coincides with that of K.
This implies the following two lemmas.

Lemma 2.1 Every non-orientably regular polyhedron has a directly regular double
cover.

Lemma 2.2 Let K and P be chiral or orientably regular polyhedra. If the subgroups
of the automorphism groups of K and P generated by the distinguished rotations
σ1 and σ2 are isomorphic, then P ∼= K. In particular, they are both chiral or both
orientably regular.

Following [8, Sect. 5A], [10] and [11], a realization of an abstract polyhedron K
in Euclidean 3-space is a mapping β = β0 from the vertex set of K into E

3. This
mapping induces two other mappings β1 and β2 from the sets of edges and faces of
K to the power set of the vertex set and the power set of the edge set of K respectively,
such that for each edge e0 and face f0 of K,

e0β1 = {vβ0 | v ⊆ e0},
f0β2 = {eβ1 | e ⊆ f0, e edge of K}.

We say that a realization is faithful if β0, β1 and β2 are one-to-one. In this paper, we
mainly consider discrete faithful realizations of polyhedra having the property that
the affine hull of their vertices is E

3. The only exceptions are some discrete (but not
faithful) realizations included in Sect. 5 for sake of completeness. Henceforth, unless
otherwise stated, we shall assume that the affine hull of the vertex set of a geometric
polyhedron is E

3.
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When β is a faithful realization of K, the vertices, edges and faces of K are in bi-
jective correspondence with some points, line segments and simple (finite or infinite)
polygons in E

3. The resulting set of points, line segments and polygons constitute
the vertices, edges and faces of a polyhedron in E

3. When there is no possibility of
confusion we may identify an abstract polyhedron K with its (faithful) realization
and call it geometric polyhedron K.

A symmetry of the geometric polyhedron K is an isometry of E
3 that preserves K.

The symmetry groups of the polyhedra we will consider in this paper are all (affinely)
irreducible meaning that there is no non-trivial linear subspace L of E

3 which
is invariant in the sense that the group permutes the set of translates of L (see
[8, Chap. 5A]).

A realization of a polyhedron K is said to be symmetric if each automorphism of
K induces an isometric permutation of its set of vertices. Such a permutation can be
extended to an isometry of E

3 (whenever the affine hull of the set of vertices is E
3).

Note that if a realization of a polyhedron K is not symmetric, then the symmetry
group of K is isomorphic to a proper subgroup of Γ (K).

A geometric polyhedron is said to be geometrically regular if its symmetry group
is transitive on its flags. In this case, the symmetry group is isomorphic to the au-
tomorphism group implying that the polyhedron is also regular as an abstract poly-
hedron. In [8, Sect. 7E], McMullen and Schulte provide a survey of all the geomet-
rically regular polyhedra (Grünbaum–Dress polyhedra) in E

3. There are 24 infinite
geometrically regular polyhedra such that the affine hull of their vertices is E

3. They
are divided in two families, 12 blended polyhedra having reducible symmetry groups
(the groups permutes a linear subspace of E

3 and its translates) and 12 pure polyhedra
having irreducible symmetry groups.

A geometric polyhedron K arising from a regular or chiral abstract polyhedron
is said to be geometrically chiral if its symmetry group has two orbits on its flags
in such a way that adjacent flags are in different orbits. The symmetry group of a
geometrically chiral polyhedron can be generated by two isometries S1 and S2 that
correspond to the distinguished rotations σ1 and σ2 in Γ (K), respectively. The sym-
metry group of any geometrically chiral polyhedron K is isomorphic to a subgroup
of the automorphism group of K of index at most 2. When the index is 2, K must
necessarily be regular as an abstract polyhedron and the automorphisms represented
by the symmetries are precisely the elements of Γ +(K). We also say that K admits
a chiral realization. On the other hand, when the index is 1, K is chiral as an ab-
stract polyhedron. In other words, if a polyhedron admits a chiral realization it must
necessarily be either chiral or orientably regular. This directly implies

Lemma 2.3 Let K and P be two polyhedra admitting chiral realizations. If the sub-
groups of the symmetry groups of K and P generated by the distinguished rotations
S1 and S2 are isomorphic, then P ∼= K. In particular, they are both chiral or both
orientably regular as abstract polytopes.

In [10] and [11], Schulte classifies all the geometrically chiral polyhedra in E
3;

however, he did not determine whether or not they are abstractly chiral. We shall do
this in Sects. 4 and 5.
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Note that the isometries Si , i = 1,2, can be either rotations, rotatory reflections,
or, as we shall see in Sect. 5, S1 (but not S2) can also be a twist. Each Si is therefore
a product of a ri -fold rotation Ri and an isometry Ti where Ti is either ε, a reflection
with mirror orthogonal to the axis of Ri , or a translation by a vector parallel to the
axis of Ri . If T1 = ε (resp., T2 = ε), the faces (resp., vertex-figures) of K are regular
convex polygons. If T1 (resp., T2) is a reflection then it was proved in [10] that ri
must be 4 or 6 and the faces (resp., vertex-figures) are skew ri -gons. If the angle of
the rotation Ri is 2π/ri and Ti is either ε or a reflection, the Schläfli symbol for K is
{r1, r2}. If T1 is a twist, the faces of K are helices and, as proved in [11], r1 must be
either 3 or 4 and we shall say that the helical faces are over triangles or over squares,
respectively. In this case, the Schläfli type for K is {∞, r2}. When r2 = 3 the helices
can be over triangles or over squares. When r2 = 4 the helices must be over squares.

In conclusion of this section, we provide some useful definitions regarding words
on the generators of the symmetry group of a geometrically chiral polyhedron, or of
the even subgroup of the symmetry of a geometrically regular polyhedron.

Let G = 〈S1, S2〉 be the rotation group of a geometric chiral or regular polyhedron
and w = Si1Si2 · · ·Sik a word in the generators of G. Let w∗ = S−1

i1
S−1

i2
· · ·S−1

ik
. We

shall call w∗ the enantiomorphic word corresponding to w.
Note that for any word w corresponding to the symmetry S in G, w∗ can also be

seen to correspond to a symmetry S′ of the polyhedron. Moreover, as a consequence
of (4), if the polyhedron is regular, then S′ depends only on S and not of the word
defining it. In this case, we say that S′ is the enantiomorphic element of S.

3 Preliminary Results on Isometries in E
3

The discrete chiral polyhedra in E
3 must have irreducible symmetry groups [11,

Lemma 3.7]. In this section, we study the groups of isometries in E
3 of discrete chi-

ral polyhedra as well as some groups of discrete regular polyhedra with infinite irre-
ducible symmetry groups. Such groups of isometries must be crystallographic (that is,
discrete groups of isometries having compact fundamental region) [10, Lemma 4.1].

For the purposes of this section we shall assume that K is a discrete chiral or
discrete infinite pure regular polyhedron in E

3. Let G = G(K) be the subgroup of
the symmetry group of K generated by rotations S1 and S2 specified in the previous
section. Note that if K is orientably regular then G is an index two subgroup in the
symmetry group, otherwise G is the whole symmetry group.

Let T (K) be the translation subgroup of G. It follows from [8, Sect. 7E], [10]
and [11] that the subgroup has three linearly independent generators, and that the
quotient of G by T (K), called the special group of G, must be one of the following
groups

[3,4]+, [3,3]+, [3,4], [3,3] or [3,3]∗,
where [3,3]∗ = [3,3]+ × 〈Z〉 and Z is the central inversion at the origin.

It is convenient to denote by R′ the image of an element R ∈ G under the quotient
by T (K). Although strictly speaking R′ is not an isometry, it will be useful to identify
it with the corresponding isometry that fixes the origin. Note that in particular, S′

1 and
S′

2 generate the special group of G.
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Following [8, pp. 166, 167] we denote by Λs the sub-lattice of Z
3 generated by s

and its images under permutations and changes of signs of its entries. As we shall see
in the two subsequent sections, for some positive d , T (G) is

• Λ(d,0,0) = dZ
3,

• Λ(d,d,0), also called the face-centered cubic lattice, or
• Λ(d,d,d), also called the body-centered cubic lattice.

Given a subgroup G of the symmetry group of K in terms of the isometries S1
and S2, we now develop a method, summarized in Theorem 3.2 below, of determining
a set of defining relations for G.

The first step is to write the generating translations t1, t2 and t3 of T (G) as words
in S1 and S2. The next step is to find defining relations

hi(S
′
1, S

′
2) = ε, for i = 1, . . . , k, (5)

for the special group of G in terms of S′
1 and S′

2, where hi(S
′
1, S

′
2) stands for a fixed

word in S′
1, S

′
2. Note that whenever hi(S

′
1, S

′
2) = ε, the word hi(S1, S2) corresponds

to a translation. This translation is given by the word fi in Theorem 3.2.
In the proof of Theorem 3.2, we shall make use of the following well-known fact

from group theory.

Lemma 3.1 Let F be the free group on k1, . . . , km and K a finite group generated by
k1, . . . , km with a set of defining relations given by ri = ε for i = 1, . . . , n for some
words r1, . . . , rn in {k1, . . . , km}. Then, for any two words w and ŵ in F representing
the same element in K , ŵ = wβ for some β in the normal closure of {r1, . . . , rn} in F .

The following theorem specifies a set of defining relations for G = 〈S1, S2〉 (some
of which may be superfluous as we shall see in Sects. 4 and 5).

Theorem 3.2 Let G = 〈S1, S2〉 be the symmetry group of a discrete geometrically
chiral polyhedron or the even subgroup of an infinite discrete pure regular polyhedron
in the Euclidean 3-space. Let T (G) be its translation subgroup with generating set
{t1, t2, t3} given in terms of S1 and S2, and let the defining relations of G/T (G) =
〈S′

1, S
′
2〉 be given by (5).

Then the following constitute a set of defining relations for G

hi(S1, S2) = fi, for i = 1, . . . , k, (6)

ti tj = tj ti , i, j = 1,2,3, (7)

S−1
k tiSk = fi,k, for i = 1,2,3 and k = 1,2, (8)

where fi and fi,k are fixed words in the generators of T (G).

Proof Let G0 = {g1, . . . , gm} be a set of representatives, one from each coset in
G/T (G), and let W := {w1, . . . ,wm} be a set of words on the set {S1, S2} such that
ws represents the element gs for every s ∈ {1, . . . ,m}. Then every element in G can
be written in a unique form as git

a
1 tb2 tc3 with gi ∈ G0 and a, b, c ∈ Z.
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A set of relations is a set of defining relations for G whenever these relations are
sufficient to determine whether two arbitrary words in S1 and S2 represent the same
element of G. Therefore, to show that (6), (7) and (8) constitute a set of defining
relations for G, we only need to show that an arbitrary element gw of G represented
by a word w in S1 and S2 can be written as git

a
1 tb2 tc3 for some gi ∈ G0 and a, b, c ∈ Z

using only these relations.
Following Lemma 3.1, with K = G/T (G), we note that the word w in S1

and S2 can be written as w = wiβ for some i ∈ {1, . . . ,m} and β in the nor-
mal closure of {h1(S1, S2), . . . , hk(S1, S2)} in the free group generated by S1
and S2. Assume β = (z−1

1 hi1(S1, S2)z1) · · · (z−1
n hin(S1, S2)zn) for some positive

integer n and some z1, . . . , zn in the free group. Using (6), it follows that gw =
gi(z

−1
1 fi1z1) · · · (z−1

n finzn) for some i1, . . . , in ∈ {1, . . . , k}. Now (8) implies tiSk =
Skfi,k where fi,k ∈ T (G). Since each fij ∈ T (G), we can repeatedly use (8) to

show that z−1
j fij zj = z−1

j zj f̂ij = f̂ij for some f̂ij ∈ T (G) implying that gw =
gif̂i1 · · · f̂in = git for some t ∈ T (G). Note that to express each f̂ij and t in the
form ta1 tb2 tc3 we need to make use of relations (7) and of the fact that fi and fj,k are
words in t1, t2, t3. �

Note that this theorem can be stated for more general groups with a finite index
normal subgroup but we shall only need it in this restricted form.

We conclude the section with two elementary lemmas which we will require in the
following sections.

Lemma 3.3 Let R be the rotation in E
3 given by

(x, y, z)R = (y, z, x),

and let T be a translation by a vector (a, b, c). Then R−1T R and RT R−1 are the
translations by the vectors (b, c, a) and (c, a, b), respectively.

Lemma 3.4 Let S be the rotatory reflection in E
3 given by

(x, y, z)S = (−z,−x,−y),

let T1 be the translation by the vector (a, b, c), and let T2 and T3 be the translations
by the vectors (c, a, b) and (b, c, a), respectively (that is, T2 = RT R−1 and T3 =
R−1T R with R as in Lemma 3.3). Then

S−1T1S = T −1
2 ,

S−1T2S = T −1
3 ,

S−1T3S = T −1
1 .

Proof This follows directly from the properties

• S−1TiS = ZTi+1Z (with the index taken modulo 3), and
• if T is the translation by the vector v then ZT Z = −T . �
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4 The Polyhedra with Finite Faces

There are three families of discrete chiral polyhedra in Euclidean 3-space with fi-
nite faces. One family consists of the self-dual polyhedra of Schläfli type {6,6}. The
second family consist of the polyhedra with Schläfli type {4,6}, while the third one
contains all their duals. We follow Schulte in [10], extending these families in such a
way that certain regular polyhedra are included, and denoting the families by P(a, b),
Q(c,d) and Q1(c, d), respectively. In this section, we determine when these poly-
hedra are combinatorially chiral and in addition we give presentations for their auto-
morphism groups.

4.1 The Type {6,6}

Consider the group G(a,b) of isometries in E
3 generated by S1 and S2 = S′

2 given
by

(x, y, z)S1 = (−y, z − b, x − a),

(x, y, z)S2 = (−z,−x,−y),

(see [10, Sect. 5]). Let Z = −ε be the reflection in the origin o of E
3. Then S3

2 = Z

and S2
2 is the rotation R in Lemma 3.3.

Since (S1S2)
2 = ε and 〈S1〉 ∩ 〈S2〉 = {ε} then, as explained in Sect. 2, one can

use the group G(a,b) to construct an abstract orientably regular or chiral poly-
tope P(a, b). Wythoff’s construction (see [8, Theorem 5A10] and [10, Sect. 2]) on
G(a,b) with the origin o as initial vertex can then be used to obtain the geometric
polyhedron P(a, b), which may be orientably regular or chiral. Note that G(a,b) is
the symmetry group of P(a, b) if and only if P(a, b) is geometrically chiral.

In [10], it is proved that whenever a �= ±b, the polyhedron P(a, b) is geometri-
cally chiral and has skew hexagons as faces and vertex-figures. If a = ±b the polyhe-
dron P(a, b) is geometrically regular (that is, S1 and S2 generate the even subgroup
of its symmetry group). The polyhedron P(1,1) is isomorphic to the Petrie–Coxeter
regular polyhedron {6,6 | 3} with planar faces and skew vertex-figures. On the other
hand, P(1,−1) is isomorphic to Grünbaum’s regular polyhedron {6,6}4 with skew
faces and planar vertex-figures.

The special group of the chiral polyhedra P(a, b) is isomorphic to [3,3]∗. Let
ρ0, ρ1, ρ2 be the distinguished generators of [3,3]. It follows that

[3,3]∗ = 〈
S′

1, S2 | (S′
1)

6 = S6
2 = (S′

1S2)
2 = (S′

1)
3S3

2 = ε
〉
, (9)

is a presentation for [3,3]∗, where S′
1 = ρ0ρ1Z and S2 = ρ1ρ2Z. Note that S′

1 and S2
are rotatory reflections with a rotation angle of π/3.

Schulte proved that the polyhedron P(a, b) is discrete if and only if a or b is
zero or a is a rational multiple of b ([10, Lemma 5.2]). Moreover, it follows from the
definitions of S1 and S2 that the polyhedron P(a, b) is similar (and thus, combinato-
rially equal) to the polyhedron P(sa, sb) for any non-zero real number s. There-
fore, we may assume that a, b are relatively prime integers. Furthermore, Shulte
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proved that the polyhedron P(a, b) is combinatorially isomorphic to the polyhedron
P(c, d) if and only if (a, b) = s(c, d) or (a, b) = s(d, c) for some non-zero real s

(see [10, Theorem 5.18]). It follows that without loss of generality, we may assume
that a is an odd integer.

Let T (P (a, b)) denote the translation subgroup of the symmetry group of P(a, b).
The translations by the vectors (4a,0,0) and (−4b,0,0) can be, respectively, written
as

τa = (
S−2

2 S2
1S3

2S−1
1

)2
,

τb = S2
1S−2

2 S1S
−1
2 S1S

3
2S1S

3
2S−1

1 S2.

The following theorem implies that, up to similarity, there are only two regular
polyhedra in the family of polyhedra P(a, b), namely P(1,1) and P(1,−1). Note
that, as abstract polyhedron P(1,−1) is self-dual since the geometric polyhedron
P(1,−1) is similar to P(−1,1).

Theorem 4.1 The polyhedron P(a, b) is combinatorially regular if and only if
a = ±b.

Proof In [10, Theorem 5.16], Schulte proves that, for a = ±b, the polyhedra P(a, b)

are geometrically regular (and thus, combinatorially regular). We proceed to prove
that these are the only two cases where P(a, b) is a regular abstract polyhedron.

An easy calculation will show that the enantiomorphic words τ ∗
a = (S2

2S−2
1 S3

2S1)
2

and τ ∗
b = S−2

1 S2
2S−1

1 S2S
−1
1 S3

2S−1
1 S3

2S1S
−1
2 of τa and τb as defined above, correspond

to the translations S2
2τbS

−2
2 and S2

2τaS
−2
2 by vectors (0,−4b,0) and (0,4a,0), re-

spectively.
If the polyhedron P(a, b) is combinatorially regular, then the enantiomorphic el-

ement τ ∗
ab of the translation τab = τb

a = τ−a
b by the vector (4ab,0,0) must satisfy

τ ∗
ab = (

S2
2τbS

−2
2

)b = (
S2

2τaS
−2
2

)−a
.

However, (S2
2τbS

−2
2 )b corresponds to the translation by the vector (0,−4b2,0), and

(S2
2τaS

−2
2 )−a to the translation by the vector (0,−4a2,0), implying that a = ±b. �

To derive the defining relations for the polyhedron P(a, b) we first determine a
generating set {t1, t2, t3} of the translation group of P(a, b) and then make use of
Theorem 3.2. The group T (P (a, b)) is one of the following

(a) Λ(1,1,1) if b is even,
(b) 2Z

3 if a + b ≡ 0 (mod 4), or
(c) 2Λ(1,1,0) if a ≡ b (mod 4)

(see [10, Lemma 5.5]).
We define the translation t1 in (a), (b) and (c) to be the translation by the vector

(−1,1,1), (2,0,0) and (2,2,0), respectively. We then let t2 = S2
2 t1S

−2
2 and t3 =

S−2
2 t1S

2
2 (see Lemma 3.3 and Table 1). A simple calculation shows that T (P (a, b)) =

〈t1, t2, t3〉.
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Table 1 The generators
of T (P (a, b)) Translation b even a + b ≡ 0 (mod 4) a ≡ b (mod 4)

t1 (−1,1,1) (2,0,0) (2,2,0)

t2 (1,−1,1) (0,2,0) (0,2,2)

t3 (1,1,−1) (0,0,2) (2,0,2)

It is convenient to make use of the translations

α := (
S1S

−1
2

)3
,

β := (
S−2

2 S2
1

)2
S2S

2
1S3

2 ,

by the vectors (−a + b, a − b, a − b), (2a,0,−2b), respectively. Denoting by τ1, τ2
and τ3 the translations by the vectors (4,0,0), (0,4,0) and (0,0,4), respectively, and
using Lemma 3.3, we have that

τ1 = τλ
a τ

−μ
b with λa + μb = 1,

τ2 = S2
2τ1S

−2
2 ,

τ3 = S−2
2 τ1S

2
2 .

In order to determine the defining relations for the symmetry group of P(a, b) in
terms of the generators S1 and S2, we need to express each ti , i = 1,2,3 in terms of
S1 and S2. We do this in the three cases below where we make use of the elements
α, β , τ1, τ2, τ3 given above in terms of S1 and S2. Furthermore, in the first case we
define γ in terms of β , τ1 and τ3, and hence also in terms of S1 and S2.

In case b is even, say b = 2l, and assuming that a = 2k + 1 for some k, the au-
tomorphism γ := βτ−k

1 τ l
3 corresponds to the translation by the vector (2,0,0). Then

αγ −k+lS2
2γ k−lS−2

2 S−2
2 γ k−lS2

2 is the translation by the vector (−1,1,1), implying
that

t1 = αγ −k+lS2
2

(
γ k−lS2

2

)2
. (10)

In case a + b ≡ 0 (mod 4), say a = 4k + 1 and b = 4l + 3 for some integers k

and l, the required translation by the vector (2,0,0) can be found to be

t1 = S−2
2 βαβτk+l+1

1 τ l−k+1
2 τ 3l−k+2

3 S2
2 . (11)

Finally, if a = 4k + c, b = 4l + c for some integers k, l and for some c ∈ {1,3},
the translation by (2,2,0) can be expressed as

t1 = S2
2βτ

−2k+(1−c)/2
1 τ

2l+(c+1)/2
3 S−2

2 . (12)

The following theorem gives a set of defining relations for the chiral polyhedra
P(a, b).

Theorem 4.2 Let P(a, b) be a geometrically chiral polyhedron where a and b are
relatively prime integers with a odd. Let t1 be the translation given in (10), (11)
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Table 2 Words on the generating translations for P(a, b)

Word b even a + b ≡ 0 (mod 4) a ≡ b (mod 4)

w1 t−1
2 t3 t−1

1 t2

w2 t1t2t3 t−1
1 t2t−1

3

w3 ta1 t−b
2 t

−(a+b)/2
1 t

(a+b)/2
2 t

(a−b)/2
3 t

(b−a)/4
1 t

(3a+b)/4
2 t

(−a−3b)/4
3

or (12), t2 = S2
2 t1S

−2
2 and t3 = S−2

2 t1S
2
2 , each expressed in terms of S1, S2. A set of

defining relations for the symmetry group G(a,b) = 〈S1, S2〉 of P(a, b) is given by
S6

1 = S6
2 = (S1S2)

2 = ε together with

t1t2 = t2t1, (13)

S3
2 t1S

3
2 = t−1

1 , (14)

S−1
1 t1S1 = w1(t1, t2, t3), (15)

S−1
1 t2S1 = w2(t1, t2, t3), (16)

S3
1S3

2 = w3(t1, t2, t3), (17)

where w1,w2,w3 are the words on t1, t2, t3 given in Table 2.

Proof According to Theorem 3.2, the defining relations for the symmetry group of
P(a, b), in addition to the relations derived from those of the special group [3,3]∗, are
given in (7) and (8). The only defining relation in (9) we need to consider is S3

1S3
2 = ε.

The relation (17), with w3 given in Table 2 for each of the choices of a and b, can
easily be verified (geometrically) using the generating translations in Table 1.

The commutativity of t3 with t1 and t2 can be obtained by conjugating (13) by S−2
2

and S2
2 respectively, implying that any two elements in 〈t1, t2, t3〉 commute.

The definition of t1, t2 and t3 together with Lemma 3.4 imply that, as symmetries
of P(a, b), these translations and the rotatory reflection S2 must satisfy the following
relations

S−1
2 tiS2 = t−1

i+1,

with the subscripts taken modulo 3. We note that these relations are implied by (14),
which is equivalent to S2t2S

−1
2 = t−1

1 , whereas the other two are obtained by conju-
gating this relation by S2

2 and S−2
2 .

The expressions for the conjugation of t1 and t2 by S1 given in relations (15) and
(16) can also be verified geometrically.

To show that the relation determined by the conjugation of t3 by S1 is redundant
we first observe that relation (17) implies that

S3
1 = w3(t1, t2, t3)S

3
2 = S3

2w3(t1, t2, t3)
−1.

This in turn implies S3
1 tS3

1 = S3
2 tS3

2 = t−1 for any t ∈ 〈t1, t2, t3〉. For b even,
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t−1
1 = S3

1 t1S
3
1 = S−2

1 (t−1
2 )S2

1 = S−1
1 (t1t2t3)

−1S1 = t2(t
−1
1 t−1

2 t−1
3 )S−1

1 t−1
3 S1,

implying that S−1
1 t3S1 = t−1

3 . Similarly, S−1
1 t3S1 = t2 can be derived for b odd. �

We note that some of the relations in Theorem 4.2 may be superfluous. For exam-
ple, for (a, b) = (1,0), we observe that t1 = S3

1S3
2 and hence that the relation (17) is

not needed. Moreover, relation (14) is trivial and relations (15) and (16) are equiva-
lent. It is not difficult to see that (15) implies (13), and hence the only defining relation
for P(1,0) in addition to those relations given by the Schläfli type, is (15), which is
equivalent to

S1S
2
2S−1

1 S2S
2
1S−1

2 = ε.

From this relation one can verify directly that the polyhedron P(1,0) is chiral by
verifying that the enantiomorphic word of the word on the left of the equation above
is not the identity.

4.2 The Types {4,6} and {6,4}
The family of discrete polyhedra in E

3 with Schläfli type {6,4} consists of the dual of
the discrete polyhedra with Schläfli type {4,6}. We need only consider the latter since
one can derive the defining relations for the symmetry group of the dual by replacing
each σ1 by σ−1

2 and σ2 by σ−1
1 [11, Sect. 3].

We now construct the geometric polyhedron Q(c,d) from the group of isometries
G(c, d) generated by

(x, y, z)S1 = (−x + c, z − d,−y − c),

(x, y, z)S2 = (−z,−x,−y),

following [10] and the same argument as in the previous subsection.
Note that S2 = S′

2 is the same element for the polyhedron Q(c,d) and the polyhe-
dron P(a, b), and thus S3

2 = Z and S2
2 is the rotation R in Lemma 3.3. It was proved

in [10] that whenever cd �= 0, the polyhedron Q(c,d) is geometrically chiral and has
skew 4-gons as faces and skew hexagons as vertex-figures. If cd = 0 the polyhedron
Q(c,d) is geometrically regular and S1 and S2 generate the even subgroup of its
symmetry group. The polyhedron Q(1,0) is isomorphic to the Petrie–Coxeter regu-
lar polyhedron {4,6 | 4} with planar faces and skew vertex-figures. On the other hand,
Q(0,1) is isomorphic to Grünbaum’s regular polyhedron {4,6}6 with skew faces and
planar vertex-figures.

The special group of Q(c,d) is isomorphic to [3,4]. Note that S′
1 and S2

are rotatory reflections in [3,4] of orders 4 and 6 such that (S′
1S2)

2 = ε (see
[10, Lemma 6.1]). It follows that

[3,4] = 〈
S′

1, S2 | (S′
1)

4 = S6
2 = (S′

1S2)
2 = (

S′
1S

−2
2

)2 = ε
〉

is a presentation for the special group of Q(c,d).
The polyhedron Q(c,d) is discrete if and only if c or d is zero or c is a rational

multiple of d ([10, Lemma 6.2]). It follows from the definitions of S1 and S2 that the
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polyhedron Q(c,d) is similar (and thus, combinatorially equal) to the polyhedron
Q(sc, sd) for any non-zero real number s. Therefore, without loss of generality, we
may assume that c, d are relatively prime integers. Furthermore, Schulte proved that
the polyhedron Q(c,d) is combinatorially isomorphic to the polyhedron Q(e,f )

if and only if (c, d) = s(e, f ) or (c, d) = s(−e, f ) for some non-zero real s (see
[10, Theorem 6.13]).

Let T (Q(c, d)) be the translation subgroup of the symmetry group of Q(c,d).
The translations by the vectors (4c,0,0), (0,4c,0), (0,0,4c), (−2d,2d,−2d) can
be respectively written as

κ1 := S−2
2

(
S1S

−1
2

)4
S2

2 ,

κ2 := (
S1S

−1
2

)4
,

κ3 := (
S−1

1 S2
)4

,

κ4 := (
S2

1S2
2

)3
.

The theorem below implies that, up to similarity, there are only two regular poly-
hedra in the family of polyhedra Q(c,d), namely Q(0,1) and Q(1,0).

Theorem 4.3 The polyhedron Q(c,d) is combinatorially regular if and only if
cd = 0.

Proof The polyhedron Q(c,d) is geometrically regular (and thus combinatorially
regular) if cd = 0 (see [10, Theorem 6.11]).

Conversely, assuming that Q(c,d) is regular, the enantiomorphic elements of
κ1, κ2, κ3, κ4 are respectively κ1, κ3, κ2, and the translation by the vector (2d,

2d,−2d).
It is straightforward to check that the translation κcd by the vector (4dc,0,0) can

be written as

κ1
d = κ2

dκ3
−dκ4

−2c.

Since Q(c,d) is regular, we can write the enantiomorphic element of κcd as (κ1
∗)d =

(κ2
∗)d(κ3

∗)−d(κ4
∗)−2c . But κ1

d = (κ1
∗)d is the translation by the vector (4cd,0,0)

while (κ2
∗)d(κ3

∗)−d(κ4
∗)−2c can easily be seen to be the translation by the vector

(−4dc,−8cd,8cd). Thus cd = 0. �

To derive the defining relations for the polyhedra Q(c,d) we determine a gener-
ating set {t1, t2, t3} of the translation subgroup T (Q(c, d)) of Q(c,d) and then make
use of Theorem 3.2. The group T (Q(c, d)) is one of the following

(a) 2Λ(1,1,0) if d is even,
(b) 2Z

3 if c is even, or
(c) 2Λ(1,1,1) if c and d are odd

(see [10, Lemma 6.5]).
We choose the vectors (2,2,0), (2,0,0) and (−2,2,2) for t1 in (a), (b) and (c),

respectively, and let t2 = S2
2 t1S

−2
2 and t3 = S−2

2 t1S
2
2 (see Lemma 3.3 and Table 3).
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Table 3 The generators
of T (Q(c, d)) Translation d even c even c and d odd

t1 (2,2,0) (2,0,0) (−2,2,2)

t2 (0,2,2) (0,2,0) (2,−2,2)

t3 (2,0,2) (0,0,2) (2,2,−2)

Essentially the same calculation as above for T (P (a, b)) carries over to show that
T (Q(c, d)) = 〈t1, t2, t3〉.

Assuming that λ and μ are such that λc + μd = 1, we introduce the translations

ϑ := (
S2

2S−1
1

)2
,

ξ1 := S2
2κλ

3

(
ϑ2κ−1

1 κ2
)μ

S−2
2 ,

ξ2 := S−2
2 κλ

3

(
ϑ2κ−1

1 κ2
)μ

S2
2 ,

ξ3 := κλ
3

(
ϑ2κ−1

1 κ2
)μ

,

by vectors (2c,−2c,2d), (4,0,0), (0,4,0) and (0,0,4), respectively.
To determine the defining relations for the polyhedron Q(c,d), we use the same

idea as above for P(a, b) and express t1 in terms of S1 and S2. This time we make
use of the translations ϑ , ξ1, ξ2 and ξ3, expressed above in terms of S1 and S2.

Assuming d is even, say d = 2l, and c is odd, say c = 2k + 1 for some integers
l, k, we can verify that the required translation by the vector (2,2,0) can be written
as

t1 = ϑξ−k
1 ξk+1

2 ξ−l
3 . (18)

Similarly, if c is even, say c = 2k, and assuming that d = 2l + 1 for some integers
k, l, we note that the translation by the vector (2,0,0) can be found to be

t1 = S2
2ϑξ−k

1 ξk
2 ξ−l

3 S−2
2 . (19)

Finally, if both c and d are odd, say c = 2k + 1 and d = 2l + 1, for some integers
k, l, then the translation by the vector (−2,2,2) can be expressed as

t1 = ϑξ−k−1
1 ξk+1

2 ξ−l
3 . (20)

The following theorem gives a set of defining relations for the chiral polyhedron
Q(c,d). As in the case of the polyhedra P(a, b), some of the relations given in the
theorem may be superfluous.

Theorem 4.4 Let Q(c,d) be a geometrically chiral polyhedron where c and d are
relatively prime integers. Let t1 be the translation given in (18), (19) or (20), t2 =
S2

2 t1S
−2
2 and t3 = S−2

2 t1S
2
2 , each expressed in terms of S1 and S2. A set of defining

relations for the symmetry group G(c, d) = 〈S1, S2〉 of Q(c,d) is given by S4
1 = S6

2 =
(S1S2)

2 = ε together with
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Table 4 Words on the
generating translations
for Q(c,d)

Word d even c even c and d odd

w1 t
d/2
1 t

c−d/2
2 t

−c−d/2
3 t−c

1 tc2 t−d
3 t

(c−d)/2
1 t

(−c−d)/2
2

w2 t1t−1
3 t−1

3 t1

w3 t2t−1
3 t2 t1

t1t2 = t2t1, (21)

S3
2 t1S

3
2 = t−1

1 , (22)

S−1
1 t2S1 = w2(t1, t2, t3), (23)

S−1
1 t3S1 = w3(t1, t2, t3), (24)

(
S1S

−2
2

)2 = w1(t1, t2, t3), (25)

where w2,w3,w4 are the words on t1, t2, t3 given in Table 4.

Proof The proof is essentially the same as that of Theorem 4.2. The words w1,w2
and w3 can be verified (geometrically) using the generating translations in Table 3.
We only need to prove that the relation determined by the conjugation of t1 by S1 is
redundant. To do this we observe that (21) and (25) imply that

S−1
1 S2

2S−1
1 tiS1S

−2
2 S1 = S−2

2 tiS
2
2 = ti−1

for i = 1,2,3 (with the subscripts taken modulo 3). In particular, for d even we have
that

t1 = S−1
1 S2

2S−1
1 t2S1S

−2
2 S1 = S−1

1 S2
2 t1t

−1
3 S−2

2 S1

= S−1
1 t−1

1 t2S1 = S−1
1 t−1

1 S1S
−1
1 t2S1 = S−1

1 t−1
1 S1t1t

−1
3 ,

implying that S−1
1 t1S1 = t−1

3 . Similarly, when c is even or when both c and d are odd,
we can derive S−1

1 t1S1 = t−1
1 and S−1

1 t1S1 = t3, respectively. �

In conclusion, let us note that a simple calculation will show that a set of defining
relations for the symmetry group of Q(1,1) is given by the addition of

S2
2S−1

1 S3
2S1S

−1
2 S1S

−2
2 S1 = ε

to those relations implied by its Schläfli type.

5 The Polyhedra with Infinite Faces

There are three families of discrete chiral polyhedra in Euclidean 3-space with in-
finite faces (see [11]). Two of the families consist of polyhedra with Schläfli type
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{∞,3}. These families are geometrically and, as we shall see, combinatorially dis-
tinct. The third family consists of polyhedra with Schläfli type {∞,4}. Once again it
will be convenient to extend the families in such a way that certain regular polyhedra
are included in the families. In [11], the polyhedra in these families are denoted by
Pi(u, v), where i = 1,2,3 denotes the family and u and v are parameters.

As in the cases of discrete chiral polyhedra in Euclidean 3-space with finite faces,
the polyhedron Pi(u, v) is geometrically similar to Pi(su, sv) for any non-zero real
number s. However, the parameters u and v need not be rational multiples of each
other, as was the case in the families of polyhedra with finite faces. This will allow
us to continuously transform any chiral polyhedron in a family into any other chiral
polyhedron in the same family.

5.1 Type {∞,3} over Squares

We begin by considering the family consisting of polyhedra P2(c, d) built using
Wythoff’s construction from the group generated by

(x, y, z)S1 = (−z + d, y + c, x − c),

(x, y, z)S2 = (y, z, x),

and o as initial vertex. The faces of P2(c, d) are helices, three meeting at each vertex.
If P2(c, d) is geometrically chiral, cd �= 0 and its symmetry group is generated by S1

and S2 = S′
2. Whenever cd = 0, the polyhedron P2(c, d) is orientably regular and S1

and S2 generate the even subgroup of its symmetry group.
With generators S′

1 and S2 the special group of P2(c, d) has the following presen-
tation

[4,3]+ = 〈
S′

1, S2 | (S′
1)

4 = S3
2 = (S′

1S2)
2 = ε

〉
.

If c = 0 then S4
1 = ε and P2(0,1) is combinatorially isomorphic to a cube

[11, Lemma 5.7]. When c �= 0, S4
1 is the translation by the vector (0,4c,0).

We define

t1 := S−1
2 S4

1S2,

t2 := S4
1 ,

t3 := S2S
4
1S−1

2 .

Using Lemma 3.3, with the rotation S2 as R, we can easily see that t1, t2 and t3 are
translations by the vectors (4c,0,0), (0,4c,0) and (0,0,4c), respectively. Further-
more, it follows from [11, Lemma 5.2] that, if cd �= 0, they generate the translation
subgroup T (P2(c, d)) of the symmetry group of P2(c, d). Using Theorem 3.2 we
derive the following theorem.

Theorem 5.1 The symmetry group of the polyhedron P2(c, d) for cd �= 0 is deter-
mined by the relations S3

2 = (S1S2)
2 = ε together with
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S2S
4
1S−1

2 S4
1 = S4

1S2S
4
1S−1

2 , (26)

S−1
1 S2S

4
1S−1

2 S1 = S−1
2 S−4

1 S2. (27)

Proof First, note that relation (26) is equivalent to the commutativity of t2 and t3.
Conjugating this relation by S2 and S−1

2 , it follows that t1 commutes with t2 and t3.
Hence, relations (7) are equivalent to relation (26).

The definitions of t1, t2, t3 imply that S−1
2 tiS2 = ti+2 where i is taken mod 3.

Also by definition, S−1
1 t2S1 = t2 and S−1

1 t1S1 = S−1
1 S−1

2 S4
1S2S1 = S2S

4
1S−1

2 = t3.
Finally, S−1

1 t3S1 = t−1
1 is just relation (27). It follows that relations (8) are reduced

to relation (27). Finally, since t2 = S4
1 , relation (6) is superfluous. �

Corollary 5.2 Up to isomorphism there is only one abstract polyhedron with chiral
realization in E

3 of Schläfli type {∞,3} with helical faces over squares.

Proof The symmetry groups of any two chiral polyhedra of Schläfli type {∞,3} with
helical faces over squares are isomorphic since they have the same presentation; in
fact, the defining relations for the symmetry group of P2(c, d) (we recall c �= 0) do
not involve the parameters c or d (see Lemma 2.3). �

When c �= 0 we can rescale the polyhedron P2(c, d) to obtain the polyhedron
P2(1, d/c), which as we shall see below in Theorem 5.3, is isomorphic to P2(1,0).
Schulte proved in [11] that the latter is geometrically isomorphic to Grünbaum’s
apeirohedron {∞,3}(b) described in [8, Chap. 7E]. The polyhedron {∞,3}(b) is reg-
ular and has helical faces. Following [8, Fig. 7E1], we project the vertices and edges
of the apeirohedron to a plane Π orthogonal to the axis of one of the helices result-
ing in the picture in Fig. 1. The three helices through any vertex of the apeirohedron
will project onto a unit square containing that vertex, and two (“vertical” and “hor-
izontal”) zigzags of edges through the vertex. The edges of any helix that projects
to a square can be drawn as diagonals of faces of cubes arranged in a stack over the
square as shown in Fig. 2. Observe that the edges of the helices that do not project to
a square in Π , project to edges connecting vertices of two different squares in Fig. 1

Fig. 1 Projection of the
polyhedron {∞,3}(b)
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Fig. 2 Stacks of cubes and of
square prisms

and are parallel to the plane of projection. We shall refer to these edges as bridges
and note that they correspond to the horizontal edges between stacks of cubes over
the squares (see also Fig. 2).

Theorem 5.3 Any polyhedron with discrete chiral realization in Euclidean 3-space
of Schläfli type {∞,3} and helical faces over squares is combinatorially isomorphic
to {∞,3}(b), and hence, combinatorially regular.

Proof Corollary 5.2 implies that the polyhedra P2(c, d) for cd �= 0 are all isomor-
phic. Note that the even subgroup of P2(1,0) coincides with the symmetry group of
P2(c, d) for cd �= 0. Lemma 2.2 now implies that the polyhedra P2(c, d) for c �= 0
are all isomorphic. �

The automorphism group of the apeirohedron {∞,3}(b) is the quotient of the Cox-
eter group [∞,3] = 〈ρ0, ρ1, ρ2〉, determined by the single extra relation

(ρ0ρ1)
4(ρ0ρ1ρ2)

3 = (ρ0ρ1ρ2)
3(ρ0ρ1)

4,

[8, Theorem 7E22]. Multiplying the above relation by ρ0 on the left and substituting
ρi−1ρi by Si (i = 1,2) we conclude that the two defining relations (26) and (27) for
the symmetry group of the polyhedron P2(c, d) can be replaced by a single relation
S−4

1 S2S
2
1S−1

2 = S2S
2
1S−1

2 S4
1 .

We now return to the geometric considerations and show how, while preserving
the combinatorial structure, P2(1,0) can continuously be transformed into P2(1, d)

and P2(0,1) (recall that P(c, d) is similar to P(sc, sd) for s �= 0). It is important
to observe now that the axis of the base helix of P2(1, d) (the helix with vertex set
{oSk

1 }k∈Z) is parallel to the y-axis. We now project P2(1, d) (including d = 0) along
this axis.

The helices over the squares in the projection of P2(1,0) = {∞,3}(b) into the xz-
plane (see Fig. 1) are drawn on stacks of cubes of volume 1 as shown in Fig. 2(a).
Under the translation subgroup 4Z

3 of the even subgroup of the symmetry group of
P2(1,0), the stacks fall into two orbits with any two adjacent stacks (joined by a
bridge) being in different orbits.
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Fig. 3 Projection of the
polyhedra P2(1, d)

As d changes, all vertices in the orbit of the origin o under the translation subgroup
will remain fixed. The y coordinate of every vertex of the stacks of cubes containing
translates of o also remains unchanged and thus, the height of the cubes in the stacks
is preserved. The x- and z-coordinates of the vertex oS2S1S

−1
2 (the vertex adjacent

to o not in the same stack) are fixed, while its y-coordinate is changed by d . This
induces a shifting with respect to the xz-plane of this stack, and also of all the stacks
containing the translates of oS2S1S

−1
2 . On the other hand, the x- and z-coordinates of

the remaining vertices increase or decrease by d in such a way that the projection of
P2(1, d) to the xz-plane is the one in Fig. 3. (Note that we give projections for several
values of d between 0 and 1.) It follows that the stacks of cubes (Fig. 2(a)) change into
stacks of square prisms of height c = 1 and base edge length

√
1 + d2 (Fig. 2(b)). In

Fig. 3, we only include the bridges of P2(1,0) and the bridges of P2(1, d) emanating
from the vertices of the stack containing the origin. Surprisingly, the length of the
projections of bridges does not change although the length of the bridges does.

Note here that the full translation subgroup of P2(1,0) is 2Λ(1,1,1), which has
index 2 in 4Z

3. This implies that all the stacks over the squares in Fig. 1 are in the
same orbit under the full translation subgroup of P2(1,0). However, as we mentioned
earlier, the helices in the stacks over squares (and also the vertical and horizontal
helices) of the polyhedron P2(1, d) for d �= 0, split into two orbits. This leads to the
six translation orbits of faces of P2(c, d) when cd �= 0.

These geometric considerations can now be used to illustrate that P2(c, d) fails to
be a geometric polyhedron whenever d = kc and k is an integer with k ≡ 2 (mod 4),
as previously proved in [11, Lemma 5.5].

Let us now fix d �= 0 and consider what happens when we decrease c from 1.
More precisely, we shall consider P2(c,1) and make c approach 0. First, note that
every square in the projection of P2(c,1) into the xz-plane is either a translate by
a vector in 4cZ

2 of the square with vertices (0,0), (1,−c), (c + 1,−c + 1), (c,1) if
the corresponding helix is a translate of the base face, or of the square with vertices
(−c, c), (−c + 1,2c), (−2c + 1,2c + 1), (−2c, c + 1) if the corresponding helix is
not a translate of the base face. This implies that, as c approaches 0, every square
approaches the square with vertices (0,0), (1,0), (1,1), (0,1). In addition, the height
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c of the prisms in the stacks approaches 0. Since similarly this happens with the
projections on the xy- and yz-planes, it is not surprising that the limit, when c goes
to 0, of the polyhedra P2(c,1) is a cube with edge length 1.

5.2 Type {∞,3} over Triangles

We now turn our attention to the family consisting in polyhedra P1(a, b) of type
{∞,3} and helical faces over triangles. Using Wythoff’s construction, the polyhedron
P1(a, b) is built from the group generated by

(x, y, z)S1 = (−z + b,−x + a, y),

(x, y, z)S2 = (y, z, x),

with o as initial vertex. When the polyhedron P1(a, b) is geometrically chiral, a �= ±b

and its symmetry group is generated by S1 and S2 = S′
2. If a = ±b the polyhedron

P1(a, b) is orientably regular and the symmetries S1 and S2 generate the even sub-
group of its symmetry group.

The special group of P1(a, b) has the following presentation in terms of S′
1 and S2

[3,3]+ = 〈
S′

1, S2 | (S′
1)

3 = S3
2 = (S′

1S2)
2 = ε

〉
.

If a = b, S3
1 = ε and P1(1,1) is combinatorially isomorphic to a tetrahedron

[11, Lemma 4.6]. Otherwise, if a �= b, S3
1 is the translation by the vector (b − a, a −

b, a − b).
We define c = b − a, and consider the following translations

t1 := S3
1 ,

t2 := S2S
3
1S−1

2 ,

t3 := S−1
2 S3

1S2.

(28)

Using Lemma 3.3, we can easily see that t1, t2 and t3 are translations by the vectors
(c,−c,−c), (−c, c,−c) and (−c,−c, c), respectively. Furthermore, it follows from
[11, Lemma 4.2] that they generate the translation subgroup T (P1(a, b)). Using The-
orem 3.2, and bearing in mind that P(a, b) is geometrically chiral only for a �= ±b,
we derive the following theorem.

Theorem 5.4 The symmetry group of the polyhedron P1(a, b) when a �= ±b is de-
termined by the relations S3

2 = (S1S2)
2 = ε together with

S3
1S2S

3
1S−1

2 = S2S
3
1S−1

2 S3
1 . (29)

Proof First, note that relation (29) is equivalent to the commutativity of t1 and t2.
Commutativity of t3 with t1 and t2 is obtained conjugating (29) by S−1

2 and S2, re-
spectively. Hence, relations (7) are equivalent to relation (29).

The definition of the translations ti implies that S−1
2 tiS2 = ti+2, where i is taken

mod 3. Furthermore, S−1
1 t1S1 = t1 and S−1

1 t3S1 = S−1
1 S−1

2 S3
1S2S1 = S2S

3
1S−1

2 = t2.
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Note that S−1
1 t2S1 is the translation by the vector (c, c, c) (we recall that c = b − a),

which is t−1
1 t−1

3 t−1
2 . But, in fact, this last relation can be derived from the other rela-

tions stated in the theorem since

S−1
1 S2S

3
1S−1

2 S1 = S−2
1 S2

2S2
1S2

2S1

= S−3
1 S−1

2 S−2
1 S2S

−2
1 S−1

2

= S−3
1 S−1

2 S−3
1 S−1

2 S−3
1 S−1

2

= t−1
1 t−1

3 t−1
2 .

It follows that (29) implies relations (8). Finally, since t1 = S3
1 , relation (6) is super-

fluous. �

Since the defining relations for the symmetry group of P1(a, b) (we recall c �= 0)
given in Theorem 5.4 do not involve the parameters a or b, Lemma 2.3 implies

Corollary 5.5 Up to isomorphism there is only one abstract polyhedron with chiral
realization in E

3, Schläfli type {∞,3} with helical faces over triangles.

In [8, Chap. 7E], McMullen and Schulte define Grünbaum’s regular apeirohedron
{∞,3}(a) as the Petrial of {∞,3}(b). That is, the two apeirohedra have the same vertex
and edge set and, hence, the same edge length of

√
2, but the faces of {∞,3}(a)

are Petrie polygons of {∞,3}(b) (Polygons whose two consecutive edges, but not
three, belong to the same face.) Furthermore, Schulte proves in [11] that {∞,3}(a)

is isomorphic to the regular polyhedron P1(1,−1). Using the projection of {∞,3}(b)

in Fig. 1, we note that the helical faces of {∞,3}(a) can also be seen to project into
zigzags which follow paths twice along a square and once along an octagon. It will
be convenient to visualize this apeirohedron using a different projection described
below.

The apeirohedron {∞,3}(b) has three orbits of (helical) faces under the trans-
lation subgroup, and every vertex belongs to one helix in each orbit. Note that
there are 4 different orbits of helices under the translation subgroup of P1(a, b) for
every a �= b, and thus under the translation subgroup of {∞,3}(a) = P1(1,−1) (see
[11, Lemma 4.8]), and each vertex belongs to precisely three faces, one in each orbit.
If we now project vertices and edges of {∞,3}(a) along the axis of a helix, vertices on
that helix and all its translates, which we shall refer to as vertical helices, will project
into vertices of triangles as indicated in Fig. 4. The edges of any vertical helix can be
seen as diagonals of rectangular faces of a stack of triangular prisms over a triangle
in the projection.

The vertices of P1(a, b), which do not project into vertices of triangles, lie on
lines parallel to the axes of the vertical helices. These lines project into isolated points
equidistant from the closest three triangles. The edges of the apeirohedron that do not
project into the edges of the triangles form bridges that project into edges joining the
isolated points with the (closest) triangles. The three bridges whose projections meet
at one of the isolated points lie in planes parallel to the projection plane. Moreover,



Discrete Comput Geom (2010) 44: 167–194 189

Fig. 4 Projection of the polyhedron {∞,3}(a)

each bridge is parallel to the projection plane. This implies that all the vertices of the
apeirohedron are arranged on planes which are parallel to the projection plane, with
a fixed distance 2/

√
3 between consecutive planes, corresponding to the height of a

triangular prism in a stack. The helices containing bridges as edges project into the
zigzags indicated in Fig. 4.

Using Corollary 5.5 and Lemma 2.2, we now see that

Theorem 5.6 For every a and every b �= a, the polyhedron P1(a, b) is combinatori-
ally isomorphic to {∞,3}(a), and hence, combinatorially regular.

The automorphism group of the apeirohedron {∞,3}(a) is the quotient of the Cox-
eter group [∞,3] = 〈ρ0, ρ1, ρ2〉, determined by the single extra relation

(ρ0ρ1)
3(ρ0ρ1ρ2)

4 = (ρ0ρ1ρ2)
4(ρ0ρ1)

3,

[8, Theorem 7E22]. By replacing ρ0ρ1 by S1 and ρ1ρ2 by S2 in the previous equation,
it can easily be seen that the defining relation (29) for the symmetry group of the
polyhedron P1(a, b) may be replaced by a single relation (S2

1S2
2)2S3

1 = S3
1(S2

1S2
2)2.

We now examine how the polyhedron P1(a, b) transforms when the parameters a

and b are modified.
First, note that if a �= b, the polyhedron P1(a, b) is similar to P1(d, d − 2) with

d = 2a/(a − b). We shall see how the polyhedron P1(1,−1) = {∞,3}(a) transforms
into the polyhedron P1(a, a − 2) while preserving its combinatorial structure. To see
this, note that there is a translation class of helices of P1(a, a − 2), which we will re-
fer to as vertical helices, containing no helix through o. The vertex set of one of these
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Fig. 5 Projection of the polyhedra P1(a, a − 2)

helices, according to [11, Lemma 4.8], is {oSk
1S−1

2 S1S2 | k ∈ Z}. It follows (going
three steps along this helix) that the axes of helices in this class are all in the direction
of the vector (1,1,1). This allows us to project P1(a, a − 2) to the plane through o,
perpendicular to the axes of the vertical helices, referred to as horizontal plane. In
other words, for all values of a, the vertical helices will project onto triangles in the
horizontal plane. Hence, again the edges of P1(a, a − 2) can be seen as bridges or
diagonals of rectangular faces of triangular prisms arranged in stacks. The translation
subgroup (generated by the translations in (28) with c = −2) of P1(a, a − 2) coin-
cides with the translation subgroup of P1(1,−1). Since the translation vector given
by three steps along any helix is preserved, it follows that, as a changes, the height
of the triangular prisms in the stacks remains unchanged.

To see how the stacks change when a changes, first observe that all the vertices that
project into isolated vertices are fixed. The vertices that belong to stacks of triangular
prisms move vertically (along lines of projection) for 2(a − 1)/3, and horizontally
(parallel to the plane of projection) as indicated in Fig. 5 for several values of a.
Observe that the axes of the helices on stacks remain unchanged; however, the bridges
are no longer parallel to the horizontal plane. Once again, this illustrates that the
polyhedra P1(a, b) with a �= b are all combinatorially isomorphic.

Similar considerations to those used in transforming P2(c, d) will show how the
polyhedron P1(a, a − δ) approaches a regular tetrahedron when δ approaches 0.

5.3 Type {∞,4}

Finally, we examine the family consisting of polyhedra P3(c, d) of type {∞,4} with
helical faces over triangles. As we shall see below, one regular member of this family
is non-orientably regular and consequently the chiral members of the family are chiral
realizations of its double cover.
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As before, we build the geometric polyhedron P3(c, d) from the group generated
by

(x, y, z)S1 = (z − d, x − c, y + c),

(x, y, z)S2 = (z, y,−x),

using Wythoff’s construction with o as initial vertex.
The special group of P3(c, d) can be presented in terms of S′

1 and S2 = S′
2 as

follows

[3,4]+ = 〈
S′

1, S2 | (S′
1)

3 = S4
2 = (S′

1S2)
2 = ε

〉
.

If d = 0 then S3
1 = ε and P3(1,0) is combinatorially isomorphic to a regular octa-

hedron [11, Lemma 6.5], otherwise S3
1 is the translation by the vector (−d,−d,−d).

Now we define the translations

t1 := S2S
3
1S−1

2 ,

t2 := S3
1 ,

t3 := S−1
2 S3

1S2.

The definition of S1 and Lemma 3.3 imply that t1, t2 and t3 are translations by the vec-
tors (d,−d,−d), (−d,−d,−d) and (−d,−d, d), respectively. Furthermore, it fol-
lows from [11, Lemma 6.1] that they generate the translation subgroup T (P3(c, d))

of the symmetry group of P3(c, d).
Using Theorem 3.2 and observing that according to [11, Lemma 6.5] P3(0,1) is

non-orientably regular, we derive the following theorem.

Theorem 5.7 The symmetry group of the polyhedron P3(c, d) for d �= 0 is deter-
mined by the relations S4

2 = (S1S2)
2 = ε together with

S−1
2 S3

1S2S
3
1 = S3

1S−1
2 S3

1S2, (30)

S2S
3
1S2

2S3
1S2 = S−1

2 S3
1S2

2S3
1S−1

2 , (31)

S−1
1 S2S

3
1S−1

2 S1 = S2S
−3
1 S−1

2 S3
1S−1

2 S−3
1 S2, (32)

S2
2S3

1S2
2 = S−1

1 S2S
−3
1 S−1

2 S1. (33)

Proof First, note that relation (30) is equivalent to the commutativity of t2 and t3.
Conjugating this relation by S−1

2 it follows that t1 commutes with t2. Furthermore,
relation (31) is equivalent to the commutativity of t1 and t3. Hence, relations (7) can
be replaced by (30) and (31).

By definition, S−1
1 t2S1 = t2 and S−1

1 t3S1 = S−1
1 S−1

2 S3
1S2S1 = S2S

3
1S−1

2 = t1. Fi-
nally, S−1

1 t1S1 is the translation by the vector (−d, d,−d), which is the translation
t−1
1 t2t

−1
3 implying relation (32).

The definition of t1, t2 and t3 imply the relations S−1
2 tiS2 = ti+1 for i = 1,2. Note

that S−1
2 t3S2 corresponds to the translation by the vector (d,−d, d), which is the
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Fig. 6 Projection of the
polyhedron {∞,4}·,∗3

translation t1t
−1
2 t3, implying relation (33). It follows that relations (8) can be replaced

by relations (32) and (33). Finally, since t2 = S3
1 , relation (6) is superfluous. �

Corollary 5.8 Up to isomorphism there is only one abstract polyhedron with chiral
realization in E

3 and Schläfli type {∞,4}.

Proof The defining relations for the symmetry group of P3(c, d) (we recall d �= 0)
do not involve the parameters c or d . Hence the even subgroups of any two such
automorphism groups are isomorphic implying that all such polyhedra are combina-
torially isomorphic. �

Schulte proved in [11, Lemma 6.5] that P3(0,1) is geometrically isomorphic to
Dress’s regular apeirohedron denoted by {∞,4}·,∗3 in [8, Sect. 7E] and [9], and
whose automorphism group is the quotient of the Coxeter group [∞,4] determined
by the extra relation (ρ2(ρ1ρ0)

2)3 = ε (see [11, Theorem 7E22]). Note that this poly-
hedron is non-orientably regular.

We now use the ideas developed above of projecting an infinite polyhedron with
helical faces along the axis of one of its helices. Note first that {∞,4}·,∗3 has four
orbits of faces under the full translation subgroup. The helices in one of the orbits
will project into the (solid line) triangles in Fig. 6 and the helices in the other three
orbits will project into zigzags indicated in the same figure (here we projected with
respect to the axis of the base helix). Observe that no edges of {∞,4}·,∗3 are parallel
to the plane of projection.

Since P3(0,1) is non-orientably regular, it does not have a chiral realization. How-
ever, the authomorphism group of P3(0,1) coincides with its even subgroup which
is isomorphic to the symmetry subgroup of P3(c, d) for cd �= 0. This implies that
P3(c, d) for cd �= 0 is isomorphic to the orientably regular double cover of P3(0,1).
Using Corollary 5.8, we see that
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Fig. 7 Projection of a
geometrically chiral polyhedron
P3(c, d)

Theorem 5.9 For every c �= 0, the polyhedron P3(c,1) is combinatorially isomor-
phic to the orientably regular double cover of {∞,4}·,∗3, and hence, is combinatori-
ally regular.

Assuming c �= 0, for each helical face of P3(c,1) there is exactly one other helix,
which we shall call its twin, sharing the same axis. In fact, each twin pair corresponds
to a single helix of P3(0,1) under the quotient determined by the double cover. Every
helix and its twin belong to two different orbits under the full translation subgroup.
Fixing a non-zero value of c we project P3(c,1) along the axis L of the base helix.
The base helix and its twin project to two triangles with cocyclic vertices indicated
with thick solid lines in Fig. 7. There are three helical faces through o distinct from
the base helix. The projection of one such helix and its twin is shown in thick dashed
lines in Fig. 7. The other two pairs of helices have similar projections.

With these observations it is not difficult to see how the polyhedron P3(c,1)

transforms when the parameter c �= 0 is modified. One can also see that P3(c, d)

fails to be a geometric polyhedron whenever c/d is a non-zero integer as proved in
[11, Lemma 6.3]. Furthermore, similar considerations to those of P2(c, d) will show
how the polyhedron P3(1, d) approaches a regular octahedron when d approaches 0.

6 Concluding Remarks

There has been little research done on realizations of chiral polytopes and on chiral
realizations of regular polytopes (see [14, Sect. 5]). Among other things the present
paper contributes the following two results.
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Corollary 6.1 The only chiral polyhedra with discrete (chiral) realizations in Euclid-
ean 3-space are the polyhedra in the families P(a, b) for a, b coprime integers with
a �= ±b, and the polyhedra Q(c,d) and Q1(c, d) for c, d coprime integers with
cd �= 0.

Corollary 6.2 The only regular polyhedra with discrete chiral realizations in Euclid-
ean 3-space are {∞,3}(a), {∞,3}(b) and the orientably regular double cover of
{∞,4}·,∗3.

The first corollary is implied by [10] and Theorems 4.1 and 4.3, while the second
follows directly from Theorems 5.3, 5.6 and 5.9.
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