
Discrete Comput Geom (2009) 42: 469–488
DOI 10.1007/s00454-009-9165-3

Dynamic Coresets

Timothy M. Chan

Received: 27 August 2008 / Revised: 3 January 2009 / Accepted: 2 March 2009 /
Published online: 23 April 2009
© Springer Science+Business Media, LLC 2009

Abstract We give a dynamic data structure that can maintain an ε-coreset of n points,
with respect to the extent measure, in O(logn) time per update for any constant
ε > 0 and any constant dimension. The previous method by Agarwal, Har-Peled, and
Varadarajan requires polylogarithmic update time. For points with integer coordinates
bounded by U , we alternatively get O(log logU) time. Numerous applications fol-
low, for example, on dynamically approximating the width, smallest enclosing cylin-
der, minimum bounding box, or minimum-width annulus. We can also use the same
approach to maintain approximate k-centers in time O(logn) (or O(log logU) if the
spread is bounded by U) for any constant k and any constant dimension.

For the smallest enclosing cylinder problem, we also show that a constant-factor
approximation can be maintained in O(1) randomized amortized time on the word
RAM.

Keywords Approximation algorithms · Dynamic data structures · Randomization ·
Geometric optimization · Width · k-Center · Word RAM

1 Introduction

The topic of this paper lies at the intersection of two often-studied subareas in com-
putational geometry: approximation algorithms and dynamic data structures.

Geometric Approximation Algorithms, via Coresets It is a well-known fact that
many geometric optimization problems can be solved more efficiently if approximate

This work has been supported by NSERC. A preliminary version of this paper has appeared in Proc.
24th ACM Sympos Comput. Geom., 2008.

T.M. Chan (�)
School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
e-mail: tmchan@uwaterloo.ca

mailto:tmchan@uwaterloo.ca

470 Discrete Comput Geom (2009) 42: 469–488

solutions are acceptable. For example, the fastest exact algorithm known to compute
the width of n points requires O(n3/2+δ) randomized time [8] in dimension 3 (for
any fixed δ > 0) and O(n�d/2�) time [16] in a fixed dimension d ≥ 4, but linear-time
approximation algorithms [16, 27] guaranteeing an approximation factor 1 + ε exist
for any arbitrarily small constant ε > 0 in all fixed dimensions.

Agarwal, Har-Peled, and Varadarajan [2] have proposed a unified approach to de-
veloping linear-time approximation algorithms for many basic geometric optimiza-
tion problems, including the computation of the width, smallest enclosing cylinder,
and minimum-volume enclosing box of a point set P . The approach involves finding
a subset S of P of constant size such that a solution for S yields an approximate
solution for P . Such a subset is now commonly referred to as a coreset.

Agarwal, Har-Peled, and Varadarajan went on to show that computing coresets for
many problems can be reduced to computing coresets for one particular problem: the
extent. The extent of a point set P along a given direction is the width of the minimum
slab orthogonal to the direction that encloses P . We want a subset S of P such that
the extent of S is at least 1 − ε times the extent of P along every direction. (Such
a coreset is specifically called an ε-kernel by some authors.) Agarwal et al. showed
that for the extent problem, a coreset of constant size (O(ε−(d−1)/2)) always exists
and can be found in linear time.

Coresets with respect to extent enjoy many nice properties. For example, it is pos-
sible (though not entirely trivial) to prove that a (1 + O(ε))-factor scaled and trans-
lated copy of the convex hull of the coreset S contains the convex hull of P , which
in turn contains the convex hull of S. The notion is thus extremely fundamental and
corresponds to an approximate version of convex hulls in the strongest (containment-
wise) sense. (Before, proposed definitions of “approximate convex hulls” from the
literature were weaker and less clean.) It follows immediately that we can get coresets
for problems like width and minimum-volume bounding box, since these problems
“depend” only on the convex hull. The approach can also yield coresets for some
other problems of a “nonconvex” nature, like minimum-width spherical shells (an-
nuli in the 2d case) and minimum-width cylindrical shells, by first applying a lifting
transformation, also shown by Agarwal, Har-Peled, and Varadarajan.

Subsequently, a paper by the author [16] has examined improvements of the ε-
dependence in the running time, and a paper by Yu et al. [49] has explored implemen-
tations. (See [3] for a recent survey.) Numerous recent papers have also studied other
types of coresets for clustering problems like k-centers, k-medians, k-means, k-line-
centers, etc. (e.g., [35, 36]), problems dealing with outliers (e.g., [4, 38]), problems
in high, nonconstant dimensions (e.g., [10, 11, 37]), and combinations of the above.

Dynamic Geometric Data Structures Designing dynamic data structures constitute
another fundamental topic in computational geometry. For example, the dynamic 2d
convex hull problem has been studied since Overmars and van Leeuwen’s seminal
work in the early 1980s [44], with breakthroughs found two decades later [14, 15]. It
is now known that we can maintain a 2d point set P under insertions and deletions
of points in O(logn) amortized time, so that we can find an extreme point on the
convex hull of P along any query direction in O(logn) time [14]. With O(log3/2 n)

amortized update time, we can also find the intersection of the convex hull of P with

Discrete Comput Geom (2009) 42: 469–488 471

any query line (i.e., perform linear programming queries in the dual) in O(log3/2 n)

time [15]. There has also been recent progress on the dynamic 3d convex hull prob-
lem [19]: with O(log6 n) amortized expected update time, similar types of queries
can be answered in o(log6 n) time. For higher-dimensional convex hulls, the update
or query time deteriorates rapidly, however [5].

Unfortunately, for many geometric optimization problems, maintaining an ex-
act solution under insertions and deletions can be difficult. Even for the 2d width
problem, the best update time bound known for a fully dynamic data structure is
O(

√
npolylogn) [17]. For 2d minimum-area bounding box, a fully dynamic algo-

rithm with sublinear update time has yet to be found (if it exists at all); in the
insertion-only or offline special case, the current best update bound is O(n5/6+δ) [18].
The situation gets even worse in higher dimensions.

Dynamization Meets Approximation It thus makes perfect sense to turn to dynamic
approximation algorithms for more reasonable update times. Some early work in this
direction [40, 46] had considered the 2d width problem and showed that a (1 + ε)-
factor approximation can be maintained in O(log2 n) time per insertion and deletion,
using the known dynamic convex hull results at the time; with current results [14], it
is actually not difficult to find an algorithm with O(logn) amortized update time.

Surprisingly, determining the best update bound for the next most basic problem,
3d width, has remained open. With known dynamic 3d convex hull results (or 3d
linear programming) [19], it is possible to maintain a (1 + ε)-factor approximation
in O(log6 n) amortized update time by adapting a known static algorithm [27]. But
is there a more direct dynamic approximation algorithm that eliminates some or all
of these logarithmic factors? And what about width in dimensions beyond 3, where
polylogarithmic dynamic convex hull results are not available at all?

Agarwal, Har-Peled, and Varadarajan’s remarkable paper [2] also touched on these
questions. They gave a simple data structure that can maintain a constant-size core-
set, with respect to extent, in O(logd n) time per insertion and deletion (without any
resort to dynamic exact convex hull results). This result automatically leads to poly-
logarithmic dynamic algorithms for approximate width, minimum-volume enclosing
box, minimum-width spherical shell, etc. in all fixed dimensions.

The author’s improved coreset algorithm [20] can trim the update time slightly to
O(logd−1 n log logn), but it is unclear how to get a bound that has a constant number
of logarithmic factors independent of d . In particular, for 3d width, we so far do not
have an O(logn) algorithm.

Better update time is known for one special case: the insertion-only case. Surpris-
ingly, the author [20] has shown how to maintain a coreset (and thus a (1 + ε)-factor
approximation for width, minimum-volume enclosing box, etc.) in constant time and
with constant space for any constant ε > 0. Insertion-only algorithms that use small
amounts of space are better known as streaming algorithms. Subsequent papers [9,
50] have looked into refining the ε-dependencies of the space bound.

The literature on streaming-related models has other relevant results. For exam-
ple, approximation algorithms for diameter and 2d width have been proposed under
the sliding-window model [24, 29]—here, both insertions and deletions are allowed,
but points must be deleted in the same order as they are inserted. Approximation al-
gorithms for other problems, such as k-median clustering and Euclidean minimum

472 Discrete Comput Geom (2009) 42: 469–488

spanning tree, have also been given under the general dynamic streaming model [30,
31, 39]. All these results in the sliding-window and dynamic streaming models re-
quire space and time that have several logarithmic factors at least; worse, these log-
arithmic factors are not in n but in the universe size1 U , under the assumption that
the input coordinates are integers in the range {0, . . . ,U} (where U = Ω(n1/d)). For
these models, the reliance on U is unavoidable. So, these streaming-related results
do not help resolve our question of finding the best dynamic data structures, where
O(n) space is acceptable.

We mention that a lower bound of Ω(logn) update time can be obtained in the de-
cision tree model, for example, for the problem of maintaining a factor-c approximate
width under insertions and deletions in 2d for any constant c. We can simply reduce
from the 1d priority queue problem over a set S of positive integers: fix two anchor
points at (−M,0) and (M,0) for a sufficiently large M and create a point (0, (c+1)k)

for each k ∈ S; then the current width is equal to (c + 1)m where m is the maximum
of S. (If we could solve the priority queue problem over S in o(logn) time, then we
would be able to sort any permutation of S in o(n logn) time, a contradiction.)

Our Main Result In this paper, we present a new data structure that can maintain a
constant-size coreset, with respect to extent, in O(logn) time2 for all constant dimen-
sions. The space usage is O(n). Automatically, the result implies dynamic (1 + ε)-
factor approximation algorithms with logarithmic update time for the long list of
problems mentioned (width, minimum-volume bounding box, . . .). Thus, we have
successfully eliminated all the extra logarithmic factors and essentially settled the
complexity of these dynamic approximation problems for the first time.

Our method is conceptually simple and nice, at least in the randomized version,
as described in Sect. 3. The basic idea involves an interesting, dynamic variation of
prune-and-search: we try to identify a fraction of the input point set for which main-
taining a coreset is easy, and recurse on the rest. A derandomization is theoretically
possible, as shown in Sect. 4, using (curiously) approximate centerpoints.

Applications Just as dynamic data structures have applications to the design of al-
gorithms, our data structures can be applied to speed up existing approximation algo-
rithms. We mention two examples:

• Agarwal, Har-Peled, and Yu [4] have recently given a simple algorithm to solve
variants of geometric optimization problems (width, minimum-volume bounding
box, . . .) that allow for k outliers. Their “peeling” algorithm works by computing
a coreset, then deleting all of its points, and repeating for O(k) iterations. Their
running time can be reduced from O(nk) to O(n + k logn) by using our dynamic
coreset method. (The situation is loosely analogous to how dynamic convex-hull
data structures are used to compute convex layers [25].)

1In some papers, the universe size is denoted by Δ.
2We have omitted writing out dependencies of the constant factors on ε in the introduction, to keep the
readers focused on the main parameter n. In the body of the paper, we will write these ε-dependencies
fully.

Discrete Comput Geom (2009) 42: 469–488 473

• Har-Peled [34] gave an algorithm for an approximate decision version of the “2-
plane-center” problem (covering a point set by two slabs of minimum maximum
width) in 3d. His algorithm uses dynamic approximate 3d width as a subroutine.
His O(n log3 n) time bound can now be reduced to O(n logn). Improvements for
the corresponding optimization problem also follow. (The situation is loosely anal-
ogous to how dynamic width data structures are used to solve the exact 2-line-
center problem [7].)

More Results: Approximation Meets Word RAM As we have noted, O(logn) up-
date time is optimal in the decision tree model but actually is not the end of the story.
The first reason is theoretical: for the analogous 1d priority queue problem, sublog-
arithmic data structures are known on the word RAM model [47, 48]; see [22, 23]
for more on word-RAM algorithms in computational geometry. The second reason is
more practically significant: in order to reduce the standard priority queue problem
to dynamic approximate width, for example, one needs to construct point sets whose
spread is at least exponential in n, which are uncommon.

Geometric approximation algorithms frequently use the floor function to round
input to grid points with small integer coordinates and on occasion even incorporate
RAM techniques like hashing. Thus, an argument could be made that the word-RAM
model is more appropriate than the real RAM for approximation algorithms (e.g., see
[41]); the word RAM is actually more “realistic,” since words cannot hold infinite-
precision real numbers in practice. Also, many approximation algorithms in the past
have specifically made use of the (reasonable) assumption that the input has bounded
spread (e.g., see [21]), or that the input coordinates are bounded integers. Regarding
the latter assumption, we have already mentioned known O(polylogU)-type results
in dynamic streaming and sliding window models; in more traditional settings, we
can also cite Edwards and Varadarajan’s work [28] on coresets for the k-hyperplane-
center problem (covering a point set by k slabs of minimum maximum width), where
coresets of small size are known not to exist without the bounded integer input as-
sumption [34], but coresets of O(polylogU) size are possible.

In Sect. 5, we show that an update time much smaller than O(logn) is possible for
points with coordinates from {0, . . . ,U} for reasonable values of U . Specifically, we
get O(log logU) for coresets with respect to extent and the other problems. The new
method is obtained by combining our O(logn) method with additional ideas. It does
not involve van Emde Boas trees (contrary to the reader’s first impression perhaps)
or fancier RAM data structures.

In Sect. 7, we show that O(log logU) might not be the end of the story either, at
least in one special case. Specifically, we show that for smallest enclosing cylinder, a
constant-factor approximation can be maintained in constant randomized amortized
time under both insertions and deletions. Note that in the 2d case, the smallest en-
closing cylinder problem is equivalent to width.

More Results: k-centers In Sect. 6, we venture beyond extent-related problems and
show that our approach can be adapted to at least one clustering problem, the k-center
problem (finding k congruent balls of minimum radius covering a point set). Core-
sets for k-centers have been studied before (e.g., see [3, 33, 34]), but no satisfactory

474 Discrete Comput Geom (2009) 42: 469–488

dynamic algorithms have been given to the best of the author’s knowledge. We show
that a (1 + ε)-factor approximation can be maintained in O(logn) or O(log logU)

randomized amortized time for any constant ε, constant k, and constant dimension.
Our algorithm for k-center is uncannily similar to our algorithm for extent.

It should be stated that all our randomized results are Las Vegas and only require
the assumption that the update sequence is oblivious to the random choices made by
our algorithms.

2 Preliminaries

We assume that the dimension d is constant; big-O notation may hide constant factors
that depend on d (possibly exponentially).

We begin by stating the particular definition of coresets that we will work with in
the next three sections.

Definition 2.1 core Given a unit vector x, let w(P,x) = maxp,q∈P (p − q) · x (the
“extent” along direction x), and let f (P,x) = maxp∈P p · x. Call a subset S ⊆ Q an
ε-coreset of Q relative to P if f (S, x) ≥ f (Q,x) − εw(P,x) for every unit vector
x ∈ R

d .

We will describe how to maintain an ε-coreset S of a point set P relative to P it-
self. Since w(S,x) = f (S, x)+f (S,−x), it follows that w(S,x) ≥ (1−2ε)w(P,x),
so S is indeed a coreset with respect to extent (after readjusting ε by a constant fac-
tor).

Trivially, an ε-coreset of Q relative to any subset of P is an ε-coreset of Q rela-
tive to P . An ε-coreset of an ε′-coreset of Q is an (ε + ε′)-coreset of Q (relative to
the same set P). Moreover, if Si is an ε-coreset of Qi , then

⋃
i Si is an ε-coreset of⋃

i Qi (relative to the same set P); thus, coresets are “decomposable.” These proper-
ties alone are sufficient to imply an efficient polylogarithmic dynamic algorithm, by
taking coresets of unions of coresets recursively in the form of a tree, as described by
Agarwal, Har-Peled, and Varadarajan [2]. The trouble is: we lose precision at each of
the Θ(logn) layers of recursion, so we need to reset ε to Θ(ε/ logn) at the bottom
layer, resulting in numerous extra logarithmic factors.

Instead, we attempt to modify directly a static coreset algorithm, to identify a
special case where dynamization is easy. The following lemma is based on the static
algorithm by Agarwal, Har-Peled, and Varadarajan, which in turn builds on a simple
constant-factor algorithm by Barequet and Har-Peled [12]. A quick proof (essentially
a reinterpretation of known ideas) is included for the sake of completeness.

Let affS denote the affine hull (smallest enclosing flat) of S, and d(A,B) denote
the minimum Euclidean distance between sets A and B .

Lemma 2.2 Fix d + 1 “anchor” points p0, . . . , pd . Consider a “special” point set
Q satisfying

d
(
p, aff{p0, . . . , pj−1}

) ≤ cd
(
pj , aff{p0, . . . , pj−1}

)

∀j = 1, . . . , d, ∀p ∈ Q ∪ {p0, . . . , pd},

Discrete Comput Geom (2009) 42: 469–488 475

for some constant c ≥ 1. We can maintain an ε-coreset of Q relative to {p0, . . . , pd}
of size O(ε−d), in O(1) time under insertions and deletions of points in Q; in par-
ticular, the preprocessing time is O(|Q|).

Alternatively, the size bound can be reduced to O(ε−(d−1)/2), but the update time
is increased to O(ε−(d−1)/2 log |Q|) and preprocessing time to O(ε−(d−1)/2|Q|).

Proof Let e0 = (0, . . . ,0), e1 = (1,0, . . . ,0), . . . , ed = (0, . . . ,0,1). We describe
an affine transformation to make p0 = e0, . . . , pd = ed while preserving the above
condition for some (larger) constant: Let fj−1 denote the flat aff{p0, . . . , pj−1}. As-
sume inductively that p0 = e0, . . . , pj−1 = ej−1. Say pj = (ξ1, . . . , ξd). By rotating
around fj−1, we can make ξj+1 = · · · = ξd = 0. For every point p = (x1, . . . , xd) ∈
Q ∪ {p0, . . . , pd}, the stated condition implies that |xj | ≤ c|ξj |; furthermore,
|x1|, . . . , |xd |, |ξ1|, . . . , |ξj | ≤ c, since p0 is the origin and d(p,p0),d(pj ,p0) ≤
cd(p1,p0) = c. (We may assume ξj �= 0, because otherwise the j th coordinates
would all be 0 and the dimension d can be decreased.) We apply a shear-like
mapping (x1, . . . , xd)
→ (x1 − ξ1

ξj
xj , . . . , xj−1 − ξj−1

ξj
xj ,

1
ξj

xj , xj+1, . . . , xd). This
sends pj to ej without changing p0, . . . , pj−1. The coordinates of any point
p ∈ Q ∪ {p0, . . . , pd} are still bounded by a constant; hence, so are the distances
of p to f0, . . . , fj−1. The distances of p to fj , . . . , fd−1 are unchanged. Thus, the
stated condition is still true after readjusting c. After d inductive steps, the final c

remains a constant. (Note that in implementation, the transformation can be found
directly by computing a matrix inverse.)

We are justified to take the transformation because of the following property: if S

is an ε-coreset of Q relative to P and M is an affine transformation, then M(S) is an
ε-coreset of M(Q) relative to M(P).

After transformation, we can use a simple method to construct a coreset S: build
a uniform grid with side length ε and keep only one point per grid cell in S. Then for
any unit vector x, f (S, x) and f (Q,x) differ by at most an additive error of O(ε).
This is at most O(ε)w({p0, . . . , pd}, x), since the width of {e0, . . . , ed} is a constant
1/

√
d by straightforward calculations. (We can readjust ε by a constant factor.)

Since Q is contained in [−c, c]d , the maximum size of the coreset, i.e., the num-
ber of grid cells, is O(ε−d). Insertion/deletion is easily doable in O(1) time, by look-
ing up an appropriate grid cell via the floor function, as the transformation does not
change (the anchor points are fixed).

Alternatively, the coreset size can be reduced to O(ε−(d−1)/2) by directly applying
a refined method by the author [20] or Yu et al. [49] to the transformed point set. This
method requires finding the nearest neighbors to a set of O(ε−(d−1)/2) grid points.
Using a priority queue for each such point, these nearest neighbors can be maintained
in O(ε−(d−1)/2 log |Q|) (or actually O(ε−(d−1)/2 log(1/ε)) time per update. (Both
the stated preprocessing and update bounds can be further improved with more effort,
though such improvements will not matter at the end.) �

We will let Q.insert-special() and Q.delete-special() denote the insertion and dele-
tion procedure in the above lemma, and Q.preprocess-special(p0, . . . , pd) denote the
preprocessing procedure, which takes linear time by n insertions.

476 Discrete Comput Geom (2009) 42: 469–488

The lemma immediately implies a linear-time static algorithm for computing an
ε-coreset of Q relative to Q for any point set Q. For each j = 1, . . . , d , we can set pj

to be the point of Q farthest from aff{p0, . . . , pj−1}, computable in linear time. The
condition in the lemma is met with c = 1. We would like to dynamize this method.

Generally speaking, deletions tend to be more challenging than insertions in de-
signing dynamic data structures. (Indeed, because of decomposability of coresets, we
can adapt known techniques to handle insertions [13].) The main difficulty arises
when we delete one of the anchor points p0, . . . , pd . For worst-case update se-
quences, such bad events could happen on every update. (Indeed, in the application
to coresets with outliers, Agarwal, Har-Peled, and Yu’s peeling algorithm [4] tends to
select extreme points as the next points to delete.)

To avoid this difficulty, one has to somehow select anchor points that will last (i.e.,
not be deleted) for a large number of updates. It seems there is not enough freedom in
finding anchor points that serve the entire point set. Our idea is to find anchor points
that serve a subset Q containing a fraction of the given points and let recursion handle
the remaining points R (since coresets are decomposable). The number of special
subsets Q maintained at any time would then be logarithmic.

3 A Simple Randomized Method with O(logn) Update Time

To execute this idea, our first solution will use randomization to select anchor points.
The main innovation lies in the preprocessing strategy, which we describe neatly in
the pseudocode below.

Fix a positive constant α � 1/d . Let P be the given point set.

P .preprocess():

0. if |P | is below a constant then return
1. Q ← P , p0 ← a random point of P

2. for j = 1, . . . , d do
3. Aj ← the α|P | farthest points of Q from aff{p0, . . . , pj−1}
4. Q ← Q − Aj

5. pj ← a random point of Aj

6. R ← P − Q

7. Q.preprocess-special(p0, . . . , pd)
8. R.preprocess()

The overall coreset is defined as the union of the coresets of all the special subsets
kept.

Observe that the condition in Lemma 2.2 is met with c = 1, so indeed an ε-coreset
of Q relative to {p0, . . . , pd} (and thus relative to P) can be maintained directly. We
opt for the second alternative of Lemma 2.2 here. The union of the ε-coresets of Q

and R clearly yields an ε-coreset of P relative to P .
After the for loop in lines 2–5, |R| ≤ dα|P |.
The preprocessing time for a point set P of size n then satisfies the recurrence

T (n) ≤ T (dαn) + O(ε−(d−1)/2n), yielding T (n) = O(ε−(d−1)/2n).

Discrete Comput Geom (2009) 42: 469–488 477

We now describe the update procedures. Fix a sufficiently small positive con-
stant δ. The idea is to rebuild the data structure after every δ|P | updates, or when
an anchor point is deleted. Insertions are applied to R recursively, and not Q (so that
the condition in Lemma 2.2 remains true).

P .delete(p):

0. if |P | is below a constant then delete directly and return
1. P ← P − {p}, P.counter ← P.counter − 1
2. if P.counter ≤ 0 or p ∈ {p0, . . . , pd} then
3. P.counter ← δ|P |, P .preprocess(), and return
4. if p ∈ Q then Q.delete-special(p) else R.delete(p)

P .insert(p):

0. if |P | is below a constant then insert directly and return
1. P ← P ∪ {p}, P.counter ← P.counter − 1
2. if P.counter ≤ 0 then
3. P.counter ← δ|P |, P .preprocess(), and return
4. R.insert(p)

At any time, |R| ≤ (dα + δ)|P |. Let ñ be the size of P during the last rebuild; the
current size |P | = n is always Θ(ñ).

The rebuilding cost in line 3 is O(ε−(d−1)/2n). If the rebuilding is caused by P ’s
counter reaching 0, we can cover this cost by charging O(ε−(d−1)/2) units to each of
the δñ updates since the last rebuild. If instead we have just deleted one of the anchor
points {p0, . . . , pd}, then we charge O(ε−(d−1)/2n) units to the current update, but the
probability of this occurring is only O(1/n), as we observe below. This observation
is perhaps intuitively clear (because each anchor point pj is chosen at random from
a set Aj of size Ω(n)), but the formal justification requires some care (because of
dependence of Aj on p0, . . . , pj−1):

Lemma 3.1 Let p be the point being inserted/deleted at the current time. Then
Pr{p ∈ {p0, . . . , pd}} = O(1/n) for a sufficiently small constant δ > 0.

Proof Fix a time t before the current time. Let P(t) denote P at time t . Let Aj(t)

and pj (t) denote Aj and pj at time t if a rebuild occurs at time t (they are undefined
otherwise), whereas pj refers to pj at current time. Set A0 = P by default. Let D(t)

be the points deleted between t and current time. (Note that D(t) and p are fixed and
not random variables, by the obliviousness assumption.)

Let G(t) be the event that the last rebuild occurs at time t . Let E(t) be the event
that a rebuild occurs at time t , and F(t) be the event that no rebuild occurs in the
period after time t and before the current time; then G(t) = E(t) ∧ F(t). For any
fixed j , Pr{pj = p ∧F(t) | E(t)} ≤ 1

|Aj (t)| = 1
α|P(t)| . So, Pr{p ∈ {p0(t), . . . , pd(t)}∧

F(t) | E(t)} ≤ d+1
α|P(t)| . Now, Pr{F(t) | E(t)} ≥ 1 − (d+1)δ

α
, since we have F(t) iff

pj (t) �∈ D(t) for all j , and Pr{pj (t) ∈ D(t)} ≤ |D(t)|
|Aj (t)| ≤ δ|P(t)|

α|P(t)| . This assumes that
the number of updates between t and the current time is less than δ|P(t)|; otherwise,

478 Discrete Comput Geom (2009) 42: 469–488

F(t) would be trivially false. It follows that

Pr
{
p ∈ {p0, . . . , pd} | G(t)

} = Pr{p ∈ {p0, . . . , pd} ∧ F(t) ∧ E(t)}
Pr{F(t) ∧ E(t)}

= Pr{p ∈ {p0, . . . , pd} ∧ F(t) | E(t)}
Pr{F(t) | E(t)}

≤ (d + 1)/(α|P(t))

1 − (d + 1)δ/α
= 1

(α/(d + 1) − δ)ñ
.

Since G(t) is true for precisely one t , the O(1/n) probability bound holds uncondi-
tionally. �

We conclude that the expected charge per update is O(ε−(d−1)/2) for line 3.
The overall expected amortized time per update satisfies the recurrence U(n) ≤
max{U((dα + δ)n) + O(ε−(d−1)/2),O(ε−(d−1)/2 logn)}, yielding U(n) =
O(ε−(d−1)/2 logn), as long as δ is sufficiently small so that dα + δ � 1 and
δ � α/(d + 1).

The size of the overall coreset satisfies the recurrence N(n) ≤ N((dα + δ)n) +
O(ε−(d−1)/2), yielding N(n) = O(ε−(d−1)/2 logn). We can reduce the size to
O(ε−(d−1)/2) by computing an ε-coreset of the ε-coreset after every update. (We
can readjust ε by a constant factor.) The additional time per update is O(N(n) +
ε−(d−3/2)) = O(ε−(d−1)/2 logn + ε−(d−3/2)) by a static algorithm of the author [20].

4 Derandomization

We now present a deterministic variant of our data structure. To guarantee that an-
chor points will last, the new idea is to permit anchor points that are not necessarily
members of the maintained point set. The key tool is approximate centerpoints:

Definition 4.1 Given a point set P ⊂ R
d , a β-centerpoint is a point q ∈ R

d with the
property that any halfspace containing q contains at least β|P | points of P . Equiva-
lently, we want the point q to lie inside the convex hull of P even after the removal
of any subset of less than β|P | points from P .

It is well known that a 1/(d + 1)-centerpoint exists for any point set [45].
Linear-time algorithms are also known for computing β-centerpoints for constants
β < 1/(d + 1). For example, one can take a random sample of constant size and
return a 1/(d + 1)-centerpoint of the sample by brute force. (Clarkson et al. [26]
described even faster randomized algorithms.) Deterministically, one can replace the
sample with ε-approximations [42], constructible in linear time.

Discrete Comput Geom (2009) 42: 469–488 479

Extra complications arise in adapting the preprocessing algorithm. We present the
new pseudocode below:

P .preprocess():

0. if |P | is below a constant then return
1. Q ← P , p0 ← a β-centerpoint of P

2. for j = 1, . . . , d do
3. form 2d−j+1 “orthants” by drawing d − j + 1 pairwise orthogonal

hyperplanes through aff{p0, . . . , pj−1}
4. Q ← the points of Q in an orthant with ≥ |Q|/2d−j+1 points of Q

5. Aj ← the α|Q| farthest points of Q from aff{p0, . . . , pj−1}
6. Q ← Q − Aj

7. pj ← a β-centerpoint of Aj

8. R ← P − Q

9. Q.preprocess-special(p0, . . . , pd)
10. R.preprocess()

For the analysis, the following fact is useful:

Lemma 4.2 Let f be a j -flat, and O+ be one of its orthants. The distance of
conv{p ∈ O+ : d(p,f) ≥ r} to f is r/

√
d − j .

Proof By transformation, we can take r = 1 and f = {(x1, . . . , xd) : x1 = · · · =
xd−j = 0}. The lemma is equivalent to the statement that the distance of conv{(x1,

. . . , xd−j) : x2
1 + · · · + x2

d−j ≥ 1, x1, . . . , xd−j ≥ 0} to the origin is 1/
√

d − j . This
follows from straightforward calculations. �

Let fj−1 = aff{p0, . . . , pj−1}. By line 5, all points p ∈ Aj satisfy d(p,fj−1) ≥
maxq∈Q∪Aj+1∪···∪Ad

d(q, fj−1) ≥ maxq∈Q∪{pj+1,...,pd } d(q, fj−1), since pi ∈
convAi . Since pj ∈ convAj and Aj is contained in an orthant of fj−1, Lemma 4.2
then implies that d(pj , fj−1) ≥ maxq∈Q∪{pj+1,...,pd } d(q, fj−1)/

√
d . So, the condi-

tion in Lemma 2.2 is met with c = √
d .

After the for loop in lines 2–7, |Q| ≥ [2−d(1 − α)]d |P |, and so |R| ≤ (1 −
[2−d(1 − α)]d)|P |. Each Aj has size at least α[2−d(1 − α)]d |P |.

We use exactly the same pseudocode for P .insert() and P .delete(), with one ex-
ception: the clause p ∈ {p0, . . . , pd} in the if statement can be dropped.

Observe that pj lies inside convAj even after up to β|Aj | points have been
deleted. Thus, pj lies inside convP at all times as long as we set δ < βα[2−d(1 −
α)]d . Therefore, even though the anchor points p0, . . . , pd are not members of P , we
know that any ε-coreset of Q relative to {p0, . . . , pd} is an ε-coreset relative to P .
So, the union of the ε-coresets of Q and R is still an ε-coreset of P relative to P .

At any time, |R| ≤ (1 − [2−d(1 − α)]d + δ)|P |.
The cost of the last rebuild in line 3 is O(ε−(d−1)/2n). We can cover this cost by

charging O(ε−(d−1)/2) units to each of the δñ updates since the last rebuild.

480 Discrete Comput Geom (2009) 42: 469–488

The amortized update time satisfies the recurrence U(n) ≤ max{U((1 − [2−d(1 −
α)]d + δ)n) + O(ε−(d−1)/2), O(ε−(d−1)/2 logn)}, yielding U(n) = O(ε−(d−1)/2×
logn), as long as δ is sufficiently small.

We can also make the amortized bound worst-case by applying a standard deamor-
tization technique [43] in which the rebuilding work is spread out over multiple up-
dates.

Theorem 4.3 We can maintain an ε-coreset of an n-point set in R
d w.r.t. extent of

size O(ε−(d−1)/2) in O(ε−(d−1)/2 logn + ε−(d−3/2)) time per update.

5 A Method with O(log logU) Update Time

We now describe a data structure with sublogarithmic update time for integer input
where coordinates lie in {0, . . . ,U}. The approach involves combining a slower U -
sensitive method with our earlier O(logn)-update-time method.

We first present the slower method, which maintains an ε-coreset of size
O(ε−d logd U) but has the advantage of having O(1) amortized update time. The
method is again based on Lemma 2.2, but we use a more common idea. Namely, we
partition P into a small number of subsets where points having similar distances, to
within a constant factor, are grouped into the same subset (this idea has been used
before, e.g., in [24, 28]). Then Lemma 2.2 is automatically applicable to each subset,
regardless of which anchor points we choose.

More precisely, the preprocessing pseudocode is given below. Initially, we set
j = 1 and Pi0 = P . We again use randomization to select anchor points.

Pi0···ij−1 .preprocess():

1. pi0···ij−1 ← a random point of Pi0···ij−1

2. if j = d + 1 then
3. Pi0···id .preprocess-special(pi0,pi0i1, . . . , pi0···id) and return
4. for each ij do
5. Pi0···ij ← {p ∈ Pi0···ij−1 : �log2 d(p, aff{pi0,pi0i1, . . . , pi0···ij−1})� = ij }
6. Pi0···ij .preprocess()

By line 5, distances of all points in Pi0···ij to aff{pi0,pi0i1, . . . , pi0···ij−1} are within
a factor of 2 from each other. So, the condition of Lemma 2.2 is met for each subset
Pi0···id , with c = 2. This time, we opt for the first alternative of Lemma 2.2.

In line 4, only indices ij for which Pi0···ij is nonempty are considered. Because
coordinates are integers in the range [0,U], distances of points to flats can lie in
the range [Ω(1/Ud−1),O(U)] ∪ {0}. (Calculations show that squared distances are
ratios of integers with denominators bounded by O(U2(d−1)) and must thus be
Ω(1/U2(d−1)) if nonzero.) The number of choices of each index ij (positive or neg-
ative) is thus O(logU). In particular, the number of subsets Pi0···id is O(logd U), and
the union of the ε-coresets of these subsets, plus all the anchor points pi0···ij , yields
a coreset of P of size O(ε−d logd U).

Discrete Comput Geom (2009) 42: 469–488 481

The preprocessing time satisfies the recurrence Tj−1(n) ≤ Tj (n) + O(n) with
Td(n) = O(n), yielding T0(n) = O(n).

The update procedures are straightforward and are described by the rough
pseudocode below:

Pi0···ij−1 .delete(p):

1. Pi0···ij−1 ← Pi0···ij−1 − {p}
2. if p = pi0···ij−1 then Pi0···ij−1 .preprocess() and return
3. if j = d + 1 then Pi0···id .delete-special(p) and return
4. ij ← �log2 d(p, aff{pi0,pi0i1, . . . , pi0···ij−1})�
5. Pi0···ij .delete(p)

Pi0···ij−1 .insert(p):

1. Pi0···ij−1 ← Pi0···ij−1 ∪ {p}
2. if |Pi0···ij−1 | = 1 then Pi0···ij−1 .preprocess() and return
3. if j = d + 1 then Pi0···id .insert-special(p) and return
4. ij ← �log2 d(p, aff{pi0,pi0i1, . . . , pi0···ij−1})�
5. Pi0···ij .insert(p)

For the analysis, fix j and a subset Pi0···ij−1 , let ñ be its size during its last rebuild,
and u be the number of updates to the subset since the last rebuild. Fix t and let G(t)

be the event that the last rebuild of this subset occurs at time t . Let Pi0···ij−1(t) denote
the subset at time t , and let D(t) be the points deleted between t and current time.

The rebuilding cost in line 1 of Pi0···ij−1 .delete() is O(|Pi0···ij−1 |) = O(ñ + u). We
can cover the cost by charging O(1) units to each of the u updates since the last
rebuild, plus O(max{ñ − u,1}) units to the current update if we have just deleted
the anchor point pi0···ij−1 . Conditioned on G(t), the probability of this occurring, i.e.,
that pi0···ij−1 = p, is at most 1/max{ñ − u,1}, since pi0···ij−1 is equally likely to be
any member of Pi0···ij−1(t) − D(t).

Therefore, the expected charge per update is O(1) for each fixed j , uncondition-
ally. The overall expected amortized update time satisfies the recurrence Uj−1(n) ≤
Uj (n) + O(1) with Ud(n) = O(1), yielding U0(n) = O(1).

We can derandomize the above method in the same way as in Sect. 4, using ap-
proximate centerpoints and subdividing into orthants.

Finally, we can reduce the size of the overall coreset from N(n) = O(ε−d logd U)

all the way to O(ε−(d−1)/2), by maintaining a coreset S′ of the coreset S using the
method from Sects. 3 or 4. Since each update causes only O(1) (amortized or worst-
case) number of updates to S, the update time becomes O(ε−(d−1)/2 logN(n) +
ε−(d−3/2)) = O(ε−(d−1)/2 log logU + ε−(d−3/2)).

Theorem 5.1 We can maintain an ε-coreset of a point set in {0, . . . ,U}d w.r.t. extent
of size O(ε−(d−1)/2) in O(ε−(d−1)/2 log logU + ε−(d−3/2)) time per update.

482 Discrete Comput Geom (2009) 42: 469–488

6 k-Centers

In this section, we adapt the randomized approach in Sect. 3 to solve the approximate
k-center problem for small k in a constant dimension d . The k-center problem can
be formulated as follows: given a set P of n points and a number k, we want to
find a set of k points X ⊂ R

d and a radius r such that d(p,X) ≤ r for every p ∈ P

minimizing r ; in other words, we want X to minimize maxp∈P d(p,X). We thus
switch to the following definition of coresets:3

Definition 6.1 Given a k-point set X, define g(P,X) = maxp∈P d(p,X). Call a
subset S ⊆ Q an ε-coreset of Q if g(S,X) ≥ (1 − ε)g(Q,X) for every k-point set
X ⊂ R

d .

A factor-(1 + ε) solution to the k-center problem is a k-point set X̂ such that
g(p, X̂) ≤ (1 + ε)g(p,X) for every k-point set X. If S is an ε-coreset of P and X̂ is
a factor-(1+ε′) solution for S, then X̂ is a factor-(1+O(ε+ε′)) solution for P , since
g(P, X̂) ≤ g(S, X̂)/(1 − ε) ≤ g(S,X)(1 + ε′)/(1 − ε) ≤ g(P,X)(1 + ε′)/(1 − ε) for
every k-point set X.

This definition of coresets satisfies properties similar to before: An ε-coreset of an
ε′-coreset is an (ε + ε′)-coreset. If Si is an ε-coreset of Q, then

⋃
i Si is an ε-coreset

of
⋃

i Qi .
We use the following analog of Lemma 2.2, which is based on the well-known

greedy approximation algorithm for the k-center problem, attributed to Gonza-
lez [32]:

Lemma 6.2 Fix k + 1 “anchor” points p0, . . . , pk . Consider a “special” point set
Q satisfying

d
(
p, {p0, . . . , pj−1}

) ≤ cd
(
pj , {p0, . . . , pj−1}

)

∀j = 1, . . . , k, ∀p ∈ Q ∪ {p0, . . . , pk}.
We can maintain an ε-coreset of Q ∪ {p0, . . . , pk} of size O(ε−dk) in O(1) time
under insertions and deletions of points in Q; in particular, the preprocessing time is
O(|Q|).

Proof Let r = d(pk, {p0, . . . , pk−1}).
For any k-point set X ⊂ R

d , we prove that g({p0, . . . , pk},X) ≥ 1
2c

r : Let r∗ =
g({p0, . . . , pk},X). The k balls of radius r∗ centered at the points of X cover all
points in {p0, . . . , pk}. By the pigeonhole principle, one of the balls must contain at
least two points pi and pj for some i < j . Then

r ≤ d
(
pk, {p0, . . . , pj−1}

) ≤ cd
(
pj , {p0, . . . , pj−1}

)

≤ cd(pj ,pi) ≤ 2cr∗.

3The coresets in our definition have been called “additive” coresets in the literature, somewhat confusingly.
“Multiplicative” coresets for k-centers satisfy a stronger condition; see [3, 34].

Discrete Comput Geom (2009) 42: 469–488 483

The method to construct the coreset S is simple: build a uniform grid of side length
εr and keep only one point per grid cell in S. Then for any k-point set X, g(S,X)

and g(Q,X) differ by at most an additive error of O(εr) = O(ε)g({p0, . . . , pk},X).
Since Q can be covered by k balls of radius cr , the maximum size of this core-

set, i.e., the number of nonempty grid cells, is O(kε−d). Insertion/deletion is easily
doable in O(1) time, by looking up an appropriate grid cell. �

Statically, for each j = 1, . . . , k, we can set pj to be the point of Q with largest
distance to {p0, . . . , pj−1}, computable in linear time.

Dynamically, we face a similar difficulty: what if an anchor point gets deleted? In
the worst case, this may happen often. (Indeed, in clustering applications, one is par-
ticularly interested in times when clusters undergo important changes.) Fortunately,
we can use exactly the same idea as in Sect. 3. In the pseudocode of P .preprocess(),
we only have to replace a few d’s with k’s and modify line 3 to:

3. Aj ← the α|P | points p ∈ Q with the largest d(p, {p0, . . . , pj−1})

We choose parameters so that kα + δ � 1 and δ � α/(k + 1), for example,
α = 1/(2k) and δ = 1/(4k2). The probability that p ∈ {p0, . . . , pd} is now O(k/n).
The recurrence for the amortized expected update time becomes U(n) ≤ U((kα +
δ)n) + O(kO(1)), which solves to U(n) = O(kO(1) logn). The size of the over-
all coreset satisfies the recurrence N(n) ≤ N((kα + δ)n) + O(ε−dk), which gives
N(n) = O(ε−dk logn). We can compute a factor-(1 + ε) solution for the coreset af-
ter every update. (We can readjust ε by a constant factor.) The additional time per
update is O(N(n) log k + (k/ε)O(k1−1/d)) = O(ε−dk log k logn + (k/ε)O(k1−1/d)) by
a static approximate k-center algorithm of Agarwal and Procopiuc [6].

The randomized approach in Sect. 5 is also applicable with no major changes. In
fact, the integer-input assumption is not necessary, as long as the spread is bounded
by U . Consequently, we get:

Theorem 6.3 We can maintain a factor-(1 + ε) solution to the k-center problem
for an n-point set in R

d in expected amortized update time O(ε−dkO(1) min{logn,

log logU} + (k/ε)O(k1−1/d)), where U is an upper bound on the spread.

Remark The approach also works in the high-dimensional case where d may not
be a constant, or more generally, in the metric-space setting if a larger approxima-
tion factor is tolerable. In Lemma 6, {p0, . . . , pk} itself is a constant-factor coreset of
Q∪{p0, . . . , pk} of size O(k) (since g(Q∪{p0, . . . , pk},X) ≤ g({p0, . . . , pk},X)+
cr ≤ O(1)g({p0, . . . , pk},X) from the proof of the lemma). The ε−d factors disap-
pear in the bound for N(n). Instead of Agarwal and Procopiuc’s algorithm, we can
use the static factor-2 algorithm of Gonzalez [32], which runs in O(N(n)k) time.
The overall approximation factor is O(1), and the number of operations (e.g., dis-
tance computations) is O(kO(1) min{logn, log logU}) per update.

We leave open the question of whether our k-center result can be derandomized.

484 Discrete Comput Geom (2009) 42: 469–488

7 Constant Update Time?

In this last section, we consider the possibility of beating O(log logU) in the inte-
ger input case. Specifically, we address the problem of approximating the smallest
enclosing cylinder of a point set.

Let RadP denote the radius of the smallest cylinder enclosing P . For a simple
O(1)-factor, static approximation algorithm [1], one can do the following: pick an
anchor point s ∈ P , find its farthest point t ∈ P , and return w = maxp∈P Rad{s,p, t}.
Unfortunately, an insertion of a new point may require changing t and recomputing
w from scratch. We are similarly in trouble if either anchor point s or t is deleted.

In a previous paper [20], the author proposes a simple streaming algorithm that
takes care of insertions using a “doubling” trick. This will be the basis of our dynamic
algorithm.

Lemma 7.1 The following algorithm computes a factor-18 approximation w to
RadP for any sequence P of points:

1. w ← 0, s, t ← first two points of P

2. for each remaining point p ∈ P do
3. w ← max{w,Rad{s,p, t}}
4. if �log2 d(s,p)� > �log2 d(s, t)� then t = p

Proof The version of the algorithm from [20, Theorem 3.1] uses the condition
d(s,p) > 2d(s, t) instead in line 4, but the same analysis follows through. �

The key observation behind our new algorithm is the following recasting of
Lemma 7, in which we partition the point set into groups like in Sect. 5:

Corollary 7.2 Fix a point s ∈ P . Let Pi = {p ∈ P : �log2 d(s,p)� = i} and pick a
point pi ∈ Pi . Let i+ (resp. i−) denote the successor (resp. predecessor) of i in the
set I = {i : Pi �= ∅}, i.e., the smallest element greater than (resp. the largest element
less than) i in I . Then

w = max
{

max
i∈I,p∈Pi

Rad{s,p,pi}, max
i∈I

Rad{s,pi,pi+}
}

is a factor-18 approximation to RadP .

Proof Imagine running the algorithm in Lemma 7.1 where the points of P are or-
dered so that pi is the first point of Pi , and Pi precedes Pi+ for each i. The returned
value is given precisely by the expression above. �

Once we have Corollary 7.2, the pseudocode to maintain the value of w under
deletions and insertions is straightforward to write out. The terms in the maximum
are stored in a set Q. When s is deleted, we rebuild the data structure from scratch;

Discrete Comput Geom (2009) 42: 469–488 485

when pi is deleted, we rebuild only information related to the group Pi . Again, we
use randomization to select these anchor points s and pi .

delete(p):

1. if p = s then
2. P ← all current points except p

3. s ← a random point of P

4. for each i do
5. Pi ← {p ∈ P : �log2 d(s,p)� = i}
6. pi ← a random point of Pi

7. I ← {i : Pi �= ∅}
8. Q ← ⋃

i∈I {Rad{s,p,pi} : p ∈ Pi} ∪{Rad{s,pi,pi+}}
9. return
10. i ← �log2 d(s,p)�, Pi ← Pi − {p}
11. if Pi = ∅ then
12. Q ← Q − {Rad{s,pi− ,pi},Rad{s,pi,pi+}} ∪ {Rad{s,pi− ,pi+}}
13. I ← I − {i}
14. else if p = pi then
15. Q ← Q − {Rad{s,p,pi} : p ∈ Pi} −{Rad{s,pi− ,pi},Rad{s,pi,pi+}}
16. pi ← a random point of Pi

17. Q ← Q ∪ {Rad{s,p,pi} : p ∈ Pi} ∪ {Rad{s,pi− ,pi},Rad{s,pi,pi+}}
18. else Q ← Q − {Rad{s,p,pi}}
insert(p):

1. i ← �log2 d(s,p)�, Pi ← Pi ∪ {p}
2. if |Pi | = 1 then
3. pi ← p, I ← I ∪ {i}
4. Q ← Q ∪ {Rad{s,pi− ,pi},Rad{s,pi,pi+}} −{Rad{s,pi− ,pi+}}
5. else Q ← Q ∪ {Rad{s,p,pi}}

Because coordinates are integers in the range [0,U], distances and Rad values can
lie in the range [Ω(1/U),O(U)] ∪ {0}. The elements in I are thus integers bounded
by O(logU). For a factor-18(1 + ε) approximation to RadP , it suffices to maintain
a factor-(1 + ε) approximation of w = maxQ, which can be obtained from maxQ′
where Q′ = {�log1+ε z� : z ∈ Q} is stored in a priority queue. The elements in Q′ are
integers bounded by O((1/ε) logU) (in absolute value). We can implement both the
priority queue Q′ and the ordered set I by the following data structure:

Lemma 7.3 We can maintain a multiset of small integers bounded by O(logU) so
that insertions, deletions, and successor/predecessor searches (in particular, finding
maximum/minimum) take O(1) time each on the word RAM with word size Ω(logU).

Proof Maintain an array of O(logU) linked lists, where list L[j] holds all elements
of the same value j . Maintain a bit vector V , where V [j] is 1 if L[j] is nonempty.
The vector V can be stored in O(1) words. A search reduces to O(1) standard word
operations on V (bitwise-and/or and finding most/least significant 1-bit). �

486 Discrete Comput Geom (2009) 42: 469–488

For the analysis of delete(p), let ñ (resp. ñi) be the size of P (resp. Pi) during the
last rebuild, and let u (resp. ui) be the number of updates to P (resp. Pi) since the
last rebuild.

The rebuilding cost in lines 2–8 involves O(|P |) = O(ñ + u) operations on Q

and I . We can cover the cost by charging O(1) units to each of the u updates since
the last rebuild, plus O(max{ñ − u,1}) units to the current update if p = s. The
probability of this occurring is at most 1/max{ñ − u,1}, conditioned to a fixed time
value for the last rebuild (as in Sect. 5).

The cost in lines 15–17 involves O(|Pi |) = O(ñi + ui) operations on Q and I .
Like before, we can cover the cost by charging O(1) units to every update, plus
O(max{ni − ui,1}) units to the current update if p = pi . The probability of this
occurring is at most 1/max{ni − ui,1}, conditioned to a fixed time value for the last
rebuild of Pi .

Therefore, the expected amortized cost for insert() and delete() is O(1).

Theorem 7.4 We can maintain a factor-O(1) approximation to the smallest enclos-
ing cylinder for a point set in {0, . . . ,U}d in O(1) expected amortized time per up-
date, on the word RAM with word size Ω(logU).

Remark This method works well in high dimensions, with polynomial dependence
on d , since Rad{s,p, t} can be computed in O(d) time for each triple {s,p, t}.

The factor 18(1 + ε) could perhaps be reduced, but we do not know how to obtain
factor 1 + ε, nor extend the method to approximate width in dimensions beyond 2.

Acknowledgement I thank the anonymous referees for their valuable comments.

References

1. Agarwal, P.K., Aronov, B., Sharir, M.: Line transversals of balls and smallest enclosing cylinders in
three dimensions. Discrete Comput. Geom. 21, 373–388 (1999)

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM
51, 606–635 (2004)

3. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman,
J.E., Pach, J., Welzl, E. (eds.) Current Trends in Combinatorial and Computational Geometry, pp. 1–
30. Cambridge University Press, New York (2007)

4. Agarwal, P.K., Har-Peled, S., Yu, H.: Robust shape fitting via peeling and grating coresets. Discrete
Comput. Geom. 29, 38–58 (2008)

5. Agarwal, P.K., Matoušek, J.: Dynamic half-space range reporting and its applications. Algorithmica
13, 325–345 (1995)

6. Agarwal, P.K., Procopiuc, C.M.: Approximation algorithms for projective clustering. J. Algorithms
46, 115–139 (2003)

7. Agarwal, P.K., Sharir, M.: Off-line dynamic maintenance of the width of a planar point set. Comput.
Geom. Theory Appl. 1, 65–78 (1991)

8. Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric optimization prob-
lems. Discrete Comput. Geom. 16, 317–337 (1996)

9. Agarwal, P.K., Yu, H.: A space-optimal data-stream algorithm for coresets in the plane. In: Proc. 23rd
ACM Sympos. Comput. Geom., pp. 1–10 (2007)

10. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. In: Proc. 14th ACM-SIAM Sympos. Discrete
Algorithms, pp. 801–802 (2003)

11. Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proc. 34th ACM Sym-
pos. Theory Comput., pp. 250–257 (2002)

Discrete Comput Geom (2009) 42: 469–488 487

12. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point
set in three dimensions. J. Algorithms 38, 91–109 (2001)

13. Bentley, J., Saxe, J.: Decomposable searching problems I: static-to-dynamic transformation. J. Algo-
rithms 1, 301–358 (1980)

14. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. 43rd IEEE Sympos. Found. Comput.
Sci., pp. 617–626 (2002)

15. Chan, T.M.: Dynamic planar convex hull operations in near-logarithmic amortized time. J. ACM, 48,
1–12 (2001)

16. Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width
annulus. Int. J. Comput. Geom. Appl. 12, 67–85 (2002)

17. Chan, T.M.: A fully dynamic algorithm for planar width. Discrete Comput. Geom. 30, 17–24 (2003)
18. Chan, T.M.: Semi-online maintenance of geometric optima and measures. SIAM J. Comput. 32, 700–

716 (2003)
19. Chan, T.M.: A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. In: Proc.

17th ACM-SIAM Sympos. Discrete Algorithms, pp. 1196–1202 (2006)
20. Chan, T.M.: Faster core-set constructions and data stream algorithms in fixed dimensions. Comput.

Geom. Theory Appl. 35, 20–35 (2006)
21. Chan, T.M.: Well-separated pair decomposition in linear time? Inf. Process. Lett. 107, 138–141

(2008)
22. Chan, T.M., Pǎtraşcu, M.: Transdichotomous results in computational geometry, I: Point location in

sublogarithmic time. SIAM J. Comput. (to appear). Preliminary versions in Proc. 47th IEEE Sympos.
Found. Comput. Sci., pp. 325–332, 333–342 (2006)

23. Chan, T.M., Pǎtraşcu, M.: Transdichotomous results in computational geometry, II: Offline search. In:
Proc. 39th ACM Sympos. Theory Comput., pp. 31–39 (2007)

24. Chan, T.M., Sadjad, B.S.: Geometric optimization problems over sliding windows. Int. J. Comput.
Geom. Appl. 16, 145–157 (2006)

25. Chazelle, B.: On the convex layers of a planar set. IEEE Trans. Inf. Theory IT-31, 509–517 (1985)
26. Clarkson, K.L., Eppstein, D., Miller, G.L., Sturtivant, C., Teng, S.-H.: Approximating center points

with iterative Radon points. Int. J. Comput. Geom. Appl. 6, 357–377 (1996)
27. Duncan, C.A., Goodrich, M.T., Ramos, E.A.: Efficient approximation and optimization algorithms

for computational metrology. In: Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, pp. 121–130
(1997)

28. Edwards, M., Varadarajan, K.R.: No coreset, no cry: II. In: Proc. 25th Int. Conf. Found. Soft. Tech.
Theoret. Comput. Sci. Lect. Notes Comput. Sci., vol. 3821. Springer, Berlin, pp. 107–115 (2005)

29. Feigenbaum, J., Kannan, S., Zhang, J.: Computing diameter in the streaming and sliding-window
models. Algorithmica 41, 25–41 (2004)

30. Frahling, G., Indyk, P., Sohler, C.: Sampling in dynamic data streams and applications. Int. J. Comput.
Geom. Appl. 18, 3–28 (2008)

31. Frahling, G., Sohler, C.: Coresets in dynamic geometric data streams. In: Proc. 37th ACM Sympos.
Theory Comput., pp. 209–217 (2005)

32. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38,
293–306 (1985)

33. Har-Peled, S.: Clustering motion. Discrete Comput. Geom. 31, 545–565 (2004)
34. Har-Peled, S.: No coreset, no cry. In: Proc. 24th Int. Conf. Found. Soft. Tech. Theoret. Comput. Sci.

Lect. Notes Comput. Sci., vol. 3328. Springer, Berlin, pp. 324–335 (2004)
35. Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering. Discrete Comput.

Geom. 37, 3–19 (2007)
36. Har-Peled, S., Mazumdar, S.: Coresets for k-means and k-median clustering and their applications.

In: Proc. 36th ACM Sympos. Theory. Comput., pp. 291–300 (2004)
37. Har-Peled, S., Varadarajan, K.R.: Projective clustering in high dimensions using core-sets. In: Proc.

18th ACM Sympos. Comput. Geom., pp. 312–318 (2002)
38. Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM J. Comput. 33, 269–285 (2004)
39. Indyk, P.: Algorithms for dynamic geometric problems over data streams. In: Proc. 36th ACM Sym-

pos. Theory Comput., pp. 373–380 (2004)
40. Janardan, R.: On maintaining the width and diameter of a planar point-set online. Int. J. Comput.

Geom. Appl. 3, 331–344 (1993)
41. Matias, Y., Vitter, J.S., Young, N.E.: Approximate data structures with applications. In: Proc 5th

ACM-SIAM Sympos. Discrete Algorithm, pp. 187–194 (1994)

488 Discrete Comput Geom (2009) 42: 469–488

42. Matoušek, J.: Derandomization in computational geometry. In: Urrutia, J., Sack, J. (eds.) Handbook
of Computational Geometry. North-Holland, Amsterdam, pp. 559–595 (2000)

43. Overmars, M.H.: The Design of Dynamic Data Structures. Lect. Notes in Comput. Sci., vol. 156.
Springer, Berlin (1983)

44. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. Sys. Sci.
23, 166–204 (1981)

45. Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley-Interscience, New York (1995)
46. Rote, G., Schwarz, C., Snoeyink, J.: Maintaining the approximate width of a set of points in the plane,

In: Proc. 5th Canad. Conf. Comput. Geom., pp. 258–263 (1993)
47. Thorup, M.: Equivalence between priority queues and sorting. J. ACM 54, 6 (2007)
48. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Inf.

Process. Lett. 6, 80–82 (1977)
49. Yu, H., Agarwal, P.K., Poreddy, R., Varadarajan, K.R.: Practical methods for shape fitting and kinetic

data structures using core sets. Algorithmica 52, 378–402 (2008)
50. Zarrabi-Zadeh, H.: An almost space-optimal streaming algorithm for coresets in fixed dimensions. In:

Proc. 16th European Sympos. Algorithms. Lect. Notes in Comput. Sci., vol. 5193. Springer, Berlin,
pp. 817–829 (2008)

	Dynamic Coresets
	Abstract
	Introduction
	Geometric Approximation Algorithms, via Coresets
	Dynamic Geometric Data Structures
	Dynamization Meets Approximation
	Our Main Result
	Applications
	More Results: Approximation Meets Word RAM
	More Results: k-centers

	Preliminaries
	A Simple Randomized Method with O(logn) Update Time
	Derandomization
	A Method with O(loglogU) Update Time
	k-Centers
	Constant Update Time?
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

