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Abstract An Apollonian configuration of circles is a collection of circles in the plane
with disjoint interiors such that the complement of the interiors of the circles consists
of curvilinear triangles. One well-studied method of forming an Apollonian configu-
ration is to start with three mutually tangent circles and fill a curvilinear triangle with
a new circle, then repeat with each newly created curvilinear triangle. More generally,
we can start with three mutually tangent circles and a rule (or rules) for how to fill a
curvilinear triangle with circles.

In this paper we consider the basic building blocks of these rules, irreducible Apol-
lonian configurations. Our main result is to show how to find a small field that can
realize such a configuration and also give a method to relate the bends of the new
circles to the bends of the circles forming the curvilinear triangle.
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1 Introduction

An Apollonian configuration of circles is a collection of circles in the plane with
disjoint interiors such that the complement of the interiors of the circles consists of
curvilinear triangles. Such configurations have been studied before as special cases
of circle packing (see [11, 12]). In examining these configurations it is often more
convenient to consider the bend of the circle (one over the radius) than the radius
itself.

Perhaps the most well-known, and most studied, example of an Apollonian con-
figuration is formed by starting with three mutually tangent circles and then filling
in each curvilinear triangle with the unique circle which is tangent to all three sides
of that triangle (see Fig. 1a); we then repeat this process with each newly created
curvilinear triangle as often as desired. This has the remarkable property that if the
first three circles have integer bends a, b, c and

〈a, b, c〉 := ab + ac + bc

is also the square of an integer, then each new circle which is added will also have
integer bend. Further, for any three mutually tangent circles with bends d, e, f then
〈d, e, f 〉 = m2 for m an integer. These are consequences of Descartes Circle Theo-
rem. The properties of this configuration have been extensively studied (see [4–7]).

However, there are other ways to fill in a curvilinear triangle. Recently Guettler
and Mallows [8] examined the case where the curvilinear triangle is filled by three
new circles, each tangent to exactly two sides (see Fig. 1b). This also has a similar
property in that if the first three circles have integer bends a, b, c and 〈a, b, c〉 =
2m2 for m an integer, then each new circle will also have integer bend. Further, for
any three mutually tangent circles with bends d, e, f then 〈d, e, f 〉 = 2m2 for m an
integer. (This additional factor of 2 plays an important role in the packing, as we will
see in Sect. 3.)

In both of these cases the important element of the packing is the recursive rule for
filling in the curvilinear triangles. The basic building blocks for forming these rules
are the irreducible Apollonian configurations which we will introduce in Sect. 2. In

Fig. 1 Two rules for packing a curvilinear triangle
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Sect. 3 we will look at the problem of determining a small field that can be used to
represent a configuration (irreducible or not). In Sect. 4 we will show how to take
an Apollonian configuration and construct a rule for filling a curvilinear triangle. In
Sect. 5 we give some concluding remarks.

2 Irreducible Apollonian Configurations

There are several ways to represent an Apollonian configuration. Combinatorially
it can be represented as a tangency graph where each circle is a vertex and tangent
circles are joined by an edge. The resulting graph is a planar triangulated graph, which
corresponds to a triangulation of the sphere.

Theorem 1 (Koebe–Andreev–Thurston [11]) Given a triangulation of the sphere,
there exists an essentially unique circle packing where circles correspond to vertices
and edges to tangency between circles. Moreover, by projection this can be realized as
a circle packing in the plane, and any two circle packings in the plane corresponding
to the triangulated graph differ by a Moebius transformation.

In Fig. 2a we give a planar triangulated graph. One circle packing in the plane that
realizes this configuration is shown in Fig. 2b (the outer circle has negative bend, so
its interior lies on the outside of the disc). There are of course many possible ways
to realize the configuration by transforming the packing using a Moebius transforma-
tion.

We will see that when looking for a small field that can be used to represent the
packing, an important type of packing is one where we have a unit circle centered at
(0,0) and two circles with bend 0 located at y = 1 and y = −1. We will call such a
packing a standard packing. One standard packing for Fig. 2a is shown in Fig. 2c.

Every packing can be transformed into a standard packing by inverting at a circle
centered at a point of tangency, then rotating, scaling, and translating to put it into the
correct position. In general, standard packings are not unique, since by choosing to
invert at a different point of tangency we will be led to a (possibly) different standard
packing. However, since there are only finitely many points of tangency, there are
only finitely many standard packings. By using V −E+F = 2 we have the following.

Fig. 2 Different representations of an Apollonian packing
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Fig. 3 Example of decomposing a configuration into irreducible parts

Lemma 1 Let G be a planar triangulated graph with n vertices (so that an associ-
ated packing will have n circles). Then there are at most 3n − 6 different standard
packings with tangency graph G.

In this paper we will focus on irreducible Apollonian configurations. In terms
of the tangency graph, this corresponds to having no triangles that are not faces. In
terms of a packing, this is equivalent to saying that no proper subset of circles is also
a nontrivial Apollonian configuration (trivial means three mutually tangent circles).

Starting with a tangency graph, if we have a triangle which is not a face, we can
decompose the graph into two parts: the triangle with the interior vertices and edges;
and the triangle with the exterior vertices and edges. We can continue doing this until
each graph is irreducible, or in other words, we can decompose the tangency graph
into irreducible components which are glued together on triangular faces. We can
do the analogous procedure for the packing in that we can break it into irreducible
packings that are glued together on three circles. An example of this is shown in
Fig. 3, where we have a packing which is not irreducible and then show the two
irreducible components in the packing.

So when we want to study properties of Apollonian packings, we can focus on
the building blocks which are the irreducible components of the packing. There are
many such irreducible Apollonian configuration with n circles. Starting with n = 4,
there are (1,0,1,1,2,4,10,25,87,313,1357,6244,30926,158428, . . .) such con-
figurations (see A007021 in [10], which differs in the n = 5 case; also see [1]).

3 Finding a Small Field for an Apollonian Configuration

We now consider the problem of finding a small (ideally smallest) field F that can be
used to represent an Apollonian packing. Here to represent a packing we mean that
the bends and the centers of the circles can be expressed using elements of the field F,
as described below.

If we compare the two different packings mentioned in the introduction, we see
that one of them satisfies 〈a, b, c〉 = m2, while the other satisfies 〈a, b, c〉 = 2m2.
This factor of 2 in the second case plays an important role in the packing. In general
we will say that a packing over a field F is a q-packing, for some fixed q ∈ F, if the
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bends of all the circles are in F and further any three mutually tangent circles with
bends a, b, c satisfy 〈a, b, c〉 = qm2 for some m in F. Note that for every packing, by
enlarging the field (i.e., F = R) we can ensure that the packing is a 1-packing. The
interesting cases are where for some field, q is not a square. Examples are given in
some of the figures below where q is not a square.

In our packing we can represent every circle by the triple (
√

qx, y;b) where
(
√

qx, y) is the center and b is the bend. The tangency relationship between two
circles with nonzero bend translates into the equation

q(x1 − x2)
2 + (y1 − y2)

2 =
(

1

b1
+ 1

b2

)2

.

A circle with bend 0 (which corresponds to a straight line in the diagram) would be
described by (∞,∞;0). This does not uniquely describe the line. So in this case we
will represent the circle by the line y = √

qmx +b or x = √
qa; equivalently we have

that the line passes through two points of the form (
√

qx1, y1) and (
√

qx2, y2). (For
most of this paper, we will see that we can assume that it is of the form y = b.) The
tangency relationship between a circle (

√
qx0, y0;b0) and the circle y = √

qmx + b

then becomes

qm2 + 1

b2
0

= (y0 − qmx0 − b)2.

This gives a system of polynomial equations that has a solution in some algebraic
number field. (The solution is of course far from unique; in practice we first “anchor”
three circles by choosing centers and bends for them and then solve for the remaining
centers and bends.)

We have now introduced q in two different settings, one as a correcting multi-
plicative factor looking at 〈a, b, c〉, the other as a scaling factor in the x direction.
The following two results show that these two are connected.

Lemma 2 Given a realization of a packing with circles (
√

qxi, yi;bi) and (possibly)
y = √

qmix + bi , let F be a field containing all values xi , yi , bi , mi , and q . Then
in the packing every set of three mutually tangent circles with bends a, b, c satisfies
〈a, b, c〉 = qm2 for some m in F.

Proof We show that every triple of tangent circles with bends b1, b2, b3 has
〈b1, b2, b3〉 = qm2 where m is in F. First let us consider the case where all three
have nonzero bends. This is illustrated in Fig. 4.

The tangency relationships give us the following three equations:

q(x1 − x2)
2 + (y1 − y2)

2 =
(

1

b1
+ 1

b2

)2

,

q(x1 − x3)
2 + (y1 − y3)

2 =
(

1

b1
+ 1

b3

)2

,

q(x2 − x3)
2 + (y2 − y3)

2 =
(

1

b2
+ 1

b3

)2

.
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Fig. 4 Three circles with
nonzero bends

Since

16(b1b2 + b1b3 + b2b3)

b2
1b

2
2b

2
3

= 4

(
1

b1
+ 1

b2

)2( 1

b1
+ 1

b3

)2

−
((

1

b1
+ 1

b2

)2

+
(

1

b1
+ 1

b2

)2

−
(

1

b2
+ 1

b3

)2)2

,

by substituting on the right-hand side using the above three equations (along with
simplifying) we have

16(b1b2 + b1b3 + b2b3)

b2
1b

2
2b

2
3

= 4q(−x1y3 − y2x3 + y3x2 + x1y2 + y1x3 − y1x2)
2,

or

b1b2 + b1b3 + b2b3 = q

(
b1b2b3(−x1y3 − y2x3 + y3x2 + x1y2 + y1x3 − y1x2)

2

)2

.

Now suppose that one of the circles has bend 0. Let us assume that the circles
with nonzero bends are (

√
qx1, y1;b1) and (

√
qx2, y2;b2) with b1 ≥ b2. We do two

transformations. First we translate
(√

qx, y
) → (√

q(x − x1), y − y1
)
.

Clearly, this does not change the field F needed to represent the packing. So our
circles are now (0,0;b1) and (

√
qx′

2, y
′
2;b2). We now rotate as follows:

(√
qx

y

)
→ 1

1/b1 + 1/b2

(
y′

2 −√
qx′

2√
qx′

2 y′
2

)(√
qx

y

)
.

Since q(x′
2)

2 + (y′
2)

2 = (1/b1 + 1/b2)
2 (i.e., the square of the distance between

the two tangent circles), this is a rotation matrix, and further it is easy to check that
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this takes (
√

qx, y) → (
√

qx′, y′) so that we again do not need to change the field F.
Note that this sends (

√
qx′

2, y
′
2) → (0,1/b1 + 1/b2).

So applying the two transformations, we may assume that the two circles with
nonzero bends are of the form (0,0;b1) and (0,1/b1 + 1/b2;b2). If the line repre-
senting the circle with bend 0 is vertical, then it must be the case that b1 = b2 and
also that 1/b1 = ±√

qa (this last part coming from the tangency relationship). Rear-
ranging these, we have

〈b1, b2,0〉 = b1b2 = b2
1 = q

(
1

qa

)2

.

Otherwise, the circle with 0 bend is of the form y = √
qm′x + b′. We can find the

slope of the line tangent to the two circles with nonzero bend which must be equal to√
qm′. Doing this, we have

±2
√

b1b2

b1 − b2
= √

qm′

or, rearranging,

〈b1, b2,0〉 = b1b2 = q

(
m′(b1 − b2)

2

)2

.

Finally, if two of the circles have bend 0, then trivially we have 〈b1, b2, b3〉 = 0 =√
q02. �

This shows that if our centers are of the correct form, then we have a q-packing. In
the other direction we want to show that if every set of three mutually tangent circles
satisfies 〈a, b, c〉 = qm2 for a, b, c, q,m all in F (i.e., we have a q-packing over the
field F), then we can position the center of the circles so that they are of the form
(
√

qx, y). This is a consequence of the following result.

Lemma 3 Suppose that the bends of three mutually tangent circles satisfy 〈a, b, c〉 =
qm2 for a, b, c,m,q in the field F. Further suppose that the circle of bend a is cen-
tered at (

√
qxa, ya) (or has the form y = √

qmax + ba) and the circle of bend b is
centered at (

√
qxb, yb) (or has the form y = √

qmbx + bb) with all elements in F.
Then the circle of bend c is centered at (

√
qxc, yc) (or has the form y = √

qmcx +bc)
with all elements in the field F.

Proof Let us first consider the case where a and b are nonzero. As in the proof of the
previous lemma, we may first translate, rotate, and translate again while staying in
the same field F. So we will assume that (

√
qxa, ya) = (0,−1/a) and (

√
qxb, yb) =

(0,1/b).
Suppose that c 
= 0 and let (xc, yc) be the corresponding center of the circle. We

now have the following three relationships:

ab + ac + bc = qm2, (1)
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x2
c +

(
yc + 1

a

)2

=
(

1

a
+ 1

c

)2

, (2)

x2
c +

(
yc − 1

b

)2

=
(

1

b
+ 1

c

)2

. (3)

The first of these is our assumption, while the other two come from looking at the
distance between the centers of the circles.

Taking the difference of (2) and (3) and simplifying, we have

yc = b − a

c(a + b)
.

Substituting this into (2) and using (1), we have

xc = ±
√(

1

a
+ 1

c

)2

−
(

b − a

c(a + b)
+ 1

a

)2

= ±
√

4(ab + ac + bc)

c2(a + b)2
= ± 2m

c(a + b)

√
q.

Now suppose that c is 0. If a = b, then we can assume that q = 1 and we can let
x = a be the circle with bend 0. Otherwise we solve for the line y = √

qmcx + bc

using the following two equations:

qm2 + 1 = a2
(

−1

a
− bc

)2

,

qm2 + 1 = b2
(

1

b
− bc

)2

,

which gives the line

y = ±2
√

ab

ab
x + 2

b − a
= ±√

q
2m

ab
x + 2

b − a
.

Suppose that a 
= 0 and b = 0. Then the point of intersection between the circle
and line is at

(√
q

yamb + xa − mbbb

qm2
b + 1

,
qmbxa + qm2

bya + bb

qm2
b + 1

)
= (√

qs, t
)

for s, t ∈ F. We can now translate this point to (0,0) and then rotate so that the center
of the circle with bend a is located at (0,1/a) and the line becomes y = 0 (all while
staying in F). If c = 0, then use the line y = 2/a. If c 
= 0, then we have the two
equations yc = 1/c and qx2

c + (yc − 1/a)2 = (1/c + 1/a)2. Solving, we can put the
center of the circle with bend c at(

2√
ac

,
1

c

)
=

(√
q

2

qm
,

1

c

)
.

Finally if a = 0 and b = 0, then we can position c at (0, (ba + bb)/2). �
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We now use Lemma 3 to show how to place a q-packing into the plane. First
we take two tangent circles with nonzero bends b1 and b2 and place their centers at
(0,1/b1) and (0,−1/b2). These centers are in the field F and of the correct form. We
now place circles one at a time tangent to two already present. By repeated application
of the lemma all the circles will be representable in F.

Comparing the two previous lemmas, we see that Lemma 2 shows that if all of
q, xi, yi, bi are in the field F, then so is mi,j,k = √〈bi, bj , bk〉/q , while Lemma 3 can
show that if all of q, bi,mi,j,k are in the field F, then we can assume that the xi, yi

are also in the field. Note that in the latter case the field can be determined by finding
a small field (ideally smallest) containing all of q, bi,mi,j,k .

Different realizations of packings of an Apollonian configuration might lie in dif-
ferent fields. We would like to find a realization that uses a small field. We have
already seen that (restricted) translation, dilation, and rotation will allow us to stay in
the same field. The next lemma shows that we can also invert.

Lemma 4 Suppose that the bends of three mutually tangent circles satisfy 〈a, b, c〉 =
qm2 for a, b, c,m,q in the field F. We may assume (via Lemma 3) that the centers
of the circles are of the form (

√
qxi, yi), or that the circles are of the form y =√

qmix + bi with the xi, yi,mi, bi in F for i = a, b, c. If we invert using a circle
centered at (

√
qv,w) of radius R (with v,w,R2 in F), then the bends a′, b′, c′ of the

new circles are also in F and further satisfy 〈a′, b′, c′〉 = q(m′)2 for some m′ in F.

Proof We first consider the case where a, b, c 
= 0. Using the proof of Lemma 3, we
may first through a series of translations, rotation, and (possible) reflection, assume
that our circles are positioned as follows:

(√
qxa, ya

) = (0,−1/a);(√
qxb, yb

) = (0,1/b); and

(√
qxb, yc

) =
(

2m

c(a + b)

√
q,

b − a

c(a + b)

)
.

If we invert through a circle centered at (
√

qv,w) of radius R, then the new bends
can be expressed as follows (see [9]):

a′ = qv2 + (w + 1/a)2 − (1/a)2

R2/a
,

b′ = qv2 + (w − 1/b)2 − (1/b)2

R2/b
,

c′ = q
(
v − 2m

c(a+b)

)2 + (
w − b−a

c(a+b)

)2 − (1/c)2

R2/c
.

From our assumptions we have that a′, b′, c′ are in F. Now substituting these, we
have (with a little bit of simplifying)

a′b′ + a′c′ + b′c′ = q(m2w4 − 4mvw2 + 2qm2v2w2 + 4v2 − 4qmv3 + q2m2v4)

R4
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= q

(
mw2 + qmv2 − 2v

R2

)2

.

Next suppose that a, b 
= 0 and c = 0. Then, as in Lemma 3, we can translate so
that we have (0,1/a;a), (

√
q(2/qm),1/b;b), and y = 0. If we invert through a circle

centered at (
√

qv,w) of radius R, then the new bends can be expressed as follows
(see [9]):

a′ = qv2 + (w − 1/a)2 − (1/a)2

R2/a
,

b′ = q(v − 2/qm)2 + (w − 1/b)2 − (1/b)2

R2/b
,

c′ = 2w

R2
.

From our assumptions we have that a′, b′, c′ are in F. Now substituting these, we
have, as in the previous case,

a′b′ + a′c′ + b′c′ = q(m2w4 − 4mvw2 + 2qm2v2w2 + 4v2 − 4qmv3 + q2m2v4)

R4

= q

(
mw2 + qmv2 − 2v

R2

)2

.

Finally suppose that a 
= 0 and b, c = 0. Then, as in Lemma 3, we can translate so
that we have (0,1/a;a), y = 0, and y = 2/a. We now have that if we invert through
a circle centered at (

√
qv,w) of radius R, then the new bends can be expressed as

follows (see [9]):

a′ = qv2 + (w − 1/a)2 − (1/a)2

R2/a
,

b′ = 2w

R2
,

c′ = 2(2/a − w)

R2
.

From our assumptions we have that a′, b′, c′ are in F. Now substituting these, we
have

a′b′ + a′c′ + b′c′ = 4qv2

R4
= q

(
2v

R2

)2

. �

So if all of the q, bi,mi,j,k are in the field F, then by inverting around a circle of
an appropriate form then we still have that q, b′

i ,m
′
i,j,k are also in F. In particular we

can start with some packing and place it so that a point of tangency is at the origin and
all of the circles have centers of the form (

√
qx, y), with the centers of the tangent

circles on the y-axis. Now invert around a circle at the origin of radius one, and finally
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Fig. 5 Bends alone cannot determine the minimal field F

scale and translate so that we have the three circles (0,0;1), y = 1 and y = −1. By
the proofs of the preceding lemma all these operations can be done inside the field. If
we started in a field F, then after doing these operations we are still in the same field,
although we might be able to now use a subfield in the realization. We sum this up in
the following theorem.

Theorem 2 A packing is realizable as a q-packing in the field F if and only if any of
its standard packings can be realized as a q-packing in F.

This shows that when we are looking for a small field, we can restrict ourselves
to standard packings. Moreover, it does not matter which standard packing is used, a
field that realized one standard packing must realize them all.

It is tempting to think that given a standard packing, we only need to look at the
smallest field that contains the bends of the packing to determine F. This is not, in
general, the case since we need to consider the centers also. In Fig. 5 we give two
different standard packings of the same irreducible Apollonian configuration. A stan-
dard packing given in Fig. 5a has all bends in the field Q[√3] (the smallest circle has
bend 5 + 4

√
3), which would seem to indicate that F = Q[√3] and in particular that

every standard packing would have bends in Q[√3]. However, a standard packing of
the same configuration given in Fig. 5b has a circle with bend (3 + 4

√
2)/3 /∈ Q[√3].

(The correspondence of circles between these two standard packings are as follows:
the left circle of bend 1 in Fig. 5a becomes the circle with bend (3 + 4

√
2)/3; the

circles with bend 6 become the circles with bend 2; the circles with bend 3 stay the
circles with bend 3; the circles with bend 0 become the circles with bend 4; the cir-
cle with bend 5 + 4

√
3 becomes the left circle with bend 1; the circles with bend 4

become the circles with bend 0; the right circle with bend 1 stays the right circle of
bend 1; and the circles of 2 + √

3 stay the circles with bend 2 + √
3.)

3.1 Eulerian Configurations

The value q is not unique, even in the minimal field, as it can vary by scaling by a
square in the field. The most interesting case is where q is not a square in the field
(i.e., cannot be made 1 by scaling). The case where q is not a square will impose
some strict conditions on the underlying tangency graph of the configuration. We say
an Apollonian configuration is Eulerian if the tangency graph of the configuration is
Eulerian. (A graph is Eulerian if it is connected and each vertex has even degree, or
equivalently there is a walk that uses each edge exactly once.)
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Fig. 6 A packing where a circle is tangent to an odd number of other circles along with its inversion
around point A

If we restrict the irreducible configurations to those which are Eulerian, this
greatly reduces the number of possibilities. In particular, starting with n = 6, there
are (1,0,1,0,2,1,5,3,18,19,79,134,501,1147, . . .) Eulerian irreducible configu-
rations (see [1]; this sequence is not yet in [10]).

Theorem 3 If a packing can be represented as a q-packing in the field F and q is not
a square in F, then the packing is Eulerian.

Proof Suppose that there is a circle tangent to an odd number of circles; we need to
show this forces q to be a square. First, we illustrate the proof in the case shown in
Fig. 6a. By inverting at one of the points of tangency and scaling we can get Fig. 6b,
where the bi are in the field F, and we have a q-packing.

Since this preserves q , we must have the following relationships (where all βi are
in F): b1 = qβ2

1 ; b1b2 = qβ2
2 ; b2b3 = qβ2

3 ; b3b4 = qβ2
4 ; b4 = qβ2

5 . Solving for the bi ,
we have

b1 = qβ2
1 , b2 = qβ2

2

b1
=

(
β2

β1

)2

, b3 = qβ2
3

b2
= q

(
β1β3

β2

)2

,

b4 = qβ2
4

b3
=

(
β2β4

β1β3

)2

= qβ2
5 .

This last relationship can only hold if q is a square, concluding the proof in this case.
In general we will have after the inversion that

bi =
{

qγ 2
i if i is odd,

γ 2
i if i is even,

where the γi are in F. If we started with an odd number of tangent circles, then the
last bi must be simultaneously of the form γ 2 and qδ2, which can only be possible
for q a square. �

4 Constructing Subdivision Rules

In this section we show how to form a rule on how to fill in a curvilinear triangle. We
illustrate the technique with an example. Consider the rule for subdivision illustrated
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Fig. 7 A subdivision rule

in Fig. 7a, where we start with a curvilinear triangle bordered with circles having
bends a, b, c.

We want to find a rule for finding the values of the bends of the new circles given
the bends of the circles a, b, c. The first thing to do is to consider the special case
a = 1 and b, c = 0, i.e., as a standard packing; this is illustrated in Fig. 7b. In this
special case we find that this is a packing over F = Q[√13] with q = 4 − √

13. The
centers and bends are given in Table 1.

Once we have established the special case, the key is to relate the general case to
the special case. To do this we start by shifting the point of tangency between a and
b to (0,0) and then rotate so that they are of the form (0,−1/a;a) and (0,1/b;b).
We now invert in the unit circle centered at (0,0) to get the picture in Fig. 8 (where
m is such that 〈a, b, c〉 = qm2). We can now use the special case in Fig. 7b to fill in
the rest of the packing by scaling and translating the packing. We then invert again
around the unit circle at the origin and then rotate and scale to put the circles back in
their original position. It remains for us to relate the new bends to the old bends. In
general we have that

new bend =
(

d2 − 1

(old bend)2

)
(old bend),

where d is the distance of the center of the circle to the point of inversion.
So suppose that we have the circle (

√
qx, y;β) in the special case given above.

Then we scale and translate so that we now have the circle
(√

q

(
a + b

4
x + m

2

)
,
a + b

4
y + b − a

4
; 4β

a + b

)
.

So applying the rule above, we have that the new bend β̂ satisfies

β̂ =
(

a

(
a + b

4
x + m

2

)2

+
(

a + b

4
y + b − a

4

)2

− (a + b)2

16β2

)
4β

a + b

= 1

4
β(a + b)

(
qx2 + y2) + βmqx + 1

2
β(b − a)y + 1

4

β2 − 1

β
(a + b) + βc. (4)
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Table 1 Center and bends of
circles in Fig. 7b (q = 4 − √

13) Circle Bend Center

a′ 1

(
8 + 2

√
13

3
√

q,0

)

b′ 4 + √
13

3

(
2
√

q,3 − √
13

)

c′ 4 + √
13

3

(
2
√

q,−3 + √
13

)

a′′ 33 − 8
√

13

(
376 + 60

√
13

257
√

q,0

)

b′′ 32 − 8
√

13

(
11 + 2

√
13

6
√

q,
4 + √

13

24

)

c′′ 32 − 8
√

13

(
11 + 2

√
13

6
√

q,
−4 − √

13

24

)

a′′′
b

7 + √
13

2

(
5 + √

13

3
√

q,
11 + √

13

18

)

a′′′
c

7 + √
13

2

(
5 + √

13

3
√

q,
−11 − √

13

18

)

b′′′
a 5 + √

13

(
7 + √

13

6
√

q,
5 − √

13

12

)

b′′′
c

5 + √
13

2

(
7 + √

13

3
√

q,
−1 − √

13

6

)

c′′′
a 5 + √

13

(
7 + √

13

6
√

q,
−5 + √

13

12

)

c′′′
b

5 + √
13

2

(
7 + √

13

3
√

q,
1 + √

13

6

)

Fig. 8 The inverted figure
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This shows that the new bends are linear combinations in F of the quantities
a, b, c,m = √〈a, b, c〉/q . In particular we can apply this rule to each circle above
and find a formula for the bends of the new circles in terms of the bends a, b, c and
quantity m:

a′ = 1

3

(
4 + √

13
)
(b + c) + 2m + a,

b′ = 1

3

(
4 + √

13
)
(a + c) + 2m + b,

c′ = 1

3

(
4 + √

13
)
(a + b) + 2m + c,

a′′ = 8
(
4 − √

13
)
(a + b + c) + (

148 − 40
√

13
)
m + a,

b′′ = 8
(
4 − √

13
)
(a + b + c) + (

148 − 40
√

13
)
m + b,

c′′ = 8
(
4 − √

13
)
(a + b + c) + (

148 − 40
√

13
)
m + c,

a′′′
b = 1

2

(
7 + √

13
)
a + 1

2

(
5 + √

13
)
(2b + c) + 6m,

a′′′
c = 1

2

(
7 + √

13
)
a + 1

2

(
5 + √

13
)
(b + 2c) + 6m,

b′′′
a = 1

2

(
7 + √

13
)
b + 1

2

(
5 + √

13
)
(2a + c) + 6m,

b′′′
c = 1

2

(
7 + √

13
)
b + 1

2

(
5 + √

13
)
(a + 2c) + 6m,

c′′′
a = 1

2

(
7 + √

13
)
c + 1

2

(
5 + √

13
)
(2a + b) + 6m,

c′′′
b = 1

2

(
7 + √

13
)
c + 1

2

(
5 + √

13
)
(a + 2b) + 6m.

In general this process generalizes to any rule for filling in curvilinear triangles (we
do not even need to assume irreducibility). The key to this process is (4), which shows
that the bends of the new circles are linear combinations of a, b, c,m = √〈a, b, c〉/q .
We summarize this in the following theorem.

Theorem 4 Given a rule for filling in a curvilinear triangle, let F be a field con-
taining q, bi,mi,j,k in the case where a = 1 and b, c = 0. Then for any three mu-
tually tangent circles with bends a, b, c ∈ F satisfying 〈a, b, c〉 = qm2 for some m

in F, repeated application of the subdivision rule will have all bends of the circles
in F. Further, every three mutually tangent circles with bends d, e, f will satisfy
〈d, e, f 〉 = qm2 for some m in F.

Some of the simplest irreducible packings are shown in Fig. 9. Figures 9b and 9c
correspond to circle packings consisting of two concentric circles with respectively
four and six circles in between the concentric circles. Figure 9a corresponds to the
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Fig. 9 Some small packings

traditional Apollonian case where we fill in one circle in the curvilinear triangle. The
circle has (x, y;β) = (2,0;1), so that using (4), we see that in general the new bend
will be a + b + c + 2m (this can be used to derive Descartes Circle Theorem).

Figure 9b corresponds to the packing introduced by Guettler and Mallows [8],
where three circles fill in the curvilinear triangle. The circles have (x, y;β) =
(
√

2, 1
2 ;2) and (

√
2,− 1

2 ;2), (2
√

2,0;1), so that using (4), the formulas for the new
bends are a + 2b + 2c + 4m, 2a + b + 2c + 4m and 2a + 2b + c + 4m (note the
symmetry of these equations).

Figure 9c corresponds to a packing where we fill in the curvilinear triangle using
five new circles (in this case the filling is not symmetric). The circles have (x, y;β) =
( 2

3

√
3, 2

3 ;3), ( 2
3

√
3, 1

6 ;6), ( 2
3

√
3,− 1

6 ;6), ( 2
3

√
3,− 2

3 ;3), and ( 4
3

√
3,0;1). So the new

bends are β̂1 = a+3b+3c+6m, β̂2 = 3a+4b+6c+12m, β̂3 = 4a+3b+6c+12m,
β̂4 = 3a + b + 3c + 6m, and β̂5 = 4

3 (a + b) + c + 4m. In this case we see that we are
not guaranteed that if we start with a triple of integer bends satisfying 〈a, b, c〉 = 3m2

for some integer m, then all further bends are integers. As a simple example, if we
start with a = b = c = 1, then one of the circles has bend 23

3 . On the other hand, if a

and b are both divisible by 3, then each of the resulting new circles has integer bend;
further in each newly created curvilinear triangle at least two of the three circles will
have bends divisible by 3. If we start with at least two of the three circles having bend
divisible by 3, then we can always fill in each resulting curvilinear triangle so that the
new bends are all integral.

As a general rule it is difficult to avoid fractions in the expressions for new bends
(see (4)). However there are some packings where we are able to avoid fractions. As
a good exercise, the interested reader can show if we use the (nonsymmetric) subdi-
vision shown in Fig. 10 that if we start with three circles with bends a, b, c ∈ Z[√3]
with 〈a, b, c〉 = m2/2 for m ∈ Z[√3], then applying this subdivision rule arbitrarily
as often as desired will still result in circles with bends in Z[√3].

In the traditional Apollonian packing, given three mutually tangent circles, we can
find two circles tangent to all three, one of them filling in the interior curvilinear
triangle and the other filling in the exterior curvilinear triangle. Similarly every sub-
division rule can fill in both curvilinear triangles. The way that this is done is to take
the packing of the special case, for example, Fig. 7b, and flip it across the y-axis.
Now we can do the same translate, scale, and invert procedure as before; the only
change to (4) is that m is replaced by −m.
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Fig. 10 An interesting
non-symmetric subdivision rule

Fig. 11 Subdivision rule and standard configuration for icosahedron

5 Conclusion

We have looked at irreducible Apollonian configurations and seen how to look for a
small field that can realize the configuration. We have also seen how to use these to
form a rule for filling in curvilinear triangles that can then be used to construct larger
configurations. Starting with an initial set of three mutually tangent circles and a set of
rules, we can now apply these rules as desired. An interesting question then becomes
which rules give interesting packings (either geometrically, algebraically, or combi-
natorially). One strong candidate for study is shown in Fig. 11. The corresponding
tangency graph for this irreducible configuration is the icosahedron (the Apollonian
subdivision rule, Fig. 1a, corresponds to the tetrahedron; the Guettler–Mallows sub-
division rule, Fig. 1b, corresponds to the octahedron). Because of the symmetry of
the icosahedron, this configuration has a unique standard packing which corresponds
to q = 1 in Q[√5].

We note that most Apollonian configurations can actually be used to create many
different rules for filling in a curvilinear triangle, depending on the different standard
packings. For example, the two different standard packings in Fig. 5 give rise to two
different rules for filling in curvilinear triangles. In such a case we can use the same
field F and q for each rule.

Besides considering the recursive structure, we can at a more basic level look at
the irreducible Apollonian configurations. We saw that for the configuration to be
a q-packing with a nontrivial q , the corresponding graph of the configuration was
Eulerian. It would be interesting to see what other properties of graphs translates
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Fig. 12 An extendable
construction for q = 2

Fig. 13 A packing with F = Q[ 3√2] (here γ = 3√2)

into restrictions on the configuration and vice-versa. Many of the interesting config-
urations that we found exhibited symmetry in the graph; this symmetry can be used
to reduce the size of the system of polynomial equations that can be solved, which
might explain why configurations with small fields tend to be highly symmetric. One
would expect that there is some connection between the symmetry of a graph and the
minimal field; though none is currently known.

Perhaps the most interesting case is where F = Q. In this case, which values of
q are possible? In Fig. 9 we gave examples for q = 1,2,3, while in Appendix we
also give some additional examples for q = 6,7,21; so far these are the only known
values for q . It is unknown how many, if any, other values are possible. For q = 2,3,
it is known that there are infinitely many irreducible Apollonian configurations. For
instance, we can extend the configuration shown in Fig. 12. A similar construction ex-
ists for q = 3. On the other hand, for q = 6,7,21, there are only 4,4,1 (respectively)
known configurations.

More generally, is there any restriction on which fields are possible? Given the set
of equations to be satisfied are polynomial, each irreducible configuration is realiz-
able by some algebraic number field. We have discovered examples in the quadratic
extensions Q[√2], Q[√3], Q[√5], Q[√6], Q[√7], Q[√13], Q[√17], Q[√21],
Q[√37], Q[√42], Q[√57], Q[√97], and Q[√105]. Most packings correspond to
higher-order extensions; in Fig. 13 is a packing which is realizable in the cubic ex-
tension Q[ 3

√
2].

We have restricted our focus to Euclidean geometry. One can also look at subdivi-
sion rules in hyperbolic and spherical geometries (see [3]).

There still remain many interesting problems about Apollonian configurations.
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6 Comments on How These Packings Were Found

We used several techniques to find the packings discussed in this paper. Our first
approach was to fix a value of q and grow packings one circle at a time by hand
until we got to an irreducible configuration (we limited ourselves to having rational
bends). This met with some limited success, and we were able to find several packings
for q = 1,2,3,6,7,21. This method, though is quickly exhausting and discovering
nontrivial examples, was, well, nontrivial.

Failing to discover new values of q , our next approach was to fix a standard pack-
ing (preferably one with high symmetry), then set up a system of equations relating
centers and bends, and then have a computer algebra system solve them, in the hopes
that we would get an interesting answer. This approach also met with some limited
success; for instance, the configurations given in Figs. 7 and 11 were found using
this method. This approach also had limitations in that setting up the system of equa-
tions was time consuming, and as the number of circles increased the computer had
a difficult time in finding a solution.

Our last approach was to take a packing (starting with the tangency graph) and
find the bends in a standard packing numerically to high precision. We could then
take these numbers and try to determine algebraically what they were (checking that
the algebraic answer satisfied the configuration). This approach allowed us to test
many configurations quickly. Using this method, we rediscovered all of the ones we
had previously found in addition to the configurations given in Figs. 10, 13, and 17
as well as many others. The Maple program used in this last approach is available
from the first author’s website.
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Appendix: Some Irreducible Configurations with F = Q

Fig. 14 The only currently
known configuration with
F = Q and q = 21
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Fig. 15 The only four currently known configurations with F = Q and q = 6

Fig. 16 The only four currently known configurations with F = Q and q = 7

Fig. 17 Another configuration with F = Q and q = 3
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