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Abstract This paper shows that any planar graph with n vertices can be point-set
embedded with at most one bend per edge on a universal set of n points in the plane.
An implication of this result is that any number of planar graphs admit a simultaneous
embedding without mapping with at most one bend per edge.

Keywords Graph drawing · Universal point sets · One-bend drawings ·
Simultaneous embeddings

1 Introduction

Let S be a set of m distinct points in the plane, and let G be a planar graph with n

vertices (n ≤ m). A point-set embedding of G on S is a planar drawing of G such that
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each vertex is drawn as a point of S and the edges are drawn as polylines. The problem
of computing point-set embeddings of planar graphs has a long tradition both in the
graph drawing and in the computational geometry literature (see, e.g., [7, 8, 10]).
Considerable attention has been devoted to the study of universal sets of points. We
say that a set S of m points is h-bend universal for a family of planar graphs with n

vertices (n ≤ m) if each graph in the family admits a point-set embedding onto S that
has at most h bends along each edge.

Gritzman, Mohar, Pach, and Pollack [7] proved that every set of n distinct points
in general position in the plane is 0-bend universal for the class of outerplanar graphs
with n vertices. De Fraysseix, Pach, and Pollack [4] and independently Schnyder [11]
proved that a grid with O(n2) points is 0-bend universal for all planar graphs with
n vertices. De Fraysseix et al. [4] also showed that a 0-bend universal set of points
for all planar graphs having n vertices cannot have n + o(

√
n) points. This last lower

bound was improved by Chrobak and Karloff [3] and later by Kurowski [9], who
showed that linearly many extra points are necessary for a 0-bend universal set of
points for all planar graphs having n vertices. On the other hand, if two bends along
each edge are allowed, a tight bound on the size of the point-set is known: Kaufmann
and Wiese [8] proved that every set of n distinct points in the plane is 2-bend universal
for planar graphs with n vertices. Finally, if one bend along each edge is allowed,
Di Giacomo et al. [5] proved a related result that every planar graph can be drawn
with its vertices on any given convex curve; however, the positions of the points on
the curve depend on the planar graph.

In this paper, we study the cardinality of a universal set of points for all planar
graphs with n vertices under the assumption that at most one bend per edge is allowed
in the point-set embedding. We prove the following theorem.

Theorem 1 Let Fn be the family of all planar graphs with n vertices. There exists a
set of n distinct points in the plane that is 1-bend universal for Fn.

The proof is constructive; an example is shown in Fig. 1. We define a set S of n

points (Fig. 1(a)) and show how to compute in O(n) time an embedding of any planar
graph with n vertices on S such that the resulting drawing has at most one bend per
edge. The drawing procedure starts by computing a special type of book embedding
defined in Sect. 2 (see Fig. 1(c)) and then uses this book embedding to construct the
point-set embedding with the algorithm described in Sect. 3 (see Fig. 1(d)).

Our universal set of n points can be defined either (i) on an integer grid of size
n2n by n or (ii) with algebraic coordinates such that they are the vertices of a convex
chain with unit-length edges. In the former case, the graphs can be drawn with all
bend-points also on the grid points of the n2n by n grid. In the latter case, all planar
graphs of Fn can be drawn with all bend-points and vertices in a square of size n

by n at distance at least 1
2(d+1)

apart, where d is the maximum degree of the graph.
Furthermore, relaxing the unit edge length constraint, a universal set of points can be
chosen on any given convex curve.

We conclude this introduction by noting a result that is immediately implied by
Theorem 1. Two planar graphs G1 and G2 with the same set of vertices are said to
admit a simultaneous embedding without mapping if there exists a set of points in the
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Fig. 1 (a) A universal set S of eight points p0, . . . , p7. (b) A graph G with eight vertices. (c) A proper
monotone topological book embedding Γ of G. The vertices are labeled both by their labels in graph G

and drawing Γ̂ . (d) The drawing Γ̂ of G on the universal point set S

plane that supports a point-set embedding of both G1 and G2 [2].1 It is not known
whether any two planar graphs admit a simultaneous embedding without mapping
such that all edges are straight-line segments. However, Brass et al. [2] showed that
any planar graph has a straight-line simultaneous embedding without mapping with
any number of outerplanar graphs. Kaufmann and Wiese [8] also proved that any
two planar graphs have a simultaneous embedding without mapping such that each
edge is drawn with at most two bends. In this context, Theorem 1 fills the gap for the
one-bend case and implies the following.

1A simultaneous embedding is said to be with mapping if the same vertex is mapped to the same point in
both the drawings of G1 and of G2 [2].
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Fig. 2 Edge (u, v) with spine
crossing d and bounding
vertices u′ and v′

Corollary 2 Any number of planar graphs with n vertices admit a simultaneous em-
bedding without mapping with at most one bend per edge.

The paper is organized as follows. In Sect. 2, we first introduce some notation
and review preliminary results about topological book embeddings. We then prove
Theorem 1 in Sect. 3; we first present, in Sect. 3.1, a construction of sets of n points
in convex position, called necklaces, and describe, in Sect. 3.2, an algorithm that
computes a 1-bend point-set embedding of any planar graph with n vertices on a
necklace of n points. We then prove the correctness of the algorithm in Sect. 3.3
before concluding in Sect. 4.

2 Topological Book Embeddings

In this section, we review the notions of monotone, proper, and augmented topologi-
cal book embeddings (see, e.g., [5, 6]). We start with preliminary notation.

Consider the Cartesian coordinate system (O,x, y), and let p,q be two points in
the plane. We say that p is left of q and denote it as p < q if the x-coordinate of p

is less than the x-coordinate of q; we also use the notation p ≤ q to mean that either
p is left of q or p coincides with q; we define similarly p > q and p ≥ q . Let pq

denote the line segment from p to q .
A spine is a horizontal line. Let � be a spine, and let p,q be two points on �. Let

p < q , and let b be a point on the perpendicular bisector of pq and not on �. An arc
(p, q) with bend-point b consists of the segments pb and bq; the points p and q are
respectively the left and right endpoints of (p, q). The arc (p, q) can be either in the
half-plane above the spine or in the half-plane below the spine (such half-planes are
assumed to be closed sets); in the first case, we say that the arc is in the top page of �,
otherwise it is in the bottom page of �.

Let G = (V ,E) be a planar graph. A monotone topological book embedding of
G [5], denoted Γ , is a planar drawing such that all vertices of G are represented as
points of a spine � and each edge is either represented as an arc in the bottom page,
or as an arc in the top page, or as a polyline that crosses the spine and consists of
two consecutive arcs. More precisely, let (u, v) be an edge of a monotone topological
book embedding that crosses the spine at a point d ; assuming that u is left of v along
the spine, (u, v) is such that (see Fig. 2): (i) u < d < v, (ii) the arc (u, d) is in the
bottom page, and (iii) the arc (d, v) is in the top page. The point d is called the spine
crossing of (u, v) and is also denoted as d(u, v).

Di Giacomo et al. [5] presented a constructive proof of the existence of monotone
topological book embeddings. They also presented an algorithm to prove that any
planar graph admits a one-bend drawing with all vertices on any given convex curve.
Their algorithm can be viewed as follows. First, a monotone topological book embed-
ding is constructed. Second, the spine is deformed into a convex curve while moving
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the vertices on the curve so that the bends in the bottom page straighten, resulting in
a one-bend drawing. More precisely, the vertices and incident edges are added, one
by one, to the drawing according to a canonical ordering; the position of a vertex
thus depends on the position of the vertices and edges drawn in previous steps. In
our approach, we carefully choose the position of the vertices on a convex curve and
prove that the edges of any planar graph can then be drawn by a technique similar
to that of Di Giacomo et al. [5] on that point set. Since monotone topological book
embeddings are crucial in our construction, we sketch here, for completeness, the
constructive proof of their existence.

Theorem 3 [5] Every planar graph admits a monotone topological book embedding
which can be computed in linear time in the size of the graph.

Sketch of Proof We describe an algorithm that takes a planar embedding of a maximal
planar graph (every planar graph can be augmented to become maximally planar) and
produces a linear ordering of its vertices and spine crossings for its edges. This linear
ordering defines a monotone topological book embedding of the input graph.

Let G be a maximal embedded planar graph with n vertices, and let w0, w1, wn−1
denote the vertices of its outer face. A monotone topological book embedding of G is
constructed by adding a single vertex per step. The algorithm chooses the next vertex
to be added by following a canonical ordering [4] of G. A canonical ordering of G

with respect to edge (w0,w1) is an ordering of the vertices w0,w1,w2, . . . ,wn−1
of G such that for every integer k (3 ≤ k < n), the following properties hold (see
Fig. 1(b)):

• The embedded subgraph Gk−1 ⊆ G induced by w0,w1, . . . ,wk−1 is biconnected,
and the external boundary Ck−1 of Gk−1 contains edge (w0,w1).

• wk is a vertex (of G \ Gk−1) in the external face of Gk−1, and its neighbors in
Gk−1 form a subpath of the path Ck−1 \ {(w0,w1)}.
Now, let w0,w1,w2, . . . ,wn−1 be a canonical ordering of G. At Step i, 0 ≤ i < n,

the algorithm processes vertex wi and all edges from wi to some wj<i . All edges
are drawn with a spine crossing (that is, as a concatenation of an arc in the bottom
page and one in the top page). Also, the monotone topological book embedding Γi

computed at the end of Step i (2 ≤ i < n) satisfies the following invariants:

1. Γi is a monotone topological book embedding of Gi that preserves the embedding
of Gi .

2. For every pair of vertices u and v that are consecutive on the path Ci \ {(w0,w1)}
(2 ≤ i < n), there is no vertex or spine crossing between u and d(u, v) in the linear
ordering of Γi .

In the first three steps of the algorithm, vertices w0, w1, w2, and the division ver-
tices of the edges between them are placed so that the linear ordering is the following:
w0, d(w0,w2),w2, d(w2,w1), d(w0,w1),w1 (see Fig. 3(a)). Notice that the two in-
variants hold at the end of third step. The vertex to be placed at Step i is wi (3 ≤
i < n); let u1, u2, . . . , uh be the neighbors of wi in Gi−1. By Invariant 2, there is no
vertex or spine crossing between u1 and d(u1, u2). The vertex wi and all the division
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Fig. 3 Construction of a
monotone topological book
embedding

vertices d(wi, uj ) (1 ≤ j ≤ h) are placed between u1 and d(u1, u2) in such a way that
their order is u1, d(u1,wi), wi , d(wi, uh), d(wi, uh−1), . . . , d(wi, u2), d(u1, u2) (see
Fig. 3(b)). At the end of Step n− 1, the computed linear ordering defines a monotone
topological book embedding of G. It is straightforward that the running time of the
algorithm is linear in the size of the graph. �

Let G = (V ,E) be a planar graph, let Γ be a monotone topological book embed-
ding of G computed according to Theorem 3, let (u, v) be an edge of Γ , and let d be
its spine crossing. Also (see Fig. 2), let u′ be the rightmost vertex along the spine of Γ

such that u′ < d, and let v′ be the leftmost vertex of the spine of Γ such that d < v′.
We say that u′ and v′ are the two bounding vertices of d . We say that d is a proper
spine crossing if its bounding vertices u′ and v′ are such that u < u′ < d < v′ < v.
A monotone topological book embedding is proper if all of its spine crossings are
proper. Since an edge that crosses the spine with a nonproper spine crossing can be
replaced by a single arc (in the top or in the bottom page) without introducing an
intersection, we directly obtain the following lemma from Theorem 3.

Lemma 4 Every planar graph has a proper monotone topological book embedding
which can be computed in linear time in the size of the graph.

Let now Γ be a proper monotone topological book embedding of a planar
graph G. If we insert a dummy vertex for each spine crossing of Γ , we obtain a new
proper topological book embedding Γ ′ such that Γ ′ represents a planar subdivision
G′ of G obtained by splitting with a vertex some of the edges of G. We call the graph
G′ an augmented form of G and the drawing Γ ′ an augmented proper topological
book embedding of G.

A vertex of G′ that is also a vertex of G is called a real vertex of Γ ′; a vertex of
G′ that corresponds to a spine crossing of Γ is called a division vertex of Γ ′. Note
that every division vertex of Γ ′ has degree two and that every edge of Γ ′ is either an
arc in the top page or an arc in the bottom page. The bounding vertices of a division
vertex d of Γ ′ are the two real vertices that form the bounding vertices of the spine
crossing corresponding to d in Γ . The following property is a consequence of the
planarity of Γ ′ (see Fig. 4).

Property 1 Let (u, v) and (u′, v′) be two distinct arcs of Γ ′ that are in the same page
and such that u < u′. Then, (i) u < v ≤ u′ < v′ or (ii) u < u′ < v′ ≤ v.
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Fig. 4 Illustration for Property 1

Fig. 5 Three consecutive points of a necklace: pi+2 lies in the grey region defined by pi and pi+1. In (b),
given pi+2 and pi+1 on a convex curve, pi is chosen on the curve such that the grey region it defines (with
pi+1) contains pi+2

3 Proof of Theorem 1

We prove Theorem 1 by first defining a family of sets of n points in convex position,
called necklaces (Sect. 3.1), and then by describing an algorithm that computes a
1-bend point-set embedding of any planar graph with n vertices on a necklace of n

points (Sect. 3.2). We prove the correctness of the algorithm, and thus Theorem 1, in
Sect. 3.3.

3.1 Necklaces

Refer to Fig. 5(a) and to Fig. 1(a) for a complete example. Let p0 be any point on
the x-axis strictly left of the vertical y-axis, and let p1 be any point strictly in the
top-left quadrant of p0. We construct pi+2 for 0 ≤ i ≤ n − 2 from pi and pi+1 as
follows. Let ri be the projection of pi on the vertical y-axis. The point pi+2 is chosen
anywhere on or below the line through ri and pi+1 and strictly above the horizontal
line through pi+1. Let S be any set of n points defined by the above procedure; we
call S a necklace of n points.

We observe that, if we allow the points to have real (algebraic) coordinates, we
can choose pi+2 on the line through ri and pi+1 such that pi+1 is equidistant to pi

and pi+2. Then it is straightforward that if the distance between pi and pi+1 is 1 for
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all i, then all points lie in a square of size n by n. Notice also that we can construct a
necklace, with algebraic coordinates, on any convex curve. Indeed, given any convex
arc, we can choose the y-axis and the points pn−1, . . . , p0, in that order, such that
pi is the point on the curve whose projection on the y-axis lies on the tangent to the
curve at pi+1 (see Fig. 5(b)).2

We can alternatively place the vertices on grid points as follows. Consider p0 and
p1 at (−1,0) and (−2,1), respectively, and let pi+2 be chosen as the symmetric point
of ri with respect to pi+1. Then, it is straightforward that pi has coordinates (−2i , i)

for i ≥ 0.

3.2 Computing 1-bend Point-Set Embeddings

We describe a drawing algorithm, called 1-Bend Universal Drawer or 1-
BUD for short, that takes as input a planar graph G with n vertices and a necklace S

of n points and returns a point-set embedding of G on S such that every edge of G is
drawn with at most one bend.

Before describing our algorithm, we introduce the notion of bend-lines and verti-
cal strips (see Fig. 6(b)). The bend-line of pi (i > 1) is the horizontal segment from
pi−1 to ri−1. The vertical strip of pi (i < n− 1), denoted V (pi), is the strip bounded
by the vertical lines through pi and pi+1; the strip is considered open on the left side
and closed on the right side. Denote also by CH(S) and ∂CH(S) the convex hull of S

and its boundary.
The algorithm consists of the following steps.

Step 1: Draw the vertices of G Compute a proper monotone topological book em-
bedding Γ of G and the corresponding augmented proper topological book embed-
ding Γ ′ (see Sect. 2). Let � be the spine of Γ ′. Label the real vertices of Γ ′ (that is,
the vertices of Γ ) on � by vn−1, . . . , v0 in that order from left to right, i.e., vi < vi−1
(see Fig. 1(c)). Modify Γ ′ so that every edge connecting two consecutive real ver-
tices is drawn as an arc in the bottom page. Map every real vertex vi to point pi of
the necklace (see Fig. 1(d)).

Step 2: Draw the bends of the arcs of the top page of Γ ′ Refer to Fig. 6(a). For
every real vertex vi of Γ ′, let ai0, ai1, . . . , aik be the sequence of arcs in the top page
of Γ ′ whose right endpoint is vi ; assume that ai0, ai1, . . . , aik are encountered in this
order when going counterclockwise around vi by starting the tour from a point on �

slightly to the right of vi . Let wij denote the left (real or division) vertex of aij in Γ ′
(0 ≤ j ≤ k). If wij is a real vertex of Γ ′ (such as wi0 in Fig. 6(a)), it is also labeled as
vertex vhij

for some 0 ≤ hij ≤ n − 1. Otherwise, wij is a division vertex of Γ ′ (such
as wi1 in Fig. 6(a)), and we define hij such that vhij

and vhij −1 are the two bounding
real vertices of wij in Γ ′.

Refer now to Fig. 6(b). For each arc aij , we draw the bend of aij at a point qij

on the bend-line of phij
(i.e., through phij −1) such that (i) qi0 lies on the vertical ray

above pi , and, for j > 0, (ii) qij lies strictly to the right of the vertical line through
pi+1 and strictly to the left of the line through pi and qi(j−1).

2In other words, pn−1, . . . , p0 is the sequence of points obtained by applying Newton’s root-finding
method starting from pn−1 (the y-axis plays here the role of the x-axis in Newton’s method).
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Fig. 6 Illustration for Algorithm 1-Bend Universal Drawer. (a) Part of an augmented proper
monotone topological book embedding. (b) Sketch of the corresponding drawing on the necklace. Points
pki1 and pki2 are much farther to the left than shown

Step 3: Draw the division vertices of Γ ′ With the notation of Step 2, for each di-
vision vertex wij of Γ ′, let (vkij

,wij ) be the arc Γ ′ whose right endpoint is wij

(see Fig. 6(a)). Draw wij at the intersection point, pwij
, between segment pkij

qij and
∂CH(S) (see Fig. 6(b)). (Note that, as we will show in Lemma 6, pwij

is not a point
of the necklace {p0, . . . , pn−1}.)
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Step 4: Draw the arcs of Γ ′ For each arc (u, v) of Γ ′, let pu,pv be the points
representing u and v along ∂CH(S). If (u, v) is an arc in the bottom page, draw it
as the chord pupv . For instance, the arc (vki1 ,wi1) in Fig. 6(a) is drawn as the chord
pki1pwi1 in Fig. 6(b).

If (u, v) is an arc in the top page of Γ ′, let q be the point computed at Step 2
that represents the bend-point of (u, v). Draw (u, v) as the polyline consisting of the
segments puq and qpv . For instance, the arc ai0 = (wi0, vi) in Fig. 6(a) is drawn as
the polyline consisting of phi0qi0 and qi0pi in Fig. 6(b), and the arc ai1 = (wi1, vi)

is drawn as pwi1qi1 and qi1pi .

Step 5 Let Γ̂ be the drawing computed in Steps 1 to 4. The final drawing of G is
obtained by ignoring the division vertices in Γ̂ .

Note that, in Step 2, we can trivially draw all the bends on integer grid points if
there are n grid points between pi and pi+1 on any horizontal line. Hence, all bends
can be drawn on integer grid points if the necklace consists of the point p0 with coor-
dinates (−1,0) and the points pi with coordinates (−n2i−1, i) for i > 0. Similarly, if
a necklace consists of the vertices (with algebraic coordinates) of a convex chain with
unit-length edges, the bend-points can be drawn in Step 2 such that the horizontal dis-
tance between every consecutive pair of points of a sequence pi, qi0, . . . , qik,pi+1 is
at least the horizontal distance between pi and pi+1 times 1

d+1 , where d is the max-

imum degree of the graph.3 Furthermore, if the necklace is constructed such that the
horizontal distance between p0 and p1 (and thus between any pi and pi+1) is at least
1
2 , then all the bend-points and vertices lie in a square of size n by n at distance at
least 1

2(d+1)
apart.

Proving Theorem 1 amounts to showing that the above algorithm correctly com-
putes a point-set embedding of G on S such that each edge has at most one bend. The
idea is to prove that the drawing computed at the end of Step 5 maintains the topol-
ogy of Γ and that the geometric properties of the proper monotone topological book
embedding and of the necklace implies a point-set embedding of the graph without
edge-crossings and with at most one bend per edge. This proof is the subject of the
next section.

3.3 Proof of Correctness

We use here the same notation as in the previous section. We prove in this section the
following main lemma which directly yields the correctness of the algorithm (Theo-
rem 5).

Main Lemma Γ̂ is a planar drawing.

Based on this lemma, we prove the correctness of the algorithm.

Theorem 5 Algorithm 1-BUD computes a 1-bend point-set embedding of a planar
graph with n vertices on a necklace with n points.

3Note that qi0 should then be drawn strictly inside the strip V (pi) instead of vertically above pi .
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Proof Observe that every real vertex of Γ ′ is drawn as a point of S in Γ̂ . Since Γ̂ does
not have edge crossings (Main Lemma), removing the division vertices (which are of
degree two) from Γ̂ gives a point-set embedding of G on S. Also, by construction,
the two edges incident on a division vertex of Γ̂ form a flat angle, and thus removing
the division vertices from Γ̂ does not increase the number of bends. It follows that
the drawing computed by Algorithm 1-BUD is a point-set embedding of G on S such
that each edge has at most one bend. �

We now prove the Main Lemma. We start with three preliminary lemmas. We
then prove, in different cases depending on which page two arcs of Γ ′ lie, that their
drawings in Γ̂ do not cross.

Let a = (u, v) and a′ = (u′, v′) be two arcs of Γ ′ such that u ≤ u′, and let pu,
pv , pu′ , and pv′ be the points of Γ̂ representing u, v, u′, and v′, respectively. Recall
that if u is a real vertex of Γ ′, then pu is a point of the necklace S = {p0, . . . , pn−1},
otherwise, u is a division vertex of Γ ′, and pu is not a priori a point of the necklace;
similarly for v,u′, and v′.

Lemma 6 If u is a division vertex of Γ ′ whose bounding vertices are vt and vt−1,
then pt < pu < pt−1.

Proof Refer to Fig. 7. Let (vh,u) and (u, v) be the two arcs of Γ ′ incident to u

that lie, respectively, in the bottom page and top page of Γ ′. Since Γ ′ is a proper
monotone topological book embedding, we have that vh < vt < u < vt−1 < v. Both
vh < vt are real vertices of Γ ′, and they are thus mapped to ph < pt , respectively,
in Step 1 of the algorithm. In Step 2, the bend of the arc (u, v) is drawn as a point
of the bend-line of pt , denoted as q . The division vertex u is drawn in Step 3, as the
intersection point, pu, between the segment phq and ∂CH(S). Since q lies on the
relatively-open segment pt−1rt−1 and ph lies (i) strictly below the line through pt

and rt−1, (ii) strictly above the line through pt−1 and rt−1, and (iii) strictly to the
left of the line through pt and pt−1, the point pu lies on the relative interior of the
segment ptpt−1. Hence, pt < pu < pt−1. �

Lemma 7 If arc a = (u, v) is in the top page of Γ ′ such that its bend is drawn in Γ̂

on the bend-line of pt , then vt ≤ u < vt−1 ≤ v and pt ≤ pu < pt−1 ≤ pv .

Proof First, note that v is a real vertex of Γ ′ since a is in the top page. It directly
follows from Step 2 of the algorithm that u is either equal to vt or is a division vertex
of Γ ′ whose bounding vertices are vt and vt−1. In the former case, u = vt < vt−1 ≤
v, and since they are all real vertices, Step 1 implies pu = pt < pt−1 ≤ pv . In the
latter case, we have vt < u < vt−1 < v (since Γ ′ is an augmented proper monotone
topological book embedding) and, by Lemma 6, pt < pu < pt−1; furthermore, since
vt−1 < v are both real vertices, we also have pt−1 < pv . �

Lemma 8 If arc a = (u, v) is in the top page of Γ ′, it is drawn in Γ̂ as a polyline
joining pu to pv with one bend-point q such that q (and thus the whole polyline) lies
below the horizontal line through pu and above the horizontal line through pv .
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Fig. 7 Illustration for Lemmas 6, 7, and 8 for the case where u is a division vertex (otherwise, pu = pt ,
and ph is not relevant)

Fig. 8 Illustration for Lemma 9

Proof The bend of a is drawn on the bend-line of, say, pt (that is on the horizontal
line through pt−1). By Lemma 7, pu < pt−1 ≤ pv , and thus pt−1 is below the hori-
zontal line through pu and above the horizontal line through pv , hence the result. �

Lemma 9 If a = (u, v) and a′ = (u′, v′) are in the top page of Γ ′ such that u < u′
and their bends are drawn in Γ̂ on the same bend-line, then their drawings in Γ̂ do
not intersect, except possibly at a common endpoint. Furthermore, pu < pu′ .

Proof Refer to Fig. 8. Let q and q ′ be the bends of a and a′ in Γ̂ , respectively,
and assume that q and q ′ are drawn on the bend-line of pt . By Lemma 7, we have
u′ < vt−1 and vt−1 ≤ v, thus u′ < v. Property 1 thus implies that (ii) u < u′ < v′ ≤ v

(see Fig. 4(b–c)).
We first show that q ′ is to the left of q , i.e., q ′ < q . The points q and q ′ are in the

vertical strips V (pv) and V (pv′), respectively (see Step 2). Recall that v′ ≤ v in Γ ′.
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If v′ < v in Γ ′, we have that pv′ < pv since both v and v′ are real vertices. Then,
since any point in V (pv′) is to the left of any point in V (pv), the point q ′ is to the left
of q . Otherwise, v = v′, and both q and q ′ are inside V (pv). In this case, consider
the arcs incident to the vertex v = v′ of Γ ′ and visit them by going counterclockwise
around v (start the clockwise tour at a point on the spine of Γ ′ slightly to the right
of v). Since u < u′ and Γ ′ is planar, we have that the arc (u′, v′) is encountered after
the arc (u, v) (see Fig. 4(c)). Hence, Step 2 implies that q ′ is to the left of q on the
bend-line of pt .

Segments puq and pu′q ′ do not intersect each other. By Lemma 7, vt ≤ u < vt−1

and vt ≤ u′ < vt−1. Thus, if u (resp. u′) is a real vertex, it is equal to vt . Note also
that at most one of u and u′ can be equal to vt (since u �= u′). Thus, if u′ is a real
vertex, u′ = vt < u < vt−1, contradicting the fact that u < u′. Otherwise, if u is a
real vertex, u = vt < u′ < vt−1, and thus pu = pt �= pu′ ; Lemma 7 then implies that
pu = pt < pu′ < pt−1. Thus, the points pu, pu′ , q ′, and q appear in that order on the
polyline formed by the segments ptpt−1 and pt−1rt−1 (as in Fig. 8, except that, here,
pu = pt ). Therefore, the segments puq and pu′q ′ do not intersect each other. Note
that we have also proved that pu < pu′ .

We now consider the case where u and u′ are both division vertices of Γ ′. In this
case, we have vt < u < u′ < vt−1. Let (vh,u) and (vh′ , u′) be the two arcs in the
bottom page of Γ ′ incident to u and u′. Since Γ ′ is an augmented proper monotone
topological book embedding, vh < vt and vh′ < vt . Furthermore, since Γ ′ is a pla-
nar drawing, we have vh′ ≤ vh < vt < u < u′. Finally, since vh′ , vh, and vt are real
vertices of Γ ′, we have ph′ ≤ ph < pt (by Step 1).

Since q ′ < q both lie on the bend-line of pt and ph′ ≤ ph < pt , the segments phq

and ph′q ′ do not intersect each other, except possibly at ph = ph′ (see Fig. 8). Since
pu (resp. pu′ ) lies by construction (see Step 3) on the segment phq (resp. ph′q ′), the
segments puq and pu′q ′ do not intersect each other. Furthermore, since pu and pu′
also lie on the segment ptpt−1 (by Lemma 7) and q ′ < q , the points pu, pu′ , q ′, and
q appear in that order on the polyline formed by the segments ptpt−1 and pt−1rt−1,
we have pu < pu′ .

The drawings of a and a′ in Γ̂ do not intersect, except possibly at pv = pv′ . If
v �= v′, the vertical strips V (pv) and V (pv′) are disjoint, and, since they contain q

and q ′, respectively, the segments qpv and q ′pv′ do not intersect. On the other hand, if
v = v′, the segments qpv and q ′pv′ intersect only at their common endpoint pv = pv′
since they are not collinear by construction (see Step 2).

Finally, the segment puq (resp. pu′q ′) does not intersect the segments q ′pv′ (resp.
qpv) because they are separated by the bend-line containing q and q ′ (by Lemma 8)
and q �= q ′. Therefore, the drawings of arcs a and a′ in Γ̂ do not intersect each other
except possibly at pv = pv′ . �

Before proving that the drawings of a and a′ in Γ̂ do not cross each other in the
other cases, we prove that the left-to-right order along the spine of Γ is preserved
along ∂CH(S).

Lemma 10 If u < u′ in Γ ′, then pu < pu′ .
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Proof We consider different cases depending on whether u and u′ are real or division
vertices.

Case (i): both u and u′ are real vertices. Step 1 of the algorithm assigns to u a
label with index larger than that of u′ and thus it maps u to a point of the necklace
with index larger than that of u′. Hence, by construction of the necklace, the point pu

representing u in Γ̂ is to the left of the point pu′ representing u′ in Γ̂ .
Case (ii): u is a division vertex and u′ is a real vertex. Let vt and vt−1 be the

two bounding vertices of u in Γ ′; we have vt < u < vt−1. Since u′ is a real vertex
such that u < u′, we have vt−1 ≤ u′. It thus follows from Step 1 that pt−1 ≤ pu′ , and
Lemma 6 implies pu < pu′ .

Case (iii): u is a real vertex and u′ is a division vertex. A symmetric argument as
above gives the result.

Case (iv): both u and u′ are division vertices. Let vt < vt−1 be the bounding ver-
tices of u and vt ′ < vt ′−1 the bounding vertices of u′ in Γ ′. If these pairs of bounding
vertices do not coincide, then, since u < u′, we have vt < u < vt−1 ≤ vt ′ < u′ <

vt ′−1. Step 1 then implies that pt < pt−1 ≤ pt ′ < pt ′−1. Also, Lemma 6 implies that
pt < pu < pt−1 and pt ′ < pu′ < pt ′−1, thus pu < pu′ . On the other hand, if the pairs
of bounding vertices coincide (i.e., t = t ′), then the bends of two arcs (u, v) and
(u′, v′) in the top page of Γ ′ are both drawn on the bend-line of pt , and Lemma 9
implies that pu < pu′ . �

We now resume proving that the drawings of a and a′ do not cross each other.

Lemma 11 If a = (u, v) and a′ = (u′, v′) are in the top page of Γ ′ such that u < u′
and their bends are drawn in Γ̂ on distinct bend-lines, then their drawings in Γ̂ do
not intersect, except possibly at a common endpoint.

Proof Let q and q ′ be the bends of a and a′ in Γ̂ and assume that they lie on the
bend-lines of pt and pt ′ , respectively, with t �= t ′. Property 1 implies that (i) u < v ≤
u′ < v′ or (ii) u < u′ < v′ ≤ v. We consider the two cases separately.

Case (i): u < v ≤ u′. Refer to Fig. 9(a). By Lemma 8, the arc a is drawn above the
horizontal line through pv , and the arc a′ is drawn below the horizontal line through
pt ′ . Moreover, by Lemma 7, vt ≤ u < vt−1 and vt ′ ≤ u′ < vt ′−1. Since vt−1 is a
bounding vertex of u such that u < vt−1 and v is a real vertex such that u < v, we
have vt−1 ≤ v. Similarly, since vt ′ is a bounding vertex of u′ such that vt ′ ≤ u′ and
v is a real vertex such that v ≤ u′, we have v ≤ vt ′ . Thus, vt−1 ≤ v ≤ vt ′ and, by
Lemma 10, pv ≤ pt ′ . Thus pv is above, or equal to, pt ′ , and the drawings of a and a′
in Γ̂ do not intersect, except possibly at a common endpoint.

Case (ii): u < u′ < v′ ≤ v. Refer to Fig. 9(b). By Lemma 7, vt ≤ u < vt−1 and
vt ′ ≤ u′ < vt ′−1 ≤ v′, and, since u < u′ and t �= t ′, we have vt ≤ u < vt−1 ≤ vt ′ ≤
u′ < vt ′−1 ≤ v′ ≤ v. Thus, by Lemma 10,

pt ≤ pu < pt−1 ≤ pt ′ ≤ pu′ < pt ′−1 ≤ pv′ ≤ pv. (1)

In particular, we have pt−1 ≤ pu′, and thus (by Lemma 8) the segment puq , which
is above the bend-line (of pt ) through pt−1, is above pu′ , which is also above the
drawing of a′ in Γ̂ (by Lemma 8). Hence puq does not intersect the drawing of a′,
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Fig. 9 Illustration for Lemma 11. (a) Case (i), u < v ≤ u′. (b) Case (ii), u < u′ < v′ ≤ v

except possibly at q = pu′ . If q = pu′ , then q lies on ∂CH(S), and thus q = pt−1. In
Step 2 of the algorithm, q is drawn at pt−1 only in the case where pt−1 = pv , which
contradicts (1). Hence, the segment puq does not intersect the drawing of a′ in Γ̂ .

As in the proof of Lemma 9, the two segments qpv and q ′pv′ do not intersect
except at pv = pv′ when v = v′. Thus the drawings of a and a′ in Γ̂ can only intersect
at pv = pv′ or at an intersection point between the segments qpv and pu′q ′.

If v �= v′, then (1) implies pu < pu′ < pv′ < pv . The drawings of a and a′ then
have distinct endpoints and thus intersect an even number of times (since q �= q ′ as
they lie on distinct bend-lines). Since there is at most one possible intersection point
(between the two segments qpv and pu′q ′), the drawings of a and a′ in Γ̂ do not
intersect.

If v = v′, then u < u′ < v = v′, and the planarity of Γ ′ imply that the arc a′ is
encountered (in Γ ′) before a when going clockwise around v = v′ by starting the
tour from a point on the spine � slightly to the left of v = v′ (see Fig. 4(c)). Thus, by
Step 2, q ′ is drawn on a ray (from pv = pv′ ) that is to the left of the ray supporting q .
Moreover, since the segment pu′q ′ is drawn to the left of the ray supporting q ′, pu′q ′
does not intersect the segment qpv . Hence the drawings of a and a′ intersect only at
their common endpoint pv = pv′ . �

Lemma 12 If a = (u, v) and a′ = (u′, v′) are in the top page of Γ ′ such that u = u′,
then their drawings in Γ̂ only intersect at their common endpoint pu = pu′ .

Proof The bends of the arcs a and a′ are drawn at two distinct points q and q ′ that lie
on the same bend-line and that lie in the vertical strips V (pv) and V (pv′), respectively
(see Step 2). The arcs a and a′ are drawn as polylines that consist of the segments
puq , qpv and pu′q ′, q ′pv′ . The two segments puq and pu′q ′ intersect only at their
common endpoint pu = pu′ , and they do not properly intersect with the two other
segments since they are separated by the bend-line containing q and q ′ (by Lemma 8).
Also the two segments qpv and q ′pv′ do not intersect since they lie, respectively, in
the two vertical strips V (pv) and V (pv′) which are distinct (indeed v �= v′ since
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u = u′) and do not intersect by construction. Therefore, the drawings of the arcs a

and a′ intersect only at pu = pu′ . �

Lemma 13 If a and a′ are in the bottom page of Γ ′, their drawings in Γ̂ do not
intersect, except possibly at a common endpoint.

Proof The arc a is drawn as the segment pupv and a′ as the segment pu′pv′ (see
Step 4). By Property 1, either (i) u < v ≤ u′ < v′, or (ii) u < u′ < v′ ≤ v, or (iii)
u = u′. In all cases, Lemma 10 and the convexity of S imply that pupv and pu′pv′ do
not intersect each other, except possibly at a common endpoint. �

Lemma 14 If a and a′ are in opposite pages of Γ ′, their drawings in Γ̂ do not
intersect, except possibly at a common endpoint.

Proof Assume that a = (u, v) is in the bottom page of Γ ′ and that a′ = (u′, v′) is in
the top page.

The arc a is drawn as a chord in CH(S). If v is a division vertex of Γ ′ with bound-
ing vertices vt < vt−1, then u < vt < v (since Γ ′ is an augmented proper monotone
topological book embedding); thus, pu < pt < pv (by Lemma 10), and a is drawn as
a chord strictly inside CH(S) (except for its endpoints). Otherwise, v is a real vertex
of Γ ′, and thus, both pu and pv are vertices of CH(S). Hence, a is drawn as a chord
strictly inside CH(S) (except for its endpoints), or it is drawn as an edge of CH(S).

On the other hand, the arc a′ is drawn as a polyline joining pu′ to pv′ with bend-
point q ′. Since pu′ and pv′ lie on the boundary of CH(S) and q ′ lies strictly outside
CH(S) (see Step 2), the arc a′ is drawn, in Γ̂ , strictly outside CH(S), except for its
endpoints. Thus, if a is drawn strictly inside CH(S) (except for its endpoints), the
drawings of a and a′ do not intersect, except possibly at a common endpoint.

Suppose now that a is drawn as an edge of CH(S). Then the drawings of a and a′
do not intersect, except possibly at a common endpoint, unless pu′ lies on the relative
interior of the edge pupv of CH(S). In that case, u′ is a division vertex of Γ ′ whose
bounding vertices are u and v (by Lemma 7); thus, (u, v) cannot be an arc of Γ ′
(since Γ ′ is an augmented proper monotone topological book embedding). Hence,
the drawings of a and a′ do not intersect, except possibly at a common endpoint. �

Lemmas 9, 11, 12, 13, and 14 imply that no two edges of Γ̂ intersect, except
possibly at common endpoints. This concludes the proof of the Main Lemma that
the drawing Γ̂ is planar because, by Lemma 10, all the vertices of Γ ′ are mapped to
distinct vertices on the boundary of CH(S).

4 Conclusion

This paper shows that there exists a set S of n distinct points in the plane such that
every planar graph with n vertices admits a point-set embedding onto S where every
edge is drawn as a polyline having at most one bend. Moreover, such a universal
set S can be constructed on any convex curve. An application of this result to the
simultaneous embeddability problem without mapping is also described.
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We remark that our result closes a gap about universal sets of points for planar
graphs. Indeed, it was already known that a universal set of (exactly) n points sup-
porting straight-line drawings of planar graphs does not exist [3, 4, 9], while any set
of n points can be universal if two bends per edge are allowed [8]. Also, notice that
not all sets of points can be 1-bend universal: for example, if the points of S are
collinear, exactly the family of sub-hamiltonian planar graphs has a 1-bend point-set
embedding on S [1]. However, it is an open problem to determine whether any strictly
convex point set is 1-bend universal.

When the vertices (and possibly the bend points) are required to lie on a regular
grid, our construction of universal point-sets for one-bend drawing of planar graphs
uses grids of exponential size (in the size of the graph). Moreover, if both the vertices
and the bend points are to be drawn on a regular grid, the angle between adjacent
incident edges may be exponentially small. We leave as an open problem to find a
universal point-set for one-bend drawing of planar graphs in a polynomial-size reg-
ular grid and such that the minimum angle between adjacent incident edges of the
drawings is at least (inversely) polynomial in the size of the graph.
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