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Abstract We show that the vertices of any plane graph in which every face is inci-
dent to at least g vertices can be colored by �(3g − 5)/4� colors so that every color
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appears in every face. This is nearly tight, as there are plane graphs where all faces
are incident to at least g vertices and that admit no vertex coloring of this type with
more than �(3g + 1)/4� colors. We further show that the problem of determining
whether a plane graph admits a vertex coloring by k colors in which all colors ap-
pear in every face is in P for k = 2 and is N P -complete for k = 3,4. We refine
this result for polychromatic 3-colorings restricted to 2-connected graphs which have
face sizes from a prescribed (possibly infinite) set of integers. Thereby we find an
almost complete characterization of these sets of integers (face sizes) for which the
corresponding decision problem is in P , and for the others it is N P -complete.

Keywords Graph coloring · Planar graphs · Guarding problems

1 Introduction

Problem Statement and Main Results A plane graph is a graph G together with
an embedding of G into the plane. We allow plane graphs to contain multi-edges
and loops, i.e., we consider multi-graphs in general (but we will forbid loops later).
When we do not allow multi-edges or loops, we use the term simple graph. Let
V (G),E(G),F (G) denote the set of vertices, edges, faces of G. The size of a face
f ∈ F(G) is the number of vertices on its boundary. For a plane graph G, let g(G)

denote the size of the smallest face in G. A face of size s in a plane graph is some-
times also called an s-face. A vertex k-coloring is a map χ : V (G) → {1, . . . , k},
and it is proper if for every edge uv ∈ E(G), χ(u) �= χ(v). For a (not neces-
sarily proper) vertex k-coloring χ : V (G) → {1, . . . , k} of G, we say that a face
f ∈ F(G) is polychromatic if all k colors appear on the vertices of f . A vertex
k-coloring of G is called polychromatic if every face (also the outer-face) of G is
polychromatic. The polychromatic number of G, denoted by p(G), is the largest
number of colors k such that there is a polychromatic vertex k-coloring of G. Define
p(g) = min{p(G) | G plane graph, g(G) = g}.

It is clear that for every plane graph G, p(g(G)) ≤ p(G) ≤ g(G). On the other
hand, p(G) ≥ 2 for all plane graphs G with g(G) ≥ 3. This was first proved by
Bose et al. [3] (see also [17]) by using the Four-Color Theorem, and afterwards by
Bose et al. [4] without using it. The following sketch of the second proof is similar in
spirit to some of the ideas in the present paper.

First, we assume that G is loopless, and therefore every cycle has length at least 2.
Triangulate the graph G by adding edges, resulting in a new graph H where each face
(again also the outer-face) forms a triangle. The dual graph H ∗ of H is then 3-regular.
Moreover H ∗ is 2-edge connected: suppose that H ∗ contains a cut-edge e and take a
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maximal connected component. The corresponding faces in H have some boundary
which forms a cycle of length at least 2, and therefore there are in H ∗ at least 2
outgoing edges from this component where only one of them can be e. By Petersen’s
Theorem (see, e.g., [23]), there exists a perfect matching M in H ∗. After deleting the
edges of H corresponding to those of M , the remaining graph H ′ has only faces of
size 4. Therefore there is no odd cycle in H ′, and hence H ′ is bipartite. Thus, there
is a proper vertex 2-coloring of H ′, which is a polychromatic vertex 2-coloring of H

and hence also of G.
If G is a plane graph with a loop around v, let G1 be the graph inside the loop

(without the loop but with v), and let G2 the graph outside the loop (without the
loop but with v). Then p(G) = min{p(G1),p(G2)} and g(G) = min{g(G1), g(G2)}.
Therefore it follows inductively that p(G) ≥ 2 for every plane graph G with
g(G) ≥ 3.

In the following we will only consider loopless multi-graphs. As we have seen
in the previous paragraph, any lower bound on p(G) for loopless plane graphs is
also true for graphs containing a loop. Furthermore, any upper bound construction
containing a loop can be made loopless.

Our main result bounds the minimum possible polychromatic number for plane
graphs G with g(G) = g.

Theorem 1 p(1) = p(2) = 1, p(3) = p(4) = 2, and for g ≥ 3,

⌊
3g − 5

4

⌋
≤ p(g) ≤

⌊
3g + 1

4

⌋
. (1)

This settles a question raised in [13]. Note that the set {� 3g−5
4 �, . . . , � 3g+1

4 �}
contains two or three integers. The first case that remains open from Theorem 1 is
g = 5.

The lower bound for p(G) in (1) remains true when restricting to simple plane
graphs G with g(G) = g. Moreover, the constructions for the upper bound in (1) are
in fact simple plane graphs.

For every triangulation G, it holds that 2 ≤ p(G) ≤ 3. The following simple char-
acterization of triangulations G with p(G) = 3 is a consequence of an old result of
Heawood [11] and will be proven in Sect. 2.

Theorem 2 Let G be a triangulation. The following two statements are equivalent:

(i) p(G) = 3, and
(ii) G is Eulerian, i.e., every vertex degree in G is even.

Theorem 2 immediately implies a polynomial-time algorithm to decide whether a
triangulation admits a polychromatic 3-coloring.

For general plane graphs G, we show that the decision problem whether G is
polychromatically 3-colorable is hard (and also for polychromatic 4-colorings).
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Theorem 3 The decision problem whether a plane graph is polychromatically k-
colorable is

(i) in P if k = 2, and
(ii) N P -complete for k = 3,4.

Moreover we consider the decision problem whether a 2-connected plane graph
with faces of size restricted to a set of integers admits a polychromatic 3-coloring.
We achieve an almost complete characterization of such sets of integers (face sizes)
for which the corresponding decision problem is N P -complete, and for the others it
is in P .

Connection to Guarding Problems Polychromatic colorings are related to a com-
binatorial version of guarding problems on graphs. In general, guarding problems
ask for a small set of vertices (guards) that see a given input domain, for example a
polygon, a terrain, or a plane graph. If we consider guarding a plane graph G, then
G is guarded if every face of G is guarded. If all faces are convex, then every vertex
on the boundary of a face sees the complete face. If the faces are not convex, more
guards might be necessary. Certainly a guard cannot see the entire unbounded face,
hence the outer-face is usually not required to be guarded. A combinatorial variant
of this problem is the following: Find the smallest set of vertices S of G such that
every face is incident to (at least) one of the vertices in S. Clearly each color class
in a polychromatic coloring is a guarding set, that is, the vertices in each color class
jointly guard the graph G. From now on we use “guard” in this combinatorial sense
and also require the unbounded face to be guarded.

In [3] it is shown that one can guard any plane graph on n vertices with no faces
of size 1 or 2 by �n

2 � guards. This clearly follows from the fact that p(G) ≥ 2 for any
such graph. The authors also construct graphs on n vertices for which �n

2 � guards are
necessary. Similarly, a simple consequence of Theorem 1 is the following:

Corollary 4 Every plane graph G with g(G) = g can be guarded with at most
n

�(3g−5)/4� ≤ 4n
3g−8 guards.

Proof By Theorem 1, G admits a polychromatic � 3g−5
4 �-coloring. Place guards on

the vertices of the smallest color class which is of size at most n

� 3g−5
4 � ≤ 4n

3g−8 . Be-

cause the coloring is polychromatic, each face is incident to at least one guard, and
the statement follows. �

Related Work From a result of Hoffmann and Kriegel [12] it immediately follows
that the polychromatic number of any plane, bipartite, 2-connected simple graph is
at least 3, see also Proposition 8. Horev and Krakovski showed in [13] that any con-
nected plane graph G with g(G) ≥ 3 and maximum degree at most 3, which is not
K4 or a subdivision of K4 on 5 vertices, are polychromatically 3-colorable. In [7] it
is shown that every bipartite cubic plane graph can be colored with 4 colors so that
every bounded face of G is polychromatic.



Discrete Comput Geom (2009) 42: 421–442 425

A nondegenerate rectangular subdivision is a subdivision of a rectangle into a set
of nonoverlapping rectangles such that no four rectangles meet in a point. Dinitz
et al. [6] showed that it is possible to color the vertices of any nondegenerate rectan-
gular subdivision S with three colors so that each rectangle in S has at least one vertex
of each color. They conjectured that this is also possible with four colors. And indeed,
a proof by Guenin [8] of a conjecture by Seymour [20] concerning the edge-coloring
of a special class of planar graph directly implies such a 4-coloring [5].

Keszegh [15] investigates polychromatic colorings of so-called n-dimensional
guillotine-partitions.

Alon et al. [2] considered two variants of polychromatic colorings for the n-
dimensional hypercube Qn. They observed that the vertices of Qn can be colored
by d + 1 colors so that every d-dimensional subcube Qd of Qn is polychromatic,
that is, Qd contains a vertex of each color. Indeed, fix a vertex v ∈ Qd and color each
vertex of Qn at distance i from v with color i mod (d + 1). Moreover this coloring
with d + 1 colors is best possible for all d and n sufficiently large as shown in [2].

The authors also show that there is an edge-coloring of Qn with � (d+1)2

4 � colors such
that every d-dimensional subcube is polychromatic, that is, contains an edge of each
color. This bound is tight as shown by Offner [19].

Notation The (open) neighborhood of a vertex v in the graph G is denoted by
NG(v) and contains all vertices adjacent to v, the vertex degree dG(v) of v is the num-
ber edges incident to v. When the graph G is clear from the context, we sometimes
denote dG(v) by d(v). The minimum degree of a vertex in G is denoted by δ(G), and
the maximum degree by �(G). For a directed graph G, the in- and out-neighborhood
of a vertex v are denoted by N−

G(v) and N+
G(v), respectively. Similarly we define

the in-degree d−
G(v) and out-degree d+

G(v) as the numbers of incoming and outgoing
edges of v. For a subset U of the vertices of G = (V ,E), we denote by G[U ] the
graph induced by the vertices U , and by G − U the graph G[V (G) \ U ]. A graph is
called 2-connected, 2-edge-connected, respectively, if after the deletion of any ver-
tex, edge, respectively, the graph is still connected, i.e., there are no cut-vertices,
cut-edges.

Organization In the next section we prove Theorem 2 and give some additional
results for graphs with faces of even size only and for outerplanar graphs. In Sect. 3
we prove Theorem 1. Section 4 is dedicated to the proof of Theorem 3 and discusses
some additional complexity results that restrict the face sizes of the input graph. We
conclude with some remarks and open problems.

2 Simple Cases

The following two lemmas jointly prove Theorem 2.

Lemma 5 (Kempe 1879 [14], Heawood 1898 [11, 21]) The vertices of a triangula-
tion G are properly 3-colorable if and only if G is Eulerian.
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Lemma 6 Let G be a triangulation. Then the following are equivalent:

(i) G is polychromatically 3-colorable.
(ii) G is properly 3-colorable.

Proof A triangle is properly 3-colored if and only if its three vertices have three dif-
ferent colors. Also, a triangle is polychromatically 3-colored if and only if its three
vertices have three different colors. Thus these two notions are equivalent for trian-
gulations. �

Another class of plane graphs that are polychromatically 3-colorable are plane
graphs with faces of even size only. To show this, we first need the following
result.

Lemma 7 (Hoffmann and Kriegel [12]) Let G be a plane, 2-connected, bipartite,
and simple graph. Then we can add edges to G to obtain a triangulation such that
every vertex-degree is even. Moreover, this triangulation can be found in polynomial
time.

Proposition 8 Let G be a plane, 2-connected multi-graph with even faces only and
g(G) ≥ 4. Then there exists a polychromatic 3-coloring of G that is proper as well,
i.e., no edge is monochromatic. Moreover, such a coloring can be found in polynomial
time.

Proof We prove the statement by induction on the number of multi-edges of G. First,
we assume that G is simple. Every cycle in G has even length (i.e., G is bipartite)
because G is required to be 2-connected and has only even faces. The statement
follows after applying Lemmas 7, 5, and 6.

Next, we assume that G has some multi-edges. Let x, y ∈ V (G) and e1, e2 ∈
E(G), where both e1 and e2 connect x and y. The edges e1, e2 build a cycle
of length two, and therefore they divide the plane into two parts. Let V1 be the
vertices inside e1, e2 (including x, y) and V2 the vertices outside e1, e2 (includ-
ing x, y). Since g(G) ≥ 4, we can conclude that Vi � {x, y} for i = 1,2. Define
G1 = (V1,E(G[V1]) \ {e2}) and G2 = (V2,E(G[V2]) \ {e1}). These two graphs are
plane, 2-connected with even faces only, g(G1), g(G2) ≥ 4, and each Gi contains
less multi-edges than G. There exists inductively a polychromatic 3-coloring of Gi ,
i = 1,2, such that no edge is monochromatic. In particular the coloring of G1 and
the coloring of G2 assign distinct colors to x and y. Thus we can permute the col-
ors of one coloring so that the colors of x and y agree in the coloring of G1 and
of G2. This yields a 3-coloring of G which is easily seen to fulfill the condition in
the statement. �

Another simple case is where the graph G is outerplanar (i.e., all vertices lie on
the outer-face). Then it is easy to see that the size of the smallest face is equal to the
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length of the smallest cycle (i.e., the girth of G). We show that the trivial upper bound
p(G) ≤ g(G) is tight for outerplanar graphs G with g(G) ≥ 3.

Proposition 9 Let G be an outerplanar graph with g = g(G) ≥ 3. Then there ex-
ists a polychromatic coloring of G with g colors that is also proper, i.e., no edge is
monochromatic.

Proof We prove this result by induction on the number of faces. If we have only one
face, then the graph G is a tree, and clearly we can polychromatically color every tree
with |V (G)| = g(G) colors so that no edge is monochromatic. Let us assume now that
G has more than one face. Obviously, it is sufficient to find a g-coloring of the vertices
of G such that all bounded faces are polychromatic and no edge is monochromatic.
The outer-face will by the outerplanarity automatically be polychromatic since all
vertices lie on the outer-face. Also we can assume without loss of generality that
G is connected and has no cut-vertex. Otherwise color the 2-connected components
separately and combine the coloring (maybe rename the colors in each component
correspondingly).

It is well known that the dual graph G∗ without the outer-face forms a forest; and
since G is 2-connected, G∗ is connected, and so G∗ forms a tree. Every tree has at
least two leafs. Choose f0 as a face corresponding to a leaf in the tree with maximal
size. Let G′ be the graph obtained from G after deleting all vertices incident to only
f0 and the outer-face. Then G′ is an outerplanar graph with g(G′) = g(G) and has
one fewer face than G. By the induction hypothesis we can color G′ polychromati-
cally with g colors so that no edge is monochromatic.

Finally, add f0 again to G′. There is exactly one edge e0 ∈ E(G′) which is
on the boundary of the face f0, i.e., e0 is the edge between f0 and its parent. The
intersection of the vertices of f0 and V (G′) are exactly the endpoints z1, z2 of e0.
For simplicity, assume that z1 has color 1 and z2 has color 2. Let z3, . . . , zk be
the other vertices of f0 such that z1, z2, z3, . . . , zk is the clockwise or counterclock-
wise order in that face. Extend the coloring of f0 to 1,2, . . . , g, g − 1, g, g − 1, . . . .
The face f0 will then be polychromatic (because k ≥ g), and no edge of f0 will be
monochromatic (because g ≥ 3). �

The graph G′ from Fig. 1 shows an outerplanar graph with g(G′) = 2 which is not
polychromatically 2-colorable.

Fig. 1 Graph G′ with
g(G′) = 2 and p(G′) = 1
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3 The Proof of Theorem 1

In this section we prove Theorem 1. We begin by proving the theorem for 1 ≤ g ≤ 4
in Sect. 3.1. We then tackle the general case. First, we make vertices responsible for
certain faces by assigning them to these faces. Section 3.2 shows how to compute
an appropriate assignment. Using this assignment, we can relate our problem to the
existence of certain edge-colorings. In Sect. 3.3 we establish the necessary results
for these edge-colorings. Finally, we prove the general lower and upper bounds in
Sects. 3.4 and 3.5.

Note that the function p(g) is monotone, i.e., for g ≤ g′, we have p(g) ≤ p(g′).

3.1 Theorem 1 for 1 ≤ g ≤ 4

If g(G) = 1, then G contains only one vertex, and therefore p(1) ≤ 1. If g(G) = 2,
then G contains either multi-edges or only two vertices. The graph G′ depicted in
Fig. 1 shows that also p(2) ≤ 1.

For all graphs G with g(G) ≥ 3, we have already seen in Sect. 1 that p(G) ≥ 2.
A planar embedding of K4 is a non-Eulerian triangulation and has therefore g(K4) =
3 and p(K4) = 2 (this is a trivial special case of Theorem 2).

For g = 4, consider Figs. 2(a) and (b), which illustrate the construction of a
graph G. The graph G equals the forcing graph (see Fig. 2(b)) where each of the
six shaded edges vivj is replaced by a copy of the base graph (see Fig. 2(a)) by iden-
tifying the vertices x and y with the vertices vi and vj . Clearly, g(G) = 4. It is easy
to check that the following holds.

Observation 10 In any polychromatic 3-coloring of a base graph (see Fig. 2(a)) the
vertices vi and vj are colored with distinct colors.

Thus from the fact that K4, the graph underlying the forcing graph, is not properly
3-colorable it follows that p(G) ≤ 2.

Fig. 2 Graph G with p(G) = 2 and g(G) = 4
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3.2 Assigning Vertices to Faces

Lemma 11 Let G be a plane graph, let ∅ �= F ′ ⊆ F(G),∅ �= V ′ ⊆ V (G), and let
i(V ′,F ′) denote the number of incidences between F ′ and V ′. Then i(V ′,F ′) ≤
2|F ′| + 2|V ′| − 3.

Proof Define the incidence graph H of V ′ ⊆ V (G) and F ′ ⊆ F(G) by V (H) = F ′ ∪
V ′ and f v ∈ E(H) for v ∈ V ′ and f ∈ F ′ if and only if v is incident to the boundary
of f in G. It is easy to see that H is planar, simple, and bipartite. From Euler’s
Formula and the fact that H is simple and triangle-free it follows that H contains
at most 2V (H) − 4 edges, provided that H contains at least three vertices. In this
case we conclude that i(V ′,F ′) = |E(H)| ≤ 2(|V ′| + |F ′|) − 4. On the other hand,
if |V (H)| = 2 and H contains one edge, then i(V ′,F ′) = 2(|V ′| + |F ′|) − 3 = 1. �

The following result is well known (see, for example, [16], Theorem 2.4.2). For
completeness, we include a short proof.

Lemma 12 Let A ∈ {0,1}m×n be a matrix, A = (ai,j )i∈{1,...,m},j∈{1,...,n}. The follow-
ing two statements are equivalent:

(i) There is a matrix C ∈ {0,1}m×n, C ≤ A (that is, ci,j ≤ ai,j for all i ∈ {1, . . . ,m}
and all j ∈ {1, . . . , n}) such that every row in C contains at least q 1’s and every
column in C contains at most r 1’s.

(ii) For every M ⊆ {1, . . . ,m} and every N ⊆ {1, . . . , n},∑
i∈M,j∈{1,...,n}\N ai,j ≥ q|M| − r|N |.

Proof Define a network with vertices s, t, r1, . . . , rm, c1, . . . , cn as follows. Connect
the source s with all vertices ri with edges having capacity q , connect ri with cj

with edges having capacity ai,j , and connect all cj to the sink t with edges having
capacity r . If condition (i) holds, then we can also assume that there exists such a
matrix C where in every row there are exactly q 1’s. Thus there exists a flow of value
mq if and only if (i) holds. It is easy to show that all cuts have size at least qm if and
only if condition (ii) holds. This implies the statement by using the MaxFlow–MinCut
Theorem. �

Corollary 13 Let G be a plane graph with g(G) = g. For each face f ∈ F(G), we
can assign g − 2 vertices that lie on its boundary such that no vertex is assigned to
more than two faces.

Proof Let A = (af,v)f ∈F,v∈V ∈ {0,1}|F |×|V | be the face–vertex incidence matrix
of G. That is, af,v = 1 if and only if vertex v is contained in face f . We want to
show that there is a matrix C ∈ {0,1}|F |×|V | such that C ≤ A, in every row of C there
are at least g − 2 1’s, and in every column of C there are at most two 1’s.

By Lemma 12 with q = g −2 and r = 2, it is sufficient to show that for all F ′ ⊆ F

and V ′ ⊆ V ,
∑

f ∈F ′,v∈V \V ′ af,v ≥ (g − 2)|F ′| − 2|V ′|.
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Henceforth we obtain
∑

f ∈F ′,v∈V \V ′
af,v =

∑
f ∈F ′,v∈V

af,v −
∑

f ∈F ′,v∈V ′
af,v

≥ g
∣∣F ′∣∣ −

∑
f ∈F ′,v∈V ′

af,v

≥ g
∣∣F ′∣∣ − 2

∣∣F ′∣∣ − 2
∣∣V ′∣∣,

where the last inequality follows from Lemma 11 in case both V ′ and F ′ are non-
empty and is trivial if at least one of them is empty. �

Alternative Proof of Corollary 13 The following lemma and its short proof have
been suggested by one of the anonymous referees. The lemma easily implies Corol-
lary 13. Nevertheless we think that our original proof yields a more general result,
which is applied later in Theorem 30.

Lemma 14 Every plane graph G admits a vertex–face assignment such that

(i) every vertex is assigned to at most two faces,
(ii) every face is assigned to all but at most two of the vertices incident to it, and

(iii) the outer-face is assigned to all of its vertices.

Sketch of a Proof We can assume that G is 2-edge connected and consider an ear-
decomposition of G. The ear-decomposition gives a construction of G as follows:
start with the cycle C bounding the outer-face and successively add paths lying in
a face of the current plane graph. A vertex–face assignment can be constructed si-
multaneously with this procedure. Initially add the cycle C, splitting the plane into
two faces f0 (the outer-face) and f1 (the interior of the cycle). Meanwhile, assign
all vertices of C to f0 and f1. Whenever a path P is inserted into a face fi, i ≥ 1,
and splits it into two faces fi1 and fi2 , update the assignment such that the assigned
vertices of fi incident to only fij are reassigned to fij for j ∈ {1,2} and the new ver-
tices of P are assigned to both faces fi1, fi2 . The (possibly coinciding) endpoints can
be assigned in a good way: if both faces fi1, fi2 currently have all but three vertices
assigned to, then assign one endpoint of P to fi1 and the other to fi2 . If fij for some
j ∈ {1,2} currently has all but four vertices assigned to, then assign both endpoints
to fij . �

3.3 Polychromatic Edge-Colorings

Similar to the case of vertex-colorings, we define a polychromatic edge k-coloring
χ : E(G) → {1, . . . , k} of G. A vertex v ∈ V (G) is called polychromatic if all k-
colors appear on the edges incident to v. An edge-coloring of G is polychromatic if
every vertex v ∈ V (G) is polychromatic.

Recently, we learned that our result about polychromatic edge-colorings were ob-
tained independently by Gupta [9].
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Proposition 15 (See also [9]) For every integer d > 0 and every multi-graph G with
minimum degree at least d , there is a polychromatic edge-coloring of G with � 3d+1

4 �
colors.

Before we prove Proposition 15 we state three lemmas. For completeness, we
include their short proofs.

Lemma 16 [1, 10] Let r be a positive integer. It is possible to color the edges of any
bipartite multi-graph G by r colors {1, . . . , r} such that for every vertex v of G, the
numbers of edges of each color incident with v are nearly equal. That is, for every
i ∈ {1, . . . , r}, the number of edges of color i incident with v is either �d(v)/r� or
�d(v)/r�.

Proof First split vertices of G, if needed, to make its maximum degree at most r :
As long as there is a vertex v of G of degree d > r , modify it using the following
procedure. Define k = �d/r� and replace v by k new vertices v1, v2, . . . , vk , called
its descendants. Let vu1, vu2, . . . , vud be an arbitrary enumeration of all edges of G

incident with v. For each i,1 ≤ i ≤ k, let the edges incident with the new vertex vi be
the edges viuj for all j satisfying (i − 1)r < j ≤ min{d, ir}. This process terminates
with a bipartite graph in which all degrees are at most r . By König’s Theorem (see,
e.g., [23]) the edges of this graph can be properly colored by the r colors {1, . . . , r}.
By collapsing all descendants of each vertex v back, keeping the colors of the edges,
we obtain a coloring f : E(G) → {1, . . . , r} of the edges of the original graph G by
r colors satisfying the assertion of the claim. �

The following two lemmas are well known.

Lemma 17 Every multi-graph G contains a spanning bipartite graph B ⊆ G with
dB(v) ≥ � dG(v)

2 � for every v ∈ V (G).

Proof Let B be a maximum edge-cut in G with respect to the number of edges. As-
sume that there is a vertex v ∈ V (G) with dB(v) < � dG(v)

2 �. If we then swap v to the
other bipartite set, this would yield another edge-cut with more edges, contradicting
the maximality. �

Lemma 18 Every multi-graph G has an orientation of its edges such that d+(v) ≥
� d(v)

2 � for all v ∈ V (G).

Proof We may assume that G is connected. If all degrees in G are even, we simply
orient it along an Eulerian cycle. Otherwise, define a new graph G′ which consists of
all vertices of G and a new vertex x and connect all odd degree vertices of G to x.
Then all vertices in G′ have even degrees, and therefore there is an Eulerian cycle
in G′. Orient the edges along such an Eulerian cycle and delete the vertex x. Every
vertex v ∈ V (G) with even degree has then exactly d(v)/2 outgoing edges. Each
vertex v ∈ V (G) with odd degree has either (d(v) + 1)/2 or (d(v) − 1)/2 outgoing
edges. �
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Proof of Proposition 15 By Lemma 17 there is a spanning bipartite subgraph H of G

satisfying δ(H) ≥ � d
2 �. Let A1 and A2 denote its vertex classes. Applying Lemma 16

to H with r = p = � 3d+1
4 � results in an edge-coloring χ with the following two

properties.

(i) Every vertex v with dH (v) ≥ p is polychromatic. Indeed v is incident with at
least �dH (v)/p� ≥ 1 edges of each of the p colors.

(ii) For every vertex u with dH (u) < p, each color appears at most once on edges
incident to u since �dH (u)/p� = 1. In other words, all edges incident with u have
distinct colors. Extend the edge-coloring χ to G as follows: orient the edges of
both G[A1] and G[A2] according to Lemma 18. Hence d+

G[Ai ](v) ≥ � d−dH (v)
2 �

for i = 1,2 and all v ∈ Ai ⊂ V (G). For each vertex v ∈ Ai , color the edges
oriented from v to its outneighbors in G[Ai] with the colors not appearing at the
edges of H incident to v (if there are any such colors). Thus, the edges incident
with any vertex v ∈ V (G) are finally colored with min{dH (v)+� d−dH (v)

2 �,p} ≥
� d

2 �+�� d
2 �
2 � = � 3d+1

4 � = p distinct colors, where the inequality follows from the
fact that dH (v) ≥ � d

2 �. This completes the proof.
�

3.4 The Lower Bound of Theorem 1

We now prove that p(g) ≥ � 3g−5
4 � for all g ≥ 5.

Let G = (V ,E) be a plane graph with g(G) = g. By Corollary 13 we can assign
g − 2 vertices from its boundary to every face of G such that no vertex is assigned to
more than two faces of G. Define an auxiliary multi-graph H with V (H) = F(G) ∪
{x, y}, where F(G) is the set of faces of G, and x, y are two additional vertices. For
every vertex v ∈ V (G), define an edge of H , which we call the v-edge, as follows. If
v is assigned to two distinct faces f1 and f2, then the v-edge is f1f2. If it is assigned
only to one face f , the v-edge is f x, and if it is not assigned to any face, then the v-
edge is xy. In addition, add g−2 (multi)edges to H connecting x and y to ensure that
all degrees in H are at least g − 2. Thus, H is a loopless multi-graph with minimum
degree at least g − 2. By Proposition 15 with d = g − 2 we can color the edges of H

with p = � 3(g−2)+1
4 � = � 3g−5

4 � colors so that every vertex f ∈ V (H) is incident with
edges of all p colors.

Define a vertex-coloring of G by coloring every vertex v ∈ V (G) by the same
color as that of the v-edge. This clearly gives a coloring in which every face f ∈
F(G) is polychromatic, as needed.

The above proof is constructive, i.e., one can find in polynomial time a polychro-
matic coloring of G with � 3g−5

4 � colors.

3.5 The Upper Bound of Theorem 1

We next show that p(g) ≤ � 3g+1
4 � for all g ≥ 3. Define the graph Gg as depicted in

Fig. 3. For g even, set k = l = g
2 , and for g odd, set k = g+1

2 and l = k − 1. Inside the
small triangle and outside the big triangle add a path of g−2 new vertices as indicated
by the dashed arcs. Then g(Gg) = g. Note that the vertices of the three faces of Gg
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Fig. 3 Graph Gg with
g(Gg)=g and

p(Gg) ≤ � 3g+1
4 �

that contain no dashed arcs are {u1, u2, . . . , uk,w1,w2, . . . ,wk, v1, v2, . . . , vl}, and
none of these vertices lies in all three faces. This implies:

Observation 19 In every polychromatic coloring of Gg , every color appears on at
least two vertices in the set {u1, u2, . . . , uk,w1,w2, . . . ,wk, v1, v2, . . . , vl}.

Since each such vertex is incident to two faces, we have:

2p(Gg) ≤ 2k + l =
{

3k if g is even,

3k − 1 if g is odd,

=
{

3g
2 if g is even,

3g+1
2 if g is odd.

In both cases we thus have p(Gg) ≤
⌊

3g+1
4

⌋
.

4 Complexity of Polychromatic Colorability

It can be checked in polynomial time whether a vertex k-coloring is polychromatic,
and therefore the corresponding decision problem is in N P . Every plane graph is
polychromatically 1-colorable, which implies that the decision problem for k = 1 is
trivial, in the sense that the answer for every instance is always “Yes.”

Next, we turn our focus to polychromatic 2-colorings and prove Theorem 3(i). At
this point, it is worth to remind ourselves that every plane graph G with p(G) < 2
contains a face of size at most two.

Proposition 20 There is a polynomial-time algorithm to decide whether a given
plane graph is polychromatically 2-colorable.

Proof We call a CNF-formula F planar∗ if its literal-clause incidence graph H is pla-
nar. Note that this differs from the common notion of a planar CNF-formula, where
one assumes that the literal-clause incidence graph H , together with a cycle connect-
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Fig. 4 Reducing
PLANAR-NAE-SAT to
PLANAR-NAE-3-SAT

ing the positive literals and together with edges between the corresponding positive
and negative literals, is required to be planar.

A vertex-coloring of a plane graph is 2-polychromatic if no face is monochro-
matic. We can associate with one color the logic predicate “true” and with the other
color “false” and interpret the vertices as boolean variables. Then we add a clause-
vertex to each face and connect it to its incident variable-vertices. By this we get a
planar∗ CNF-formula (where all variables occur only as positive ones).

Deciding whether the plane graph is polychromatically 2-colorable is equivalent to
deciding whether the corresponding planar∗ CNF-formula is not-all-equal satisfiable
(PLANAR∗-NAE-SAT).

In [18] it is shown that PLANAR-NAE-3-SAT is in P by a reduction to PLANAR-
MAX-CUT. The reduction in fact holds also for PLANAR∗-NAE-SAT. A well-
known reduction works to shorten the clauses of a planar (and planar∗) formula to
length 3, whilst preserving not-all-equal satisfiability and planarity. We briefly sketch
this reduction which is illustrated in Fig. 4. A clause c of length k > 3 is replaced by
two clauses c1 and c2 of lengths 3 and k − 1, respectively. A new variable x occurs
positive in c1 and negative in c2. Placing the new variable and clauses as in Fig. 4
preserves planarity and not-all-equal satisfiability. �

In the following we want to show hardness results for polychromatic 3- and 4-
colorability, by constructing reductions from proper 3-colorability of plane graphs.
We start by proving Theorem 3(ii) for k = 3.

Proposition 21 To decide whether a given plane simple graph is polychromatically
3-colorable is N P -hard.

Proof It has been shown in [22] that deciding whether a plane simple graph is prop-
erly 3-colorable is N P -hard. Given a plane simple graph G, we construct in polyno-
mial time a plane simple graph G′ such that G is properly 3-colorable if and only if
G′ is polychromatically 3-colorable.

For every edge uv ∈ E(G), we add a new vertex yuv inside one of the two faces
and connect it with u and v. Thus every edge uv ∈ E(G) is now contained in a trian-
gle. Furthermore, for every face f ∈ F(G), select a vertex x incident to f . Then add
a new vertex xf into the interior of f and connect x and xf by an edge. The resulting
graph G′ is simple. In every polychromatic 3-coloring of G′, the edges E(G) are not
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monochromatic, and every proper 3-coloring of G can be extended to a polychro-
matic 3-coloring of G′ by using the extra vertices xf . Thus G′ is polychromatically
3-colorable if and only if G is properly 3-colorable. �

We will refine Proposition 21 by restricting on plane graphs with only faces of
given sizes. To do so we will restrict on 2-connected graphs. One reason is that
a graph G is properly k-colorable if and only if all its 2-connected components
are properly k-colorable and the maximal 2-connected components (block-cutvertex
graph) of a graph can be computed in polynomial time by using a depth-first-search.
Thus it follows that proper k-colorability is also N P -hard restricted on 2-connected
graphs for k ≥ 3. Another reason is that any face in a 2-connected plane graph is a
cycle and therefore there are no artifacts such as dangling paths.

Let L denote some set of positive integers. We define the following two decision
problems.

L-PLANE-PROPER-k-COLORABILITY:
Given: A plane 2-connected graph G where the size of each face of G is in L.
Question: Does there exist a proper k-coloring of V (G)?

L-PLANE-POLY-k-COLORABILITY:
Given: A plane 2-connected graph G where the size of each face of G is in L.
Question: Does there exist a polychromatic k-coloring of V (G)?

In case we do not impose any restriction on the sizes of the faces in G, we omit
the set L.

Let f be a face of a plane graph G and L ⊆ N. We say a plane graph G′ is an
L-extension of f if G′ is a plane graph containing G and some new vertices V ′ �= ∅
and some new edges E′ �= ∅ (thus also some new faces) such that

(i) the new vertices V ′ and the new edges E′ are contained in the interior of f ,
(ii) every new edge of E′ is incident to at most one old vertex v ∈ V (f ), and

(iii) the size of any new face is contained in L.

An extension is called 2-degenerate if there is an order v1, v2, . . . , vk of the new
vertices V ′ such that the dG′[V (G)∪{v1,...,vi })](vi) ≤ 2 for all i ∈ {1, . . . , k}.
Observation 22 Let G′ be a 2-degenerate extension of f of G. Any proper 3-
coloring of G can be extended to a proper 3-coloring of G′ (i.e., it preserves proper-
3-colorability).

Lemma 23 Let k ≥ 3. Every k-face f of a plane 2-connected graph G has a {3,4,5}-
extension G′ in G that is 2-degenerate and 2-connected.

Proof The statement is trivial for k = 3,4, or 5. Therefore assume that k ≥ 6 and
that the statement is true for every smaller k. Let x1, . . . , xk be the vertices of f

in clockwise order. Let f0 be the graph obtained from f by adding a vertex y and
connecting y with x1 and x4. Then f0 has a 5-face and a (k − 1)-face. By induction
assumption we can extend the (k − 1)-face to 3-, 4-, and 5-faces so that the extension
is 2-degenerate and 2-connected. Together this yields a {3,4,5}-extension that is 2-
degenerate and 2-connected. �
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Fig. 5 Fill graph for 5-faces

Fig. 6 2-degenerate extensions of faces

Lemma 24 Every 5-face f of a plane 2-connected graph G has a {3,4}-extension
G′ that is 2-connected, and moreover G is properly 3-colorable if and only if G′ is
properly 3-colorable.

Proof First note that every 5-face forms a 5-cycle due to the assumption that G is
2-connected. We extend each 5-face f by the construction depicted in Fig. 5. Specif-
ically, let f be a 5-face, and let v1, v2, . . . , v5 be the five vertices of f . We add
two copies of P2 (the path of length two) with vertices u,v,w, P ′ : u′, v′,w′ and
P ′′ : u′′, v′′,w′′ by identifying both u′ and u′′ with v1, w′ with v3, and w′′ with v4.
Further we connect v′ with v′′. This yields the {3,4}-extension G′ of G which is
2-connected. It is easy to check that every proper 3-coloring χ of the 5-face has an
extension to a proper 3-coloring of G′: We can assume that χ(v1) �= χ(v4). Color v′
with χ(v4), and color v′′ with the third color not appearing on any of the neighbors
of v′′. �

Lemma 25 Let G be a plane 2-connected graph.

(i) Let s ≥ 4. Every 4-face of G has a 2-degenerate {3, s}-extension G′ such that G′
is 2-connected as well.

(ii) Let t ≥ 5 odd. Every 3-face and every 4-face has a 2-degenerate {t}-extension
G′ such that G′ is 2-connected.

Proof

(i) For s = 11, the extension is drawn in Fig. 6(a), and it should be clear how to
obtain a similar construction for arbitrary s.

(ii) In Fig. 6(b) an extension of a 3-face into 4-faces and 9-faces is shown. The 4-
faces can be extended into 9-faces as shown in Fig. 6(c). Together this gives the
extensions for the case t = 9. Again the general case should be clear. �
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This leads to the following complete characterization of the complexity of L-
PLANE-PROPER-3-COLORABILITY:

Corollary 26 L-PLANE-PROPER-3-COLORABILITY

(i) . . . is in P for L = {2,3}.
(ii) . . . is trivial, provided that L contains only even numbers.

(iii) . . . is N P -complete, provided that there is t ∈ L with t ≥ 5 odd.
(iv) . . . is N P -complete, provided that 3 ∈ L and there is s ∈ L with s ≥ 4.

Proof First observe that we can assume that G contains no face of size two, since
deleting one edge from a 2-face neither changes the size of any other face of G nor
yields any cut-vertex.

(i) The only case left is L = {3}, i.e., triangulations. Theorem 2 provides a
polynomial-time checkable criterion for 3-colorability of triangulations.

(ii) The graphs are bipartite because any cycle has even length. Therefore there is a
proper 2-coloring which is also a proper 3-coloring.

(iii), (iv) Using Lemmas 23, 24, and 25, we can extend every plane 2-connected graph
to a graph only having faces of the given size such that the proper 3-colorability
and 2-connectedness are preserved. Thus the restricted proper 3-colorability
problem on plane, 2-connected graphs is as hard as the nonrestricted one. �

Note here that every proper 3-coloring of an odd face is a polychromatic 3-
coloring as well. For even faces, some special care has to be taken.

Lemma 27 Let s ≥ 4 even, and let C be an s-cycle embedded in the plane. Then there
exists an {s}-extension C′ of C such that any proper 3-coloring of C can be extended
to a 3-coloring of C′ such that every bounded face is polychromatic. Moreover, C′ is
2-connected as well.

Proof First, we consider the case s = 4. We “fill” C by substituting it with a copy of
the graph in Fig. 7(a). Let v1, v2, v3, v4 be the four consecutive vertices of C.We iden-
tify vi with the copy of the vertex ui for i ∈ {1, . . . ,4}. The resulting subgraph is poly-

Fig. 7 Fill graphs
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Fig. 8 Gadgets for the reduction

chromatically 3-colorable if f is properly 3-colorable. To see this, we fix a proper
3-coloring χ of f . Suppose first that all three colors appear on the vertices of f .
Without loss of generality we can assume that χ(v1) = 1, χ(v2) = 2, χ(v3) = 3,
and χ(v4) = 2. Then, for instance, coloring the copies of w1 by 3, w2 by 2, w3 by 1,
and w4 by 2 extends χ to a 3-coloring of the new vertices in f such that each of the
five new faces inside f is polychromatic. Suppose now that only two distinct colors
appear on the vertices of C, say χ(v1) = χ(v3) = 1 and χ(v2) = χ(v4) = 2. We can
extend χ to a polychromatic 3-coloring including the new vertices in C as follows.
Color w1 by 3, w2 by 2, w3 by 3, and w4 by 1. Again the five new faces inside C are
polychromatic.

The case s ≥ 6 is even simpler, and we will only sketch it here. We use a similar
construction as for the previous case (see Fig. 7(b), (c) for the cases s = 6 and s = 8).
The claim is now that every proper 3-coloring can be extend to a polychromatic 3-
coloring inside that face. The new faces incident to the original boundary have a
nonmonochromatic edge already colored. For each such face f , we can assign one
incident vertex xf that is not incident to the middle face and all these vertices are
distinct. Color the vertex xf such that the face f will be polychromatic and color the
middle face also polychromatic. �

Proposition 28 L-PLANE-POLY-3-COLORABILITY

(i) . . . is in P for L = {2,3}.
(ii) . . . is trivial if L contains only even numbers.

(iii) . . . is N P -complete for L ⊇ {3, s}, s ≥ 4.
(iv) . . . is N P -complete for L ⊇ {4, t}, t ≥ 5 odd.
(v) . . . is trivial if L ⊆ {6, . . .}.

Proof If g(G) < 3, then G is certainly not polychromatically 3-colorable. Thus we
can assume that g(G) ≥ 3.

(i) Theorem 2 gives a polynomial-time checkable criterion for graphs with 3-faces
only.

(ii) Because G is bipartite, we have g(G) ≥ 4, and therefore G is polychromatically
3-colorable by Proposition 8.

(iii) If s ≥ 5 is odd, then we substitute each edge with a copy of the base graph
Fig. 8(a) but start with a graph which contains only s-faces. By Corollary 26(iii)
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the proper 3-coloring problem restricted to such graphs is N P -hard. Each
proper 3-coloring of the s-faces is also a polychromatic 3-coloring, and therefore
the old graph is properly 3-colorable if and only if the new graph is polychro-
matically 3-colorable.

If s is even, then we start with a graph G with 3- and s-faces only and sub-
stitute each edge with a copy of the base graph as in Fig. 8(a) and extend each
s-face as described in Lemma 27. Then it holds that the new graph is polychro-
matically 3-colorable if and only if G is properly 3-colorable.

(iv) Start with a graph G containing only t-faces. We can modify our base graph as
indicated in Fig. 8(b) so that we only have 4-faces and t-faces (and the outer
face). By substituting every edge from the input graph G with this new gadget
we get G′. The new graph G′ has only 4- and t-faces, and in every polychro-
matic 3-coloring of G′ the vertices corresponding to the endpoints of edges in
G are colored with different colors (Observation 1). Moreover, there exists a
3-coloring of the base graph where vi, vj have different colors and all bounded
faces are polychromatic. Because t is odd, every proper 3-coloring of G can be
extended to a polychromatic 3-coloring of G′. Applying Corollary 26(iv) shows
the N P -hardness.

(v) Theorem 1 implies that all these graphs are polychromatically 3-colorable. �

This result covers all cases except where 5 is the smallest number in L. If
p(5) ≥ 3, which we do not know at the moment, then also {5, . . .}-PLANE-POLY-3-
COLORABILITY is trivial.

Also note that our base graphs for the Cases (iii) and (iv) contain multi-edges and
at the moment we do not know whether the results carry over if we restrict to simple
graphs.

Finally we prove Theorem 3(ii) for k = 4.

Proposition 29 {4}-PLANE-POLY-4-COLORABILITY is N P -complete also re-
stricted on simple graphs.

Proof Again, we reduce from PLANE-PROPER-3-COLORABILITY. Let G be a
simple plane graph. We add a new vertex xuv on each edge uv ∈ E(G) and replace
the edge uv by a path of length two with vertices u,xuv, v. For each face f ∈ F(G),
we add a vertex vf , place it into the interior of f , and connect vf to the vertices of
f as encountered when traversing the boundary of f in either direction. This yields
a new plane simple graph G′ where all faces have size exactly 4. See Fig. 9 for an
example.

Fig. 9 Constructing G′
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We claim that G is properly 3-colorable if and only if G′ is polychromatically
4-colorable. If G is properly 3-colorable with colors 1, 2, and 3, then we extend this
coloring χ in G′ so that each vertex vf corresponding to a face f in G gets color
4 and the vertex xuv with neighbors u and v gets the color {1,2,3} \ {χ(u),χ(v)}.
In this way each face of G′ is polychromatic, and therefore the whole coloring χ is
polychromatic.

Now let us fix a polychromatic 4-coloring χ ′ of G′. Let vf be any vertex of G′ cor-
responding to a face f of G. Without loss of generality suppose that vf has color 4.
Then for each edge uv ∈ E(G) which is incident to f , the vertices u,xuv, v ∈ V (G′)
have to get the colors 1, 2, or 3. Henceforth for every face g of G that shares an
edge with f , the vertex vg gets color 4 as well. Since the dual graph G∗ is connected,
color 4 “propagates” from face to face, and χ ′(vf ′) = 4 for every face f ′ of G. Also
color 4 appears at no other vertex of G′. Now the coloring restricted to the vertices in
G uses only three colors and has to be proper because every 4-face f with vertices
u,xuv, v, vf of G′ can only be polychromatic if all of its four vertices are colored
with distinct colors, and in particular u and v get distinct colors. �

5 Concluding Remarks and Open Problems

One could consider polychromatic edge-colorings of plane graphs, rather than poly-
chromatic vertex-colorings. Here the situation is simpler, and a direct application of
Proposition 15 to the dual of a given plane graph in which every face contains at least
g edges implies that the edges of any such plane graph can be colored by � 3g+1

4 �
colors so that every color appears in every face. This is tight, as shown by the plane
graph consisting of two vertices with three internally vertex disjoint paths P1,P2,P3

between them, with P1,P2 of length �g/2� and P3 of length �g/2�.
Theorem 1 can be (slightly) strengthened; it actually implies that for every positive

integer g, the vertices of any plane graph G (with no assumption on g(G)) can be
colored by � 3g−5

4 � colors, so that every face of size at least g contains vertices of all
colors. This follows, for example, by applying Theorem 1 to the graph G′ obtained
from G as follows: For every face f of G of size s < g, add a set of g vertices that
form a path inside f to two distinct vertices on the boundary of f .

The proof of Theorem 1 can be easily extended to colorings of graphs embedded
on surfaces of higher genus. In fact, one can consider polychromatic colorings of
general hypergraphs. Call a vertex-coloring of a hypergraph H = (V ,E) polychro-
matic if all colors appear in every hyperedge. The polychromatic number of H is the
maximum k such that there is a polychromatic vertex-coloring of H with k colors.
A close look at the proof of Theorem 1 shows that it actually gives the following.

Theorem 30 For every constant c, there is a constant b(c) so that the following
holds: Let H = (V ,E) be a hypergraph in which the number of incidences between
any set V ′ ⊆ V and E′ ⊆ E is at most 2(|V ′| + |E′|) + c. Suppose, further, that each
hyperedge of H is of cardinality at least g. Then the polychromatic number of H is
at least 3

4g − b(c).
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The assumption about the incidences replaces the assertion of Lemma 11, and the
rest of the proof is essentially identical to that of Theorem 1.

If G is a graph embedded on a surface of Euler characteristic χ , then the argument
in the proof of Lemma 11 and Euler’s formula for the corresponding surface imply
that the number of incidences between any set V ′ of vertices of G and any set F ′ of
its faces with |F ′| ≥ 2 is at most 2(|V ′| + |F ′| − χ) (and it is |V ′| if |F ′| = 1 and 0
if F ′ = ∅). We can thus apply the theorem above to the hypergraph whose vertices
are the vertices of G and whose edges are the sets of vertices of the faces of G, and
conclude that if every face has at least g vertices, then there is a vertex-coloring with
3
4g − b(χ) colors such that every color appears in every face.

Open Problem 1 Determine p(g) exactly for every positive integer g. The first open
case is g = 5, where it is known that 2 ≤ p(5) ≤ 4.

Let us remark here that the statement p(5) = 4 implies the Four Color Theorem.
This fact follows easily by a reduction from polychromatic 4-colorability to proper
4-colorability, similar in spirit to the reduction used in the proof of Theorem 3.

The graph G in Fig. 2 showing that p(4) ≤ 2 contains multi-edges, and we do not
know if there is also an example without multi-edges. Define p′(g) = min{p(G) |
G plane simple graph, g(G) = g}. The same bounds as in (1) are true for p′(g).

Open Problem 2 For which values g does p(g) = p′(g) hold?

We proved the decision problem PLANE-POLY-k-COLORABILITY to be hard
for k = 3,4, and we are interested in the cases with k ≥ 5.

Open Problem 3 Is the problem PLANE-POLY-k-COLORABILITY N P -complete
for every fixed k ≥ 5?

Acknowledgements We are indebted to Andreas Razen who posed the problem considered in this paper
at the 5th Gremo Workshop on Open Problems (GWOP) 2007. We thank Emo Welzl, Michael Hoffmann,
and Eva Schuberth for organizing GWOP and all other participants for stimulating discussions and the fun
working environment.

For helpful comments we thank Elad Horev, Roi Krakovski, and Shakhar Smorodinsky.
Finally we thank to the anonymous referees for their comments helping to improve the presentation of

the paper, and especially we are grateful to one of them for pointing out Lemma 14 and its proof.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Alon, N.: Problems and results in extremal combinatorics, ii. Discrete Math. 308, 4460–4472 (2008)
2. Alon, N., Krech, A., Szabó, T.: Turán’s theorem in the hypercube. SIAM J. Discrete Math. 21, 66–72

(2007)
3. Bose, P., Shermer, T., Toussaint, G., Zhu, B.: Guarding polyhedral terrains. Comput. Geom.: Theory

Appl. 7(3), 173–185 (1997)



442 Discrete Comput Geom (2009) 42: 421–442

4. Bose, P., Kirkpatrick, D., Li, Z.: Worst-case-optimal algorithms for guarding planar graphs and poly-
hedral surfaces. Comput. Geom.: Theory Appl. 26(3), 209–219 (2003)

5. Dimitrov, D., Horev, E., Krakovski, R.: A note on polychromatic coloring of rectangular partitions.
Discrete Math. 30(6), 2957–2960 (2009)

6. Dinitz, Y., Katz, M.J., Krakovski, R.: Guarding rectangular partitions. In: Abstracts 23rd European
Workshop on Computational Geometry, pp. 30–33 (2007)

7. Horev, E., Katz, M.J., Krakovski, R.: Polychromatic coloring of cubic bipartite plane graphs (2009,
submitted)

8. Guenin, B.: Packing T-joins and edge colouring in planar graphs. Manuscript (2003)
9. Gupta, R.P.: On the chromatic index and the cover index of a multigraph. In: Theory and Applications

of Graphs, Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976. Lecture Notes in
Math., vol. 642, pp. 204–215. Springer, Berlin (1978)

10. Louis Hakimi, S., Kariv, O.: Generalization of edge-coloring in graphs. J. Graph Theory 10, 139–154
(1986)

11. Heawood, P.J.: On the four-color map theorem. Quart. J. Pure Appl. Math. 29, 270–285 (1898)
12. Hoffmann, F., Kriegel, K.: A graph-coloring result and its consequences for polygon-guarding prob-

lems. SIAM J. Discrete Math. 9, 210–224 (1996)
13. Horev, E., Krakovski, R.: Face-respecting colorings of bounded degree plane graphs. Manuscript

(2007)
14. Kempe, A.B.: On the geographical problem of four colors. Am. J. Math. 2(3), 193–200 (1879)
15. Keszegh, B.: Polychromatic colorings of n-dimensional guillotine-partitions In: COCOON, pp. 110–

118 (2008)
16. Lovász, L., Plummer, M.D.: Matching Theory. North-Holland, Amsterdam (1986)
17. Mohar, B., Skrekovski, R.: The Grötzsch theorem for the hypergraph of maximal cliques. Electron. J.

Comb. 6, R26 (1999)
18. Moret, B.M.E.: Planar NAE3SAT is in P. SIGACT News 19(2), 51–54 (1988)
19. Offner, D.: Polychromatic colorings of subcubes of the hypercube. SIAM J. Discrete Math. 22(2),

450–454 (2008)
20. Seymour, P.D.: On multi-colourings of cubic graphs, and conjectures of Fulkerson and Tutte. Proc.

Lond. Math. Soc. 3, 423–460 (1979)
21. Steinberg, R.: The state of the three color problem. Ann. Discrete Math. 55, 211–248 (1993)
22. Stockmeyer, L.: Planar 3-colorability is polynomial complete. SIGACT News 5(3), 19–25 (1973)
23. West, D.B.: Introduction to Graph Theory. Prentice Hall, New York (1996)


	Polychromatic Colorings of Plane Graphs
	Abstract
	Introduction
	Problem Statement and Main Results
	Connection to Guarding Problems
	Related Work
	Notation
	Organization

	Simple Cases
	The Proof of Theorem 1
	Theorem 1 for 1 <=g <=4
	Assigning Vertices to Faces
	Alternative Proof of Corollary 13

	Polychromatic Edge-Colorings
	The Lower Bound of Theorem 1
	The Upper Bound of Theorem 1

	Complexity of Polychromatic Colorability
	Concluding Remarks and Open Problems
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


