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Abstract We investigate properties of Ehrhart polynomials for matroid polytopes,
independence matroid polytopes, and polymatroids. In the first half of the paper we
prove that, for fixed rank, Ehrhart polynomials of matroid polytopes and polyma-
troids are computable in polynomial time. The proof relies on the geometry of these
polytopes as well as a new refined analysis of the evaluation of Todd polynomials. In
the second half we discuss two conjectures about the h∗-vector and the coefficients of
Ehrhart polynomials of matroid polytopes; we provide theoretical and computational
evidence for their validity.

Keywords Matroid · Matroid polytopes · Polymatroids · Ehrhart polynomials ·
Volume computation · Rational generating functions · h∗-vector · Unimodality ·
Ehrhart series

1 Introduction

Recall that a matroid M is a finite collection F of subsets of [n] = {1,2, . . . , n}
called independent sets, such that the following properties are satisfied: (1) ∅ ∈ F ;
(2) if X ∈ F and Y ⊆ X, then Y ∈ F ; and (3) if U,V ∈ F and |U | = |V | + 1 there
exists x ∈ U \ V such that V ∪ x ∈ F . In this paper we investigate convex polyhedra
associated with matroids.
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One of the reasons matroids have become fundamental objects in pure and applied
combinatorics is their many equivalent axiomatizations. For instance, for a matroid
M on n elements with independent sets F the rank function is a function ϕ : 2[n] → Z

where ϕ(A) := max{ |X| | X ⊆ A, X ∈ F }. Conversely, a function ϕ : 2[n] → Z

is the rank function of a matroid on [n] if and only if the following are satisfied:
(1) 0 ≤ ϕ(X) ≤ |X|, (2) X ⊆ Y =⇒ ϕ(X) ≤ ϕ(Y ), and (3) ϕ(X ∪ Y) + ϕ(X ∩ Y) ≤
ϕ(X) + ϕ(Y ). Similarly, recall that a matroid M can be defined by its bases, which
are the inclusion-maximal independent sets. The bases of a matroid M can be recov-
ered by its rank function ϕ. For the reader we recommend [32] or [41] for excellent
introductions to the theory of matroids.

Now we introduce the main object of this paper. Let B be the set of bases
of a matroid M . If B = {σ1, . . . , σr} ∈ B, we define the incidence vector of B as
eB := ∑r

i=1 eσi
, where ej is the standard elementary j th vector in R

n. The matroid
polytope of M is defined as P (M) := conv{ eB | B ∈ B }, where conv(·) denotes the
convex hull. This is different from the well-known independence matroid polytope,
P I (M) := conv{ eI | I ⊆ B ∈ B }, the convex hull of the incidence vectors of all the
independent sets. We can see that P (M) ⊆ P I (M) and P (M) is a face of P I (M)

lying in the hyperplane
∑n

i=1 xi = rank(M), where rank(M) is the cardinality of any
basis of M .

Polymatroids are closely related to matroid polytopes and independence matroid
polytopes. We first recall some basic definitions (see [41]). A function ψ : 2[n] −→ R

is submodular if ψ(X∩Y)+ψ(X∪Y) ≤ ψ(X)+ψ(Y ) for all X,Y ⊆ [n]. A function
ψ : 2[n] −→ R is nondecreasing if ψ(X) ≤ ψ(Y ) for all X ⊆ Y ⊆ [n]. We say ψ

is a polymatroid rank function if it is submodular, nondecreasing, and ψ(∅) = 0.
For example, the rank function of a matroid is a polymatroid rank function. The
polymatroid determined by a polymatroid rank function ψ is the convex polyhedron
(see Theorem 18.2.2 in [41]) in R

n given by

P (ψ) :=
{

x ∈ R
n

∣
∣
∣
∣

∑

i∈A

xi ≤ ψ(A) ∀A ⊆ [n], x ≥ 0
}

.

Independence matroid polytopes are a special class of polymatroids. Indeed, if ϕ

is a rank function on some matroid M , then P I (M) = P (ϕ) [18]. Moreover, the ma-
troid polytope P (M) is the face of P (ϕ) lying in the hyperplane

∑n
i=1 xi = ϕ([n]).

Matroid polytopes and polymatroids appear in combinatorial optimization [35], alge-
braic combinatorics [20], and algebraic geometry [22]. The main theme of this paper
is the study of the volumes and Ehrhart functions of matroid polytopes, independence
matroid polytopes, and polymatroids (from now on we often refer to all three families
as matroid polytopes).

To state our main results recall that given an integer k > 0 and a polytope P ⊆
R

n we define kP := { kα | α ∈ P } and the function i(P , k) := #(kP ∩ Z
n), where

we define i(P ,0) := 1. It is well known that for integral polytopes, as in the case
of matroid polytopes, i(P , k) is a polynomial, called the Ehrhart polynomial of P .
Moreover the leading coefficient of the Ehrhart polynomial is the normalized volume
of P , where a unit is the volume of the fundamental domain of the affine lattice
spanned by P [37]. Our first theorem states:
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Theorem 1 Let r be a fixed integer. Then there exist algorithms whose input data
consists of a number n and an evaluation oracle for

(a) a rank function ϕ of a matroid M on n elements satisfying ϕ(A) ≤ r for all A, or
(b) an integral polymatroid rank function ψ satisfying ψ(A) ≤ r for all A

that compute in time polynomial in n the Ehrhart polynomial (in particular, the vol-
ume) of the matroid polytope P (M), the independence matroid polytope P I (M), and
the polymatroid P (ψ), respectively.

The computation of volumes is one of the most fundamental geometric operations
and it has been investigated by several authors from the algorithmic point of view.
Although there are a few cases for which the volume can be computed efficiently
(e.g., for convex polytopes in fixed dimension), it has been proved that computing
the volume of polytopes of varying dimension is #P -hard [9, 17, 26, 30]. Moreover
it was proved that even approximating the volume is hard [19]. Clearly, computing
Ehrhart polynomials is a harder problem still. To our knowledge there were only two
previously known families of varying-dimension polytopes with a polynomial there is
efficient computation of the volume. These two families are simplices or simple poly-
topes with number of vertices (this follows from Lawrence’s volume formula [30]).
Note that for simplices, it is at least NP-hard to compute the whole list of coefficients
of the Ehrhart polynomial, while recently [2] presented a polynomial time algorithm
to compute any fixed number of the highest coefficients of the Ehrhart polynomial
of a simplex of varying dimension. Theorem 1 provides another interesting family of
varying-dimension polytopes whose volumes and Ehrhart polynomials can be com-
puted efficiently. The proof of Theorem 1, presented in Sect. 2, relies on the geometry
of tangent cones at vertices of our polytopes as well as a new, refined analysis of the
evaluation of Todd polynomials in the context of the computational theory of rational
generating functions developed by [1–4, 11, 12, 40, 42]. A nice introduction to these
topics can be found at [5].

In the second part of the paper, developed in Sect. 3, we investigate algebraic
properties of the Ehrhart functions of matroid polytopes: The Ehrhart series of a
polytope P is the infinite series

∑∞
k=0 i(P , k)tk . We recall the following classic result

about Ehrhart series (see e.g., [24, 37]). Let P ⊆ R
n be an integral convex polytope of

dimension d . Then it is known that its Ehrhart series is a rational function of the form

∞∑

k=0

i(P , k)tk = h∗
0 + h∗

1t + · · · + h∗
d−1t

d−1 + h∗
d td

(1 − t)d+1
. (1)

The numerator is often called the h∗-polynomial of P (some authors also call it the
Ehrhart h-polynomial), and we define the coefficients of the polynomial in the nu-
merator of Lemma 1, h∗

0 +h∗
1t +· · ·+h∗

d−1t
d−1 +h∗

d td , as the h∗-vector of P , which
we write as h∗(P ) := (h∗

0, h
∗
1, . . . , h

∗
d−1, h

∗
d).

A vector (c0, . . . , cd) is unimodal if there exists an index p, 0 ≤ p ≤ d , such that
ci−1 ≤ ci for i ≤ p and cj ≥ cj+1 for j ≥ p. Due to its algebraic implications, several
authors have studied the unimodality of h∗-vectors (see [24] and [37] and references
therein).
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Suppose, as before, that P ⊆ R
n, and each vertex of P has integral (or rational)

vertices. Let Y1, Y2, . . . , Yn and T be indeterminates over a field K . Letting q ≥ 1
we define A(P )q as the vector space over K which is spanned by the monomials
Y

α1
1 , Y

α2
2 , . . . , Y

αn
n T q such that (α1, α2, . . . , αn) ∈ qP ∩ Z

n. Since P is convex it fol-
lows that A(P )qA(P )p ⊆ A(P )q+p for all p,q , and thus the Ehrhart ring of P ,
A(P ) = ⊕∞

q=0 A(P )q , is a graded algebra [24, 37].
It is well known that if the Ehrhart ring of an integral polytope P , A(P ), is Goren-

stein, then h∗(P ) is unimodal and symmetric [24, 37]. Nevertheless, the vector h∗(P )

can be unimodal even when the Ehrhart ring A(P ) is not Gorenstein. For matroid
polytopes, their Ehrhart ring is indeed often not Gorenstein. For instance, De Negri
and Hibi [16] proved explicitly when the Ehrhart ring of a uniform matroid polytope
is Gorenstein or not. Two fascinating facts, uncovered through experimentation, are
that all h∗-vectors seen thus far are unimodal, even for the cases when their Ehrhart
rings are not Gorenstein. In addition, when we computed the explicit Ehrhart poly-
nomials of matroid polytopes we observe their coefficients are always positive. We
conjecture:

Conjecture 2 Let P (M) be the matroid polytope of a matroid M .

(A) The h∗-vector of P (M) is unimodal.
(B) The coefficients of the Ehrhart polynomial of P (M) are positive.

We have proved both parts of this conjecture in many instances. A class of ma-
troids that we considered are the uniform matroids; recall that the uniform matroid
on n elements of rank r is the collection of all r-subsets of n. Using computers, we
were able to verify Conjecture 2 for all uniform matroids up to 75 elements as well
as for a wide variety of nonuniform matroids, see [15]. We include this information
here just for the 28 famous matroids presented in [32]. Results in [25], with some
additional careful calculations, imply that Conjecture 2 is true for all rank 2 uniform
matroids. Regarding part (A) of the conjecture, we were also able to prove partial
unimodality for uniform matroids of rank 3. Concretely we obtain:

Theorem 3

(1) Conjecture 2 is true for all uniform matroids up to 75 elements and all uniform
matroids of rank 2. It is also true for all matroids listed in [15].

(2) Let P (U3,n) be the matroid polytope of a uniform matroid of rank 3 on n ele-
ments, and let I be a nonnegative integer. Then there exists n(I) ∈ N such that
for all n ≥ n(I) the h∗-vector of P (U3,n), (h∗

0, . . . , h
∗
n), is nondecreasing from

index 0 to I . That is, h∗
0 ≤ h∗

1 ≤ · · · ≤ h∗
I .

2 Computing the Ehrhart Polynomials

2.1 Preliminaries on Rational Generating Functions

Generating functions are crucial to proving our main results. For a good reference
for the basic concepts used here see [5]. Let P ⊆ R

n be a rational polyhedron.
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The multivariate generating function of P is defined as the formal Laurent series
in Z[[z1, . . . , zn, z

−1
1 , . . . , z−1

n ]]

g̃P (z) =
∑

α∈P ∩Zn

zα,

where we use the multiexponent notation zα = ∏n
i=1 z

αi

i . If P is bounded, g̃P is a
Laurent polynomial, which we consider as a rational function gP . If P is not bounded
but is pointed (i.e., P does not contain a straight line), there is a nonempty open subset
U ⊆ C

n such that the series converges absolutely and uniformly on every compact
subset of U to a rational function gP (see [3] and references therein). If P contains a
straight line, we set gP = 0. The rational function gP ∈ Q(z1, . . . , zn) defined in this
way is called the multivariate rational generating function of P ∩ Z

n. Barvinok [1]
proved that in polynomial time, when the dimension of a polyhedron is fixed, gP can
be represented as a short sum of rational functions

gP (z) =
∑

i∈I

εi

zai

∏n
j=1(1 − zbij )

,

where εi ∈ {−1,1}.
Our first contribution is to show that in the case of matroid polytopes of fixed rank,

this still holds even when their dimension grows. Let v be a vertex of P . Define the
tangent cone or supporting cone of v to be

CP (v) := { v + w | v + εw ∈ P for some ε > 0 } .

We rely on the following result, which connects the rational generating function of
a rational polyhedron to those of the tangent cones of its vertices. This result was
independently discovered by Brion [10] and Lawrence [31]. A proof can also be
found in [3] and [7].

Lemma 4 (Brion–Lawrence’s Theorem) Let P be a rational polyhedron and V (P )

be the set of vertices of P . Then,

gP (z) =
∑

v∈V (P )

gCP (v)(z),

where CP (v) is the tangent cone of v.

Thus, we can write the multivariate generating function of P by writing all multivari-
ate generating functions of all the tangent cones of the vertices of P . Moreover, the
map that assigns a rational polyhedron P its multivariate rational generating func-
tion gP (z) is a valuation, i.e., a finitely additive measure, so it satisfies the equation

gP1∪P2(z) = gP1(z) + gP2(z) − gP1∩P2(z),

for arbitrary rational polytopes P1 and P2, the so-called inclusion–exclusion princi-
ple. This allows us to break a polyhedron P into pieces P1 and P2 and to compute



Discrete Comput Geom (2009) 42: 670–702 675

the multivariate rational generating functions for the pieces (and their intersection)
separately in order to get the generating function gP . More generally, let us denote
by [P ] the indicator function of P , i.e., the function

[P ] : R
n → R, [P ](x) =

{
1 if x ∈ P ,

0 otherwise.

Let
∑

i∈I εi[Pi] = 0 be an arbitrary linear identity of indicator functions of rational
polyhedra (with rational coefficients εi ); the valuation property now implies that it
carries over to a linear identity

∑
i∈I εi gPi

(z) = 0 of rational generating functions.
Now let C be one of the tangent cones of P , and let T be a triangulation of C , given

by its simplicial cones of maximal dimension. Let T̂ denote the set of all (lower-
dimensional) intersecting proper faces of the cones Ci ∈ T . Then we can assign an
integer coefficient εi to every cone Ci ∈ T̂ , such that the following identity holds:

[C] =
∑

Ci∈T
[Ci] +

∑

Ci∈T̂

εi [Ci].

This identity immediately carries over to an identity of multivariate rational generat-
ing functions,

gC (z) =
∑

Ci∈T
gCi

(z) +
∑

Ci∈T̂

εi gCi
(z). (2)

Hence, the problem of computing rational generating functions of a polyhedron is
reduced to the case of simplicial cones.

In the following (Sects. 2.2 and 2.3), we study the tangent cones of the matroid
polytopes and polymatroids and introduce algorithms that construct triangulations
for them. Then, in Sect. 2.4, we construct a short multivariate generating function
using an efficient variant of identity (2) and Brion–Lawrence’s Theorem. Finally, in
Sect. 2.5, we compute the Ehrhart polynomial.

2.2 On the Tangent Cones of Matroid Polytopes

Our goal is to compute the multivariate generating function of matroid polytopes and
independence matroid polytopes with fixed rank (later, in Sect. 2.3, we will deal with
the case of polymatroids), and to do this we will use a crucial property of adjacent
vertices. To illustrate our techniques we will use a running example throughout this
section.

Example 5 (Matroid on K4) Let K4 be the complete graph on four vertices. Label
the

(4
2

) = 6 edges with {1, . . . ,6} as in Fig. 1. Every graph induces a matroid on
its edges where the bases are all spanning trees (spanning forests for disconnected
graphs) [41]. Let M(K4) be the matroid on the elements {1, . . . ,6} with bases as all
spanning trees of K4. The rank of M(K4) is the size of any spanning tree of K4,
thus the rank of M(K4) is 3. The 16 bases of M(K4) are: {3,5,6}, {3,4,6}, {3,4,5},
{2,5,6}, {2,4,6}, {2,4,5}, {2,3,5}, {2,3,4}, {1,5,6}, {1,4,6}, {1,4,5}, {1,3,6},
{1,3,4}, {1,2,6}, {1,2,5}, {1,2,3}.
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Fig. 1 {2,3,5}, {2,3,4},
{1,3,6}, {1,3,4}, {1,2,6} and
{1,2,5} are spanning trees of
K4 that differ from {1,2,3} by
adding one edge and removing
one edge

Lemma 6 (See Theorem 4.1 in [22], Theorem 5.1 and Corollary 5.5 in [39]) Let M

be a matroid.

(A) Two vertices eB1 and eB2 are adjacent in P (M) if and only if eB1 − eB2 = ei − ej

for some i, j .
(B) If two vertices eI1 and eI2 are adjacent in P I (M), then eI1 − eI2 ∈ { ei −

ej , ei , −ej } for some i, j . Moreover if v is a vertex of P I (M), then all ad-
jacent vertices of v can be computed in polynomial time in n, even if the matroid
M is only presented by an evaluation oracle of its rank function ϕ.

Let M be a matroid on n elements with fixed rank r . Then the number of vertices
of P (M) is a polynomial in n of degree r . We can see this since the number of
vertices is equal to the number of bases of M , and the number of bases is bounded by(
n
r

)
, a polynomial in n of degree r . Clearly the number of vertices of P I (M) is also

polynomial in n. It is also clear that, when the rank r is fixed, all vertices of either
polytope can be enumerated in polynomial time in n, even when the matroid is only
presented by an evaluation oracle for its rank function ϕ.

Throughout this section we shall discuss polyhedral cones C with extremal rays
{r1, . . . , rl} such that

rk ∈ RA := {
ei − ej , ei , −ej | i ∈ [n], j ∈ A

}
for k = 1, . . . , l

for some A ⊆ [n]. We will refer to RA as the elementary set of A. Note that by
Lemma 6 the rays of a tangent cone at a vertex eA (corresponding to a set A ⊆ [n])
of a matroid polytope or an independence matroid polytope form an elementary set
of A. Due to convexity and the assumption that rk are extremal, for each i ∈ [n] and
j ∈ A at most two of the three vectors ei − ej , ei ,−ej are extremal rays rk of C . This
implies by construction that, considering all pairs ei − ej and ei or −ej , the number
of generators rk of C is bounded by



Discrete Comput Geom (2009) 42: 670–702 677

n|A| + n + |A|. (3)

Recall a cone is simple if it is generated by linearly independent vectors and it
is unimodular if its fundamental parallelepiped contains only one lattice point [23].
A triangulation of C is unimodular if it is a polyhedral subdivision such that each
subcone is unimodular.

Example 7 (Matroid on K4) The vertices e{2,3,5}, e{2,3,4}, e{1,3,6}, e{1,3,4}, e{1,2,6} and
e{1,2,5} are all adjacent to the vertex e{1,2,3}, see Fig. 1. Moreover, the tangent cone

CP (M(K4))(e{1,2,3}) is generated by the differences of these vertices with e{1,2,3}:

CP (M(K4))(e{1,2,3}) = e{1,2,3} + cone{e{2,3,5} − e{1,2,3}, e{2,3,4} − e{1,2,3},

e{1,3,4} − e{1,2,3}, e{1,2,6} − e{1,2,3},

e{1,2,5} − e{1,2,3}}.

Lemma 8 Let C ⊆ R
n be a cone generated by p extremal rays {r1, . . . , rp} ⊆ RA

where RA is an elementary set of some A ⊆ [n]. Every triangulation of C is unimod-
ular.

Proof Without loss of generality, we can assume {r1, . . . , rl} are generators of the
form ei − ej and {rl+1, . . . , rp} are generators of the form ei or −ej for the cone C .

It is easy to see that the matrix T̃C := [r1, . . . , rl] is totally unimodular. Let GC be
a directed graph with vertex set [n] and an edge from vertex i to j if rk = ei − ej

is an extremal ray of C . We can see that GC is a subgraph of the complete directed
graph Kn with two arcs between each pair of vertices; one for each direction. Since
T̃C := [r1, . . . , rl] is the incidence matrix of the graph GC , it is totally unimodular
[34, Chap. 19, Example 2], i.e., every subdeterminant is 0, 1 or −1 [34, Chap. 19,
Theorem 9]. Therefore TC := [r1, . . . , rl , rl+1, . . . , rp] is totally unimodular since
augmenting T̃C by a vector ei or −ej preserves this subdeterminant property: for any
submatrix containing part of a vector ei or −ej perform the cofactor expansion down
the vector ei or −ej when calculating the determinant.

Since TC is totally unimodular, each basis of TC generates the entire integer lat-
tice Z

n ∩ lin(C) and hence every simplicial cone of a triangulation has normalized
volume 1. �

Lemma 9 Let C ⊆ R
n be a cone generated by l extremal rays {r1, . . . , rl} ⊆ RA

where RA is an elementary set of some A ⊆ [n], where dim(C) < n. The extremal
rays {r1, . . . , rl} can be augmented by a vector r̃ such that dim(cone{r1, . . . , rl , r̃}) =
dim(C) + 1, the vectors r1, . . . , rl , r̃ are all extremal, and r̃ ∈ RA.

Proof It follows from convexity that at most two of ei − ej , ei or −ej are extremal
generators of C for i ∈ [n] and j ∈ A. There are at least n possible extremal ray gener-
ators, considering two of ei − ej , ei or −ej for each i ∈ [n] and j ∈ A. Moreover, all
these pairs span R

n. Thus, by the basis augmentation theorem of linear algebra, there
exists a vector r̃ such that dim(cone{r1, . . . , rl , r̃}) = dim(C)+ 1 and r1, . . . , rl , r̃ are
all extremal. �
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Lemma 10 Let r be a fixed integer, n be an integer, A ⊆ [n] with |A| ≤ r and let
C ⊆ R

n be a cone generated by l extremal rays {r1, . . . , rl} ⊆ RA where RA is an
elementary set of A. Then any triangulation of conv({0, r1, . . . , rl}) has at most a
polynomial in n number of top-dimensional simplices.

Proof Assume dim(C) = n. Later, we will show how to remove this restriction. We
can see that conv{0, r1, . . . , rl} ⊆ [−1,1]A × �̃[n]\A where

[−1,1]A := {
x ∈ R

A | |xj | ≤ 1 j ∈ A
} ⊆ R

A,

�̃[n]\A := conv
({

ei | i ∈ [n] \ A
} ∪ {0}) ⊆ R

[n]\A.

The volume of a d-simplex conv{v0, . . . , vd} is [23]

1

d!
∣
∣
∣
∣det

(
v0 · · · vd

1 · · · 1

)∣
∣
∣
∣ . (4)

Thus the (n − |A|)-volume of �̃[n]\A is 1
(n−|A|)! and the |A|-volume of [−1,1]A

is 2|A|. Therefore

vol
([−1,1]A × �̃[n]\A

) = 2|A| 1

(n − |A|)! = 1

n!2
|A|n(n − 1) · · · (n − |A| + 1

)
.

It is also a fact that any integral n-simplex has n-volume bounded below by 1
n! , using

the simplex volume equation (4). Therefore any triangulation of conv{0, r1, . . . , rl}
has at most

2|A|n(n − 1) · · · (n − |A| + 1
) ≤ 2rn(n − 1) · · · (n − r + 1)

full-dimensional simplices, a polynomial function in n of degree r .
Let dC := n − dim(C). If dim(C) < n, then by Lemma 9, {r1, . . . , rl} can

be augmented with vectors {r̃1, . . . , r̃dC } where r̃k ∈ RA for A above, such that
dim(cone{r1, . . . , rl , r̃1, . . . , r̃dC }) = n and {r1, . . . , rl , r̃1, . . . , r̃dC } are extremal.
Moreover,

dim
(
conv{0, r1, . . . , rl}

)
< dim

(
conv{0, r1, . . . , rl , r̃1}

)
< · · ·

< dim
(
conv{0, r1, . . . , rl , r̃1, . . . , r̃dC −1}

)

< dim
(
conv{0, r1, . . . , rl , r̃1, . . . , r̃dC }),

that is, r̃k /∈ aff{0, r1, . . . , rl , r̃1, . . . , r̃k−1} for 1 ≤ k ≤ dC .
Since r̃k /∈ aff{0, r1, . . . , rl , r̃1, . . . , r̃k−1}, any full-dimensional simplex in a tri-

angulation of conv{0, r1, . . . , rl , r̃1, . . . , r̃k} must contain r̃k , see Fig. 2. If not, then
there exists a top-dimensional simplex using the points {0, r1, . . . , rl , r̃1, . . . , r̃k−1},
but we know all these points lie in a subspace of one less dimension, a con-
tradiction. Therefore, a bound on the number of simplices in a triangulation of
conv{0, r1, . . . , rl , r̃1, . . . , r̃k} is a bound on that of conv{0, r1, . . . , rl , r̃1, . . . , r̃k−1}.
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Fig. 2 If r̃k is not contained in
the affine span of
{0, r1, . . . , rp, r̃1, . . . , r̃k−1},
then every full-dimensional
simplex must contain r̃k

Fig. 3 (a) � visible to v; (b) �

not visible to v

Thus, if dim(C) < n we can augment C by vectors r̃1, . . . , r̃dC so that the cone
C̃ := cone{r1, . . . , rp, r̃1, . . . , r̃dC } is of dimension n and rl , r̃k ∈ RA for A above.
We proved any triangulation of conv{0, r1, . . . , rp, r̃1, . . . , r̃dC } has at most polyno-
mially many full-dimensional n-simplices, which implies that any triangulation of
conv{0, r1, . . . , rp} has at most polynomially many top-dimensional simplices due to
the construction of the generators r̃k . �

We have shown that for a cone C generated by an elementary set of extremal rays
{r1, . . . , rl} ⊆ RA for some A ⊆ [n], any triangulation of conv{0, r1, . . . , rl} has at
most polynomially many simplices. What we need next is an efficient method to
compute some triangulation of conv{0, r1, . . . , rl}. We will show that the placing
triangulation is a suitable candidate.

Let P ⊆ R
n be a polytope of dimension n and � be a facet of P and v ∈ R

n.
There exists a unique hyperplane H containing � and P is contained in one of the
closed sides of H , call it H+. If v is contained in the interior of H−, the other
closed halfspace defined by H , then � is visible from v (see [23], Chap. 14.2); see
Fig. 3. The well-known placing triangulation is given by an algorithm where a point
is iteratively added to an intermediate triangulation by determining which facets are
visible to the new point [14, 23]. We recall now how to determine if a facet is visible
to a vertex in polynomial time.

Lemma 11 Let P ⊆ R
n be a polytope given by t vertices {v1, . . . , vt } ⊆ R

n and
� ⊆ P be a facet of P given by q vertices {ṽ1, . . . , ṽq} ⊆ {v1, . . . , vt }. If v ∈ R

n

where v /∈ P , then deciding if � is visible to v can be done in polynomial time in the
input {ṽ1, . . . , ṽq}, {v1, . . . , vt } and v.
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Proof Let z := 1
q

∑q

i=1 ṽi so that z ∈ relint(�). We consider the linear program:

{ ⎛

⎝
x
y
λ

⎞

⎠ ∈ R
n+t+1

∣
∣
∣
∣ x =

t∑

i=1

viyi , y ≥ 0,

t∑

i=1

yi = 1,

0 ≤ λ < 1, λv + (1 − λ)z = x

}

. (5)

If (5) has a solution, then there exists a point x̄ ∈ P between the facet � and v,
hence � is not visible from v. If (5) does not have a solution, then there are no points
of P between v and �, hence � is visible from v (see Lemma 4.2.1 in [14]). It
is well known that a strict inequality, such as the one in (5), can be handled by an
equivalent linear program which has only one additional variable. Determining if (5)
has a solution can be done in polynomial time in the input [34]. �

The placing triangulation is obtained by incrementally adding one point at a time,
connecting the new point to the current triangulation. More precisely:

Algorithm 12 (The Placing Triangulation [14, 23])

Input: A set of ordered points {v1, . . . ,vt } ∈ R
n.

Output: A triangulation T of {v1, . . . ,vt }
1: T := {{v1}}.
2: for each vi ∈ {v2, . . . ,vt } do
3: Let B ∈ T .
4: Pi := {v1, . . . ,vi−1}
5: if vi /∈ aff(Pi) then
6: T ′ := ∅
7: for each D ∈ T do
8: T ′ := T ′ ∪ {D ∪ {vi}}.
9: else

10: for each B ∈ T and each (|B| − 1)-subset C of B do
11: Create and solve the linear program (5) with (Pi,C,vi ) to

decide visibility of C to vi .
12: if C is visible to vi then
13: T ′ := T ′ ∪ {C ∪ {vi}}
14: T := T ′
15: return T

Indeed, Algorithm 12 returns a triangulation [23]. We will show that for certain in-
put (a point set corresponding to a vertex cone of a matroid polytope or independence
matroid polytope), it runs in polynomial time. We remark that there are exponentially,
in n, many lower dimensional simplices in any given triangulation. But, it is impor-
tant to note that only the highest dimensional simplices are listed in an intermediate
triangulation (and thus the final triangulation) in the placing triangulation algorithm.
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Theorem 13 Let r be a fixed integer, n be an integer, A ⊆ [n] with |A| ≤ r , and
let {r1, . . . , rl} ⊆ RA. Then the placing triangulation (Algorithm 12) with input
{0, r1, . . . , rl} runs in polynomial time.

Proof By (3) there is only a polynomial, in n, number of extremal rays {r1, . . . , rl}.
Thus, the for statement on line 2 repeats a polynomial number of times. Step 5 can
be done in polynomial time by solving the linear equation [r1, . . . , ri−1]x = vi .

The for statement on line 7 repeats for every simplex D in the triangulation T ,
and the number of simplices in T is bounded by the number of simplices in the
final triangulation. By Lemma 10 any triangulation of extremal cone generators in
RA with the origin will use at most polynomially many top-dimensional simplices.
Hence the number of top-dimensional simplices of any partial triangulation T will
be polynomially bounded since it is a subset of the final triangulation.

The for statement on line 10 repeats for every simplex B and every (|B| − 1)-
simplex of B . As before, the number of simplices B is polynomially bounded, and
there are at most n (|B| − 1)-simplices of B . Thus the for statement will repeat a
polynomial number of times.

Finally, by Lemma 11, determining if C is visible to vi can be done in polynomial
time. Therefore Algorithm 12 runs in a polynomial time. �

Corollary 14 Let r be a fixed integer, n be an integer, A ⊆ [n] with |A| ≤ r , and let
C ⊆ R

n be a cone generated by extremal rays {r1, . . . , rl} ⊆ RA. A triangulation of
C can be computed in polynomial time in the input of the extremal ray generators
{r1, . . . , rl}.

Proof Let P C := conv{0, r1, . . . , rt }. We give an algorithm which produces a trian-
gulation of P C := conv{0, r1, . . . , rt } such that each full-dimensional simplex has 0
as a vertex; see Fig. 4. Such a triangulation would extend to a triangulation of the
cone C . This can be accomplished by applying two placing triangulations: one to tri-
angulate the boundary of PC not incident to 0, and another to attach the triangulated
boundary faces to 0. The algorithm goes as follows:

(1) Triangulate P C using the placing triangulation algorithm. Call it T ′.
(2) Triangulate PC using the boundary faces of T ′ which do not contain v.

Algorithm 15 (Triangulation joining 0 to boundary faces)

Input: A triangulation T ′ of P C , given by its vertices.
Output: A triangulation T of PC such that every highest dimension sim-

plex of T is incident to 0.
1: T := ∅
2: for each C where C is a (|B| − 1)-simplex of B ∈ T ′ do
3: if C is not a (|A| − 1)-simplex of A ∈ T ′ where A �= B then
4: T := T ∪ {C ∪ {0} }
5: return T

By Theorem 13, triangulating P C using Algorithm 12 can be done in polynomial
time. Algorithm 15 indeed produces a triangulation of P C . It covers P C since every
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Fig. 4 A triangulation T ′ of
PC can be used to extend to a
triangulation T such that 0 is
incident to every highest
dimensional simplex

extremal ray generator rk of C is on some (dim(C) − 1)-simplex. Moreover, T by
construction has the property that the intersection of any two simplices of T is a
simplex. Step 3 checks if C is on the boundary, since if C is on the boundary it will
not be on the intersection of two higher-dimensional simplices.

Step 2 repeats a polynomial number of times since any triangulation of PC has at
most a polynomial number of simplices, and each simplex B has at most n (|B|− 1)-
simplices. Step 3 can be computed in polynomial time since again there are only
polynomially many simplices B in the triangulation T ′ and at most n (|B| − 1)-
simplices to check if they are equal to C. Hence, Algorithm 15 runs in polynomial
time. �

Example 16 The tangent cone at the vertex eB := e{1,2,3} on the polytope P (M(K4))

can be triangulated as:

{{e{2,3,5} − eB, e{2,3,4} − eB, e{1,3,6} − eB, e{1,3,4} − eB, e{1,2,6} − eB},
{e{2,3,5} − eB, e{1,3,6} − eB, e{1,3,4} − eB, e{1,2,6} − eB, e{1,2,5} − eB},
{e{2,3,5} − eB, e{2,3,4} − eB, e{1,3,4} − eB, e{1,2,6} − eB, e{1,2,5} − eB}}.

2.3 Polymatroids

We will show that certain lemmas from Sect. 2.2 also hold for certain polymatroids.
Recall that the rank of the matroid M is the size of any basis of M which equals
ϕ([n]). Our lemmas from Sect. 2.2 rely on the fact that M has fixed rank, that is, for
some r ∈ Z, r ≥ 0, ϕ(A) ≤ r for all A ⊆ [n]. We will show that a similar condition
on a polymatroid rank function is sufficient for the lemmas of Sect. 2.2 to hold.

Lemma 17 Let ψ : 2[n] −→ N be an integral polymatroid rank function where
ψ(A) ≤ r for all A ⊆ [n], where r is a fixed integer. Then the number of vertices
of P (ψ) is bounded by a polynomial in n of degree r .

Proof It is known that if ψ is integral, then all vertices of P (ψ) are integral [41]. The
number of vertices of P (ψ) can be bounded by the number of nonnegative integral
solutions to x1 +· · ·+xn ≤ r , which has

(
n+r
r

)
solutions, a polynomial in n of degree

r [38]. �

Lemma 18 Let ψ : 2[n] −→ N be an integral polymatroid rank function. If v is a
vertex of P (ψ), then all adjacent vertices of v can be enumerated in polynomial time.
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Moreover, if ψ(A) ≤ r for all A ⊆ [n], where r is a fixed integer, then the vertices of
P (ψ) can be enumerated in polynomial time.

Proof If v is a vertex of P (ψ), then generating and listing all adjacent vertices to v
can be done in polynomial time by Corollary 5.5 in [39]. If ψ(A) ≤ r for all A ⊆ [n],
where r is a fixed integer, then, by Lemma 17, there is a polynomial number of
vertices for P (ψ). We know that 0 ∈ R

n is a vertex of any polymatroid. Therefore,
beginning with 0, we can perform a breadth-first search, which is output-sensitive
polynomial time, on the graph of P (ψ), enumerating all vertices of P (ψ). �

What remains to be shown is that these polymatroids have cones like the ones
in Sect. 2.2. We first recall some needed definitions from [39]. Let v, w ∈ R

n and
define �(v, w) := { i ∈ [n] | vi �= wi } and cl(v) := {S | S ⊆ [n], ∑

i∈S vi = ψ(S) }.
Let F = {f1, . . . , f|F |} be an ordered subset of [n] and Fi := {f1, . . . , fi}. If ψ is a
polymatroid rank function, then we construct v ∈ R

n where vi = ψ(Fi) − ψ(Fi−1)

where vj = 0 when j /∈ F and one says F generates v. A classical result of Edmonds
[18] says that the set of vectors generated by all ordered subsets of [n] is exactly the
set of vertices of P (ψ). Now we can restate an important lemma.

Lemma 19 (See Theorem 4.1 and Sect. 2 in [39]) Let ψ be a polymatroid rank
function. If v and w are vertices of the polymatroid P (ψ), then either

(i) |�(v, w)| = 1.
(ii) cl(v) = cl(w) and �(v, w) = {c, d} for some c, d ∈ [n] where there exists

some ordered set F = {f1, . . . , f|F |} which generates v with fk+1 = d and
fk = c for some integer k, 1 ≤ k ≤ |F | − 1; moreover the ordered set F̃ :=
{f1, . . . , fk−1, fk+1, fk, fk+2, . . . , f|F |} generates w.

Lemma 20 Let ψ be an integral polymatroid rank function and C the tangent cone
of a vertex v of the polymatroid P (ψ), translated to the origin. Then C is generated
by extremal ray generators {r1, . . . , rl} ⊆ Rsupp(v), where Rsupp(v) is an elementary
set of supp(v).

Proof Let ψ : 2[n] −→ Z be a integral polymatroid rank function. Let v and w be
adjacent vertices of the polymatroid P (ψ). Using Lemma 19, if |�(v, w)| = 1, then
w − v = hei where h is some integer and ei is the standard ith elementary vector
for some i ∈ [n]. If h < 0, then certainly i ∈ supp(v), else i ∈ [n]. Thus w − v, a
generator of C , is parallel to a vector in Rsupp(v).

Let v and w be adjacent and satisfy (ii) in Lemma 19, where �(v, w) = {c, d}.
Hence there exists an F = {f1, . . . , f|F |} which generates v with fk+1 = d and
fk = c for some integer k, 1 ≤ k ≤ |F | − 1; moreover the ordered set F̃ :=
{f1, . . . , fk−1, fk+1, fk, fk+2, . . . , f|F |} generates w. First we note that ψ(Fk−1) =
ψ(F̃k−1) and ψ(Fk+1) = ψ(F̃k+1). By assumption, we know vc �= wc, vd �= wd and
vl = wl for all l ∈ [n] \ {c, d}. Thus

(v − w)c = vc − wc = ψ(Fk+1) − ψ(Fk) − (
ψ

(
F̃k

) − ψ
(
F̃k−1

))
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= ψ(Fk+1) − ψ(Fk) − ψ
(
F̃k

) + ψ
(
F̃k−1

)
,

and

(v − w)d = vd − wd = ψ(Fk) − ψ(Fk−1) − (
ψ

(
F̃k+1

) − ψ
(
F̃k

))

= ψ(Fk) − ψ
(
F̃k−1

) − (
ψ(Fk+1) − ψ

(
F̃k

))

= −ψ(Fk+1) + ψ(Fk) + ψ
(
F̃k

) − ψ
(
F̃k−1

)
.

Therefore (v − w)c = −(v − w)d and w − v is parallel to ed − ec. Moreover, c ∈
supp(v) since w, v ≥ 0 by assumption that v, w ∈ P (ψ). Thus w − v, a generator
of C , is parallel to a vector in Rsupp(v). �

2.4 The Construction of a Short Multivariate Rational Generating Function

From the knowledge of triangulations of tangent cones of matroid polytopes, inde-
pendence matroid polytopes, and polymatroids we will now recover short multivari-
ate generating functions.

Remark 21 Notice that formula (2) is of exponential size, even when the triangu-
lation T only has polynomially many simplicial cones of maximal dimension. The
reason is that, when the dimension n is allowed to vary, there are exponentially many
intersecting proper faces in the set T̂ . Therefore, we cannot use (2) to compute the
multivariate rational generating function of C in polynomial time for varying dimen-
sion.

To obtain a shorter formula, we use the technique of half-open exact decomposi-
tions [29], which is a refinement of the method of “irrational” perturbations [6, 27].
We use the following result; see also Figs. 5 and 6.

Lemma 22

(a) Let
∑

i∈I1

εi[Ci] +
∑

i∈I2

εi[Ci] = 0 (6)

be a linear identity (with rational coefficients εi ) of indicator functions of
cones Ci ⊆ R

n, where the cones Ci are full-dimensional for i ∈ I1 and lower-
dimensional for i ∈ I2. Let each cone be given as

Ci = {
x ∈ R

n : 〈b∗
i,j ,x

〉 ≤ 0 for j ∈ Ji

}
. (7)

Let y ∈ R
n be a vector such that 〈b∗

i,j , y〉 �= 0 for all i ∈ I1 ∪I2, j ∈ Ji . For i ∈ I1,
we define the “half-open cone”

C̃i = {
x ∈ R

d : 〈b∗
i,j ,x

〉 ≤ 0 for j ∈ Ji with
〈
b∗

i,j ,y
〉
< 0,

〈
b∗

i,j ,x
〉
< 0 for j ∈ Ji with

〈
b∗

i,j ,y
〉
> 0

}
. (8)
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Fig. 5 An identity, valid
modulo lower-dimensional
cones, corresponding to a
polyhedral subdivision of a cone

Fig. 6 The technique of
half-open exact decomposition.
The relative location of the
vector y (represented by a dot)
determines which defining
inequalities are strict (broken
lines) and which are weak (solid
lines)

Then
∑

i∈I1

εi

[
C̃i

] = 0. (9)

(b) In particular, let

[C] =
∑

Ci∈T
[Ci] +

∑

Ci∈T̂

εi [Ci] (10)

be the identity corresponding to a triangulation of the cone C , where T is the set
of simplicial cones of maximal dimension and T̂ is the set of intersecting proper
faces. Then there exists a polynomial-time algorithm to construct a vector y ∈ Q

n

such that the above construction yields the identity

[C] =
∑

Ci∈T

[
C̃i

]
, (11)

which describes a partition of C into half-open cones of maximal dimension.

Proof Part (a) is a slightly less general form of Theorem 3 in [29]. Part (b) follows
from the discussion in [29, Sect. 2]. �

Since the cones in a triangulation T of all tangent cones CP (v) of our polytopes
are unimodular by Lemma 8, we can efficiently write the multivariate generating
functions of their half-open counterparts.
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Lemma 23 (Lemma 9 in [29]) Let C̃ ⊆ R
n be an N -dimensional half-open pointed

simplicial affine cone with an integral apex v ∈ Z
n and the ray description

C̃ =
{

v +
N∑

j=1

λj bj : λj ≥ 0 for j ∈ J≤ and λj > 0 for j ∈ J<

}

, (12)

where J≤ ∪ J< = {1, . . . ,N} and bj ∈ Z
n \ {0}. We further assume that C̃ is unimod-

ular, i.e., the vectors bj form a basis of the lattice (Rb1 + · · ·+ RbN)∩ Z
n. Then the

unique point in the fundamental parallelepiped of the half-open cone C̃ is

a = v +
∑

j∈J<

bj , (13)

and the generating function of C is given by

gC (z) = za

∏N
j=1(1 − zbj )

. (14)

Taking all results together, we obtain:

Corollary 24 Let r be a fixed integer. There exist algorithms that, given

(a) a matroid M on n elements, presented by an evaluation oracle for its rank func-
tion ϕ, which is bounded above by r , or

(b) an evaluation oracle for an integral polymatroid rank function ψ : 2[n] −→ N,
which is bounded above by r

compute in time polynomial in n vectors ai ∈ Z
n, bi,j ∈ Z

n \ {0}, and vi ∈ Z
n for

i ∈ I (a polynomial-size index set) and j = 1, . . . ,N , where N ≤ n, such that the
multivariate generating function of P (M), P I (M) and P (ψ), respectively, is the
sum of rational functions

gP (z) =
∑

i∈I

zai

∏N
j=1(1 − zbi,j )

, (15)

and the kth dilation of the polytope has the multivariate rational generating function

gkP (z) =
∑

i∈I

zai+(k−1)vi

∏N
j=1(1 − zbi,j )

. (16)

Proof Lemma 4 implies that finding the multivariate generating function of P (M),
P I (M) or P (ψ) can be reduced to finding the multivariate generating functions of
their tangent cones. Moreover, P (M), P I (M) and P (ψ) have only polynomially in
n many vertices as described in Sect. 2.2 or Lemma 17. Enumerating their vertices
can be done in polynomial time by Lemmas 6 or 18.

Given a vertex v of P (M), P I (M) or P (ψ), its neighbors can be computed in
polynomial time by Lemmas 6 or 18. The tangent cone C(v) at v is generated by
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elements in RA, where RA is an elementary set for some A ⊆ [n]. See Sect. 2.2 or
Lemma 20. We also proved in Lemma 8 that every triangulation of C(v) generated
by elements in RA is unimodular and Lemma 10 states that any triangulation of C(v)

has at most a polynomial in n number of top-dimensional simplices. Moreover, a
triangulation of the cone C(v) can be computed in polynomial time by Lemma 13.
Finally, using Lemmas 22 and 23 we can write the polynomial sized multivariate gen-
erating function of C(v) in polynomial time. Therefore we can write the multivariate
generating function of P (M), P I (M) or P (ψ) in polynomial time. �

2.5 Polynomial-Time Specialization of Rational Generating Functions in Varying
Dimension

We now compute the Ehrhart polynomial i(P , k) = #(kP ∩Z
n) from the multivariate

rational generating function gkP (z) of Corollary 24. This amounts to the problem
of evaluating or specializing a rational generating function gkP (z), depending on a
parameter k, at the point z = 1. This is a pole of each of its summands, but a regular
point (removable singularity) of the function itself. From now on we call this the
specialization problem. We explain a very general procedure to solve it which we
hope will allow future applications.

To this end, let the generating function of a polytope P ⊆ R
n be given in the form

gP (z) =
∑

i∈I

εi

zai

∏si
j=1(1 − zbij )

, (17)

where εi ∈ {±1}, ai ∈ Z
n, and bij ∈ Z

n \ {0}. Let s = maxi∈I si be the maximum
number of binomials in the denominators. In general, if s is allowed to grow, more
poles need to be considered for each summand, so the evaluation will need more
computational effort.

In previous literature, the specialization problem has been considered, but not in
sufficient generality for our purpose. In the original paper by [1, Lemma 4.3], the
dimension n is fixed, and each summand has exactly si = n binomials in the denom-
inator. The same restriction can be found in the survey by [3]. In the more general
algorithmic theory of monomial substitutions developed by [4] and [42], there is no
assumption on the dimension n, but the number s of binomials in the denominators
is fixed. The same restriction appears in the paper by [40, Lemma 2.15]. In a recent
paper, [2, Sect. 5] gives a polynomial-time algorithm for the specialization problem
for rational functions of the form

g(z) =
∑

i∈I

εi

zai

∏s
j=1 (1 − zbij )

γij
, (18)

where the dimension n is fixed, the number s of different binomials in each denomi-
nator equals n, but the multiplicity γij is varying.

We will show that the technique from [2, Sect. 5] can be implemented in a way
such that we obtain a polynomial-time algorithm even for the case of a general for-
mula (17), when the dimension and the number of binomials are allowed to grow.
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Theorem 25 (Polynomial-time specialization)

(a) There exists an algorithm for computing the specialization of a rational function
of the form

gP (z) =
∑

i∈I

εi

zai

∏si
j=1(1 − zbij )

(19)

at its removable singularity z = 1, which runs in time polynomial in the encoding
size of its data εi ∈ Q, ai ∈ Z

n for i ∈ I and bij ∈ Z
n for i ∈ I , j = 1, . . . , si ,

even when the dimension n and the numbers si of terms in the denominators are
not fixed.

(b) In particular, there exists a polynomial-time algorithm that, given data εi ∈ Q,
ai ∈ Z

n for i ∈ I and bij ∈ Z
n for i ∈ I , j = 1, . . . , si describing a rational

function in the form (19), computes a vector λ ∈ Q
n with 〈λ, bij 〉 �= 0 for all i, j

and rational weights wi,l for i ∈ I and l = 0, . . . , si . Then the number of integer
points is given by

#
(

P ∩ Z
n
) =

∑

i∈I

εi

si∑

l=0

wi,l〈λ, ai〉l . (20)

(c) Likewise, given a parametric rational function for the dilations of an integral
polytope P ,

gkP (z) =
∑

i∈I

εi

zai+(k−1)vi

∏d
j=1(1 − zbi,j )

, (21)

the Ehrhart polynomial i(P , k) = #(kP ∩ Z
n) is given by the explicit formula

i(P , k) =
M∑

m=0

(∑

i∈I

εi〈λ, vi〉m
si∑

l=m

(
l

m

)

wi,l〈λ, ai − vi〉l−m

)

km, (22)

where M = min{s,dim P }.

Proof of Theorem 1 Corollary 24 and Theorem 25 imply Theorem (Theorem 1) di-
rectly. �

The remainder of this section contains the proof of Theorem 25. We follow [3] and
recall the definition of Todd polynomials. We will prove that they can be efficiently
evaluated in rational arithmetic.

Definition 26 We consider the function

H(x, ξ1, . . . , ξs) =
s∏

i=1

xξi

1 − exp{−xξi} ,
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a function that is analytic in a neighborhood of 0. The mth (s-variate) Todd polyno-
mial is the coefficient of xm in the Taylor expansion

H(x, ξ1, . . . , ξs) =
∞∑

m=0

tdm(ξ1, . . . , ξs)x
m.

We remark that, when the numbers s and m are allowed to vary, the Todd polynomials
have an exponential number of monomials.

Theorem 27 The Todd polynomial tdm(ξ1, . . . , ξs) can be evaluated for given ratio-
nal data ξ1, . . . , ξs in time polynomial in s, m, and the encoding length of ξ1, . . . , ξs .

The proof makes use of the following lemma.

Lemma 28 The function h(x) = x/(1− e−x) is a function that is analytic in a neigh-
borhood of 0. Its Taylor series about x = 0 is of the form

h(x) =
∞∑

n=0

bnx
n where bn = 1

n! (n + 1)!cn (23)

with integer coefficients cn that have a binary encoding length of O(n2 logn). The
coefficients cn can be computed from the recursion

c0 = 1,

cn =
n∑

j=1

(−1)j+1
(

n + 1

j + 1

)
n!

(n − j + 1)!cn−j for n = 1,2, . . . .
(24)

Proof The reciprocal function h−1(x) = (1 − e−x)/x has the Taylor series

h−1(x) =
∞∑

i=0

anx
n with an = (−1)n

(n + 1)! .

Using the identity h−1(x)h(x) = (∑∞
n=0 anx

n
)(∑∞

n=0 bnx
n
) = 1, we obtain the re-

cursion

b0 = 1
a0

= 1,

bn = −(a1bn−1 + a2bn−2 + · · · + anb0) for n = 1,2, . . . .
(25)

We prove (23) inductively. Clearly b0 = c0 = 1. For n = 1,2, . . . , we have

cn = n! (n + 1)!bn

= −n! (n + 1)! (a1bn−1 + a2bn−2 + · · · + anb0)

= n! (n + 1)!
n∑

j=1

(−1)j+1

(j + 1)! · 1

(n − j)! (n − j + 1)!cn−j
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=
n∑

j=1

(−1)j+1 (n + 1)!
(j + 1)! (n − j)! · n!

(n − j + 1)!cn−j .

Thus we obtain the recursion formula (24), which also shows that all cn are integers.
A rough estimate shows that

|cn| ≤ n(n + 1)!n! |cn−1| ≤
(
(n + 1)!)2|cn−1|,

thus |cn| ≤ ((n + 1)!)2n, so cn has a binary encoding length of O(n2 logn). �

Proof of Theorem 27 By definition, we have

H(x, ξ1, . . . , ξs) =
∞∑

m=0

tdm(ξ1, . . . , ξs)x
m =

s∏

j=1

h(xξj ).

From Lemma 28 we have

h(xξj ) =
m∑

n=0

βj,nx
n + o

(
xm

)
where βj,n = ξn

j

n! (n + 1)!cn (26)

with integers cn given by the recursion (24). Thus we can evaluate tdm(ξ1, . . . , ξs) by
summing over all the possible compositions n1 + · · · + ns = m of the order m from
the orders nj of the factors:

tdm(ξ1, . . . , ξs) =
∑

(n1,...,ns )∈Z
s+

n1+···+ns=m

β1,n1 · · ·βs,ns . (27)

We remark that the length of the above sum is equal to the number of compositions
of m into s nonnegative parts,

C′
s(m) =

(
m + s − 1

s − 1

)

= (m + s − 1)(m + s − 2) · · · (m + s − (s − 1))

(s − 1)(s − 2) · · ·2 · 1

= 


((

1 + m

s − 1

)s)

,

which is exponential in s (whenever m ≥ s). Thus we cannot evaluate the for-
mula (27) efficiently when s is allowed to grow.

However, we show that we can evaluate tdm(ξ1, . . . , ξs) more efficiently. To this
end, we multiply up the s truncated Taylor series (26), one factor at a time, truncating
after order m. Let us denote

H1(x) = h(xξ1),

H2(x) = H1(x) · h(xξ2),
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...

Hs(x) = Hs−1(x) · h(xξs) = H(x, ξ1, . . . , ξs).

Each multiplication can be implemented in O(m2) elementary rational operations.
We finally show that all numbers appearing in the calculations have polynomial
encoding size. Let � be the largest binary encoding size of any of the rational
numbers ξ1, . . . , ξs . Then every βj,n given by (26) has a binary encoding size
O(�n5 log3 n). Let Hj(x) have the truncated Taylor series

∑m
n=0 αj,nx

n + o(xm)

and let Aj denote the largest binary encoding length of any αj,n for n ≤ m. Then

Hj+1(x) =
m∑

n=0

αj+1,nx
n + o

(
xm

)
with αj+1,n =

n∑

l=0

αj,lβj,n−l .

Thus the binary encoding size of αj+1,n (for n ≤ m) is bounded by Aj +
O(�m5 log3 m). Thus, after s multiplication steps, the encoding size of the coeffi-
cients is bounded by O(s�m5 log3 m), a polynomial quantity. �

Proof of Theorem 25 Parts (a) and (b). We recall the technique of [1, Lemma 4.3],
refined by [2, Sect. 5].

We first construct a rational vector λ ∈ Z
n such that 〈λ, bij 〉 �= 0 for all i, j . One

such construction is to consider the moment curve λ(ξ) = (1, ξ, ξ2, . . . , ξn−1) ∈ R
n.

For each exponent vector bij occurring in a denominator of (17), the function
fij : ξ �→ 〈λ(ξ), bij 〉 is a polynomial function of degree at most n− 1. Since bij �= 0,
the function fij is not identically zero. Hence fij has at most n − 1 zeros. By eval-
uating all functions fij for i ∈ I and j = 1, . . . , si at M = (n − 1)s|I | + 1 different
values for ξ , for instance at the integers ξ = 0, . . . ,M , we can find one ξ = ξ̄ that
is not a zero of any fij . Clearly this search can be implemented in polynomial time,
even when the dimension n and the number s of terms in the denominators are not
fixed. We set λ = λ(ξ̄ ).

For τ > 0, let us consider the points zτ = eτλ = (exp{τλ1}, . . . , exp{τλn}). We
have

z
bij
τ =

n∏

l=1

exp{τλlbij l} = exp
{
τ 〈λ, bij 〉

};

since 〈λ, bij 〉 �= 0 for all i, j , all the denominators 1 − z
bij
τ are nonzero. Hence for

every τ > 0, the point zτ is a regular point not only of g(z) but also of the individual
summands of (17). We have

g(1) = lim
τ→0+

∑

i∈I

εi

zai
τ

∏si
j=1(1 − z

bij
τ )

= lim
τ→0+

∑

i∈I

εi

exp{τ 〈λ,ai〉}
∏si

j=1(1 − exp{τ 〈λ,bij 〉})
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= lim
τ→0+

∑

i∈I

εi τ
−si exp

{
τ 〈λ,ai〉

} si∏

j=1

τ

1 − exp{τ 〈λ,bij 〉}

= lim
τ→0+

∑

i∈I

εi τ
−si exp

{
τ 〈λ,ai〉

} si∏

j=1

−1

〈λ,bij 〉h
(−τ 〈λ,bij 〉

)

= lim
τ→0+

∑

i∈I

εi

(−1)si
∏si

j=1〈λ,bij 〉 τ−si exp
{
τ 〈λ,ai〉

}
H

(
τ,−〈λ,bi1〉, . . . ,−〈λ,bisi 〉

)
,

where H(x, ξ1, . . . , ξsi ) is the function from Definition 26. We will compute the limit
by finding the constant term of the Laurent expansion of each summand about τ = 0.
Now the function τ �→ exp{τ 〈λ, ai〉} is holomorphic and has the Taylor series

exp
{
τ 〈λ, ai〉

} =
si∑

l=0

αi,lτ
l + o

(
τ si

)
where αi,l = 〈λ, ai〉l

l! , (28)

and H(τ, ξ1, . . . , ξsi ) has the Taylor series

H(τ, ξ1, . . . , ξs) =
si∑

m=0

tdm(ξ1, . . . , ξs)τ
m + o

(
τ si

)
.

Because of the factor τ−si , which gives rise to a pole of order si in the summand,
we can compute the constant term of the Laurent expansion by summing over all the
possible compositions si = l + (si − l) of the order si :

g(1) =
∑

i∈I

εi

(−1)si
∏si

j=1〈λ, bij 〉
si∑

l=0

〈λ, ai〉l
l! tdsi−l

(−〈λ, bi1〉, . . . ,−〈λ, bisi 〉
)
. (29)

We use the notation

wi,l = (−1)si
tdsi−l(−〈λ, bi,1〉, . . . ,−〈λ, bi,si 〉)

l! · 〈λ, bi,1〉 · · · 〈λ, bi,si 〉
for i ∈ I and l = 0, . . . , si;

these rational numbers can be computed in polynomial time using Theorem 27. We
now obtain the formula of the claim,

g(1) =
∑

i∈I

εi

si∑

l=0

wi,l〈λ, ai〉l .

Part (c) Applying the same technique to the parametric rational function (21), we
obtain

#
(
kP ∩ Z

n
) = gkP (1)

=
∑

i∈I

εi

si∑

l=0

wi,l

〈
λ,ai + (k − 1)vi

〉l
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Table 1 Coefficients of the
Ehrhart polynomials of selected
matroids in [8, 36]

Ehrhart Polynomial

Speyer1 1, 21
5 , 343

45 , 63
8 , 91

18 , 77
40 , 29

90
Speyer2 1, 135

28 , 3691
360 , 1511

120 , 88
9 , 39

8 , 529
360 , 89

420
BJR1 1, 109

30 , 23
4 , 59

12 , 9
4 , 9

20
BJR2 1, 211

60 , 125
24 , 33

8 , 43
24 , 43

120
BJR3 1, 83

20 , 2783
360 , 199

24 , 391
72 , 247

120 , 61
180

BJR4 1, 25
6 , 353

45 , 101
12 , 193

36 , 23
12 , 53

180

=
∑

i∈I

εi

si∑

l=0

wi,l

l∑

m=0

(
l

m

)

〈λ,ai − vi〉l−mkm〈λ,vi〉m

=
s∑

m=0

(∑

i∈I

εi〈λ,vi〉m
si∑

l=m

(
l

m

)

wi,l〈λ,ai − vi〉l−m

)

km,

an explicit formula for the Ehrhart polynomial. We remark that, since the Ehrhart
polynomial is of degree equal to the dimension of P , all coefficients of km for m >

dim P must vanish. Thus we obtain the formula of the claim, where we sum only up
to min{s,dim P } instead of s. �

3 Algebraic Properties of h∗-vectors and Ehrhart Polynomials of Matroid
Polytopes

Using the programs cdd+ [21], LattE [13] and LattE macchiato [28] we ex-
plored patterns for the Ehrhart polynomials of matroid polytopes. Since previous au-
thors proposed other invariants of a matroid (e.g., the Tutte polynomials and the in-
variants of [8, 36]) we wished to know how well the Ehrhart polynomial distinguishes
nonisomorphic matroids. It is natural to compare it with other known invariants. Some
straightforward properties are immediately evident. For example, the Ehrhart poly-
nomial of a matroid and that of its dual are equal. Also the Ehrhart polynomial of a
direct sum of matroids is the product of their Ehrhart polynomials.

We call the last two matroids in Fig. 2 in [36] Speyer1 and Speyer2 and the ma-
troids of Fig. 2 in [8] BJR1, BJR2, BJR3, and BJR4, and list their Ehrhart polynomials
in Table 1. We note that BJR3 and BJR4 have the same Tutte polynomial, yet their
Ehrhart polynomials are different. This proves that the Ehrhart polynomial cannot be
computed using deletion and contractions, as is the case for the Tutte polynomial.
Examples BJR1 and BJR2 show that the Ehrhart polynomial of a matroid may help to
distinguish nonisomorphic matroids: These two matroids are not isomorphic yet they
have the same Tutte polynomials and the same quasi-symmetric function studied in
[8]. Although they share some properties, there does not seem to be an obvious re-
lation to Speyer’s univariate polynomials introduced in [36]; examples Speyer1 and
Speyer2 show they are relatively prime with their corresponding Ehrhart polynomials.

Our experiments included, among others, many examples coming from small
graphical matroids, random realizable matroids over fields of small positive char-
acteristic, and the classical examples listed in the Appendix of [32] for which we list
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Table 2 Coefficients of the Ehrhart polynomials and h∗-vectors of selected matroids in [32]

n r h∗-vector Ehrhart Polynomial

K4 6 3 1,10,20,10,1 1, 107
30 , 21

4 , 49
12 , 7

4 , 7
20

W3 6 3 1,11,24,11,10 1, 18
5 , 11

2 , 9
2 ,2, 2

5
Q6 6 3 1,12,28,12,1 1, 109

30 , 23
4 , 59

12 , 9
4 , 9

20
P6 6 3 1,13,32,13,1 1, 11

3 ,6, 16
3 , 5

2 , 1
2

R6 6 3 1,12,28,12,1 1, 109
30 , 23

4 , 59
12 , 9

4 , 9
20

F7 7 3 21,98,91,21,1 1, 21
5 , 343

45 , 63
8 , 91

18 , 77
40 , 29

90
F−

7 7 3 21,101,97,22,1 1, 253
60 , 2809

360 , 33
4 , 193

36 , 61
30 , 121

360
P 7 7 3 21,104,103,23,1 1, 127

30 , 479
60 , 69

8 , 17
3 , 257

120 , 7
20

AG(3,2) 8 4 1,62,561,1014,449,48,1 1, 209
42 , 1981

180 , 881
60 , 119

9 , 95
12 , 499

180 , 89
210

AG′(3,2) 8 4 1,62,562,1023,458,49,1 1, 299
60 , 4007

360 , 5401
360 , 122

9 , 2911
360 , 1013

360 , 77
180

R8 8 4 1,62,563,1032,467,50,1 1, 524
105 , 1013

90 , 1379
90 , 125

9 , 743
90 , 257

90 , 136
315

F8 8 4 1,62,563,1032,467,50,1 1, 524
105 , 1013

90 , 1379
90 , 125

9 , 743
90 , 257

90 , 136
315

Q8 8 4 1,62,564,1041,476,51,1 1, 2099
420 , 4097

360 , 1877
120 , 128

9 , 337
40 , 1043

360 , 61
140

S8 8 4 1,44,337,612,305,40,1 1, 1021
210 , 377

36 , 475
36 , 193

18 , 511
90 , 65

36 , 67
252

V8 8 4 1,62,570,1095,530,57,1 1, 2117
420 , 4367

360 , 2107
120 , 146

9 , 1133
120 , 1133

360 , 193
420

T8 8 4 1,62,564,1041,476,51,1 1, 2099
420 , 4097

360 , 1877
120 , 128

9 , 337
40 , 1043

360 , 61
140

V +
8 8 4 1,62,569,1086,521,56,1 1, 151

30 , 2161
180 , 3103

180 , 143
9 , 1669

180 , 559
180 , 41

90
L8 8 4 1,62,567,1068,503,54,1 1, 527

105 , 529
45 , 83

5 , 137
9 , 134

15 , 136
45 , 47

105
J 8 4 1,44,339,630,323,42,1 1, 512

105 , 193
18 , 83

6 , 205
18 , 361

60 , 17
9 , 23

84
P8 8 4 1,62,565,1050,485,52,1 1, 1051

210 , 2071
180 , 2873

180 , 131
9 , 1547

180 , 529
180 , 277

630
W4 8 4 1,38,262,475,254,37,1 1, 135

28 , 3691
360 , 1511

120 , 88
9 , 39

8 , 529
360 , 89

420
W4 8 4 1,38,263,484,263,38,1 1, 169

35 , 467
45 , 581

45 , 91
9 , 227

45 , 68
45 , 68

315
K3,3 9 5 78,1116,3492,3237,927,72,1 1, 307

56 , 137141
10080 , 3223

160 , 37807
1920 , 211

16 , 5743
960 , 1889

1120 , 8923
40320

AG(2,3) 9 3 1,147,1230,1885,714,63,1 1, 1453
280 , 41749

3360 , 581
32 , 34069

1920 , 927
80 , 4541

960 , 239
224 , 449

4480
Pappus 9 3 1,147,1230,1915,744,66,1 1, 729

140 , 3573
280 , 381

20 , 1499
80 , 243

20 , 49
10 , 153

140 , 57
560

Non-Pappus 9 3 1,147,1230,1925,754,67,1 1, 4379
840 , 25951

2016 , 9287
480 , 21967

1152 , 987
80 , 2855

576 , 3701
3360 , 275

2688
Q3(GF(3)∗) 9 3 1,147,1098,1638,632,59,1 1, 433

84 , 3079
252 , 4193

240 , 5947
360 , 167

16 , 601
144 , 787

840 , 149
1680

R9 9 3 1,147,1142,1717,656,60,1 1, 723
140 , 49

4 , 88
5 , 24217

1440 , 1291
120 , 625

144 , 821
840 , 133

1440

the results in Table 2. For a comprehensive list of all our calculations visit [15]. Soon
it became evident that all instances verified both parts of our Conjecture 2.

By far the most comprehensive study we made was for the family of uniform
matroids. In this case we based our computations on the theory of Veronese algebras
as developed by M. Katzman in [25]. There, Katzman gave an explicit equation for
the h∗-vector of uniform matroid polytopes (again, using the language of Veronese
algebras). For this family we were able to verify computationally the conjecture is
true for all uniform matroids up to 75 elements and to prove partial unimodality as
explained in the introduction.

Lemma 29 The coefficients of the Ehrhart polynomial of the matroid polytope of the
uniform matroid U2,n are positive.
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Proof We begin with the expression in Corollary 2.2 in [25] which explicitly gives
the Ehrhart polynomial of P (Ur,n) as

i
(

P
(
Ur,n

)
, k

) =
r−1∑

s=0

(−1)s
(

n

s

)(
k(r − s) − s + n − 1

n − 1

)

. (30)

Letting r = 2, (30) becomes

(2k + n − 1)(2k + n − 2) · · · (2k + 1)

(n − 1)! − n
(k + n − 2)(k + n − 3) · · · (k)

(n − 1)! .

We next consider the coefficient of kn−p−1 for 0 ≤ p ≤ n − 1, which can be written
as

2n−p−1
∑

1≤j1<···<jp≤n−1
jq∈Z

1

(n − j1) · · · (n − jp)

− n

n − 1

∑

1≤j1<···<jp−1≤n−2
jq∈Z

1

(n − j1) · · · (n − jp−1)

= 2n−p−1
∑

1≤j1<···<jp−1≤n−2
jq∈Z

(
1

(n − j1) · · · (n − jp−1)

n−1∑

jp=1+jp−1

1

n − jp

)

− n

n − 1

∑

1≤j1<···<jp−1≤n−2
jq∈Z

1

(n − j1) · · · (n − jp−1)

=
∑

1≤j1<···<jp−1≤n−2
jq∈Z

(
1

(n − j1) · · · (n − jp−1)

×
[

2n−p−1
n−1∑

jp=1+jp−1

1

n − jp

− n

n − 1

])

. (31)

It is known that the constant in any Ehrhart polynomial is 1 [37], thus we only need
to show that (31) is positive for 0 ≤ p ≤ n− 2. It is sufficient to show that the square-
bracketed term of (31),

2n−p−1
n−1∑

jp=1+jp−1

1

n − jp

−
(

1 + 1

n − 1

)

, (32)

is positive for 0 ≤ p ≤ n − 2 and all 1 ≤ j1 ≤ · · · ≤ jp−1 ≤ n − 2. We can see that
∑n−1

jp=1+jp−1
1

n−jp
≥ 1. Moreover, since 0 ≤ p ≤ n − 2, then 2n−p−1 ≥ 2 and 1 +

1
n−1 ≤ 2 since n ≥ 2, proving the result. �
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To present our results about the h∗-vector we begin explaining the details with the
following numbers introduced in [25], which we refer to as the Katzman coefficients.

Definition 30 For any positive integers n and r define the coefficients A
n,r
i by

n(r−1)∑

i=0

A
n,r
i T i = (

1 + T + · · · + T r−1)n
.

We also define the vector An,r as (A
n,r
0 ,A

n,r
1 , . . . ,A

n,r
n(r−1)).

Looking at the definition of the Katzman coefficient, we see that A
n,2
j = (

n
j

)
and

A
n,1
j = 0 unless j = 0, in which case we have A

n,1
0 = 1.

In the following we derive some new and useful equalities and prove symmetry
and unimodality for the Katzman coefficients. Katzman [25] gave an explicit equation
for the h∗-vector of uniform matroid polytopes and the coefficients of their Ehrhart
polynomials, although he did not use the same language. We restate it here for our
purposes.

Lemma 31 (See Corollary 2.9 in [25]) Let P (Ur,n) be the matroid polytope of the
uniform matroid of rank r on n elements. Then the h∗-polynomial of P (Ur,n) is given
by

r−1∑

s=0

s∑

j=0

j∑

k=0

∑

l≥k

(−1)s+j+k

[(
n

s

)(
s

j

)(
j

k

)

A
n−j,r−s

(l−k)(r−s)

]

T l. (33)

That is, for h∗(P (Un,r))) = (h∗
0, . . . , h

∗
r ),

h∗
l =

r−1∑

s=0

s∑

j=0

j∑

k=0

(−1)s+j+k

(
n

s

)(
s

j

)(
j

k

)

A
n−j,r−s

(l−k)(r−s).

For r = 2 the h∗-polynomial of P (U)n,2 is

(∑

l≥0

(
n

2l

)

T l

)

− nT . (34)

The following lemma is a direct consequence of Corollary 2.9 in [25].

Lemma 32 Let P (U2,n) be the matroid polytope of the uniform matroid of rank 2 on
n elements. The h∗-vector of P (U2,n) is unimodal.

The rank 2 case is an interesting example. Although the h∗-vector is unimodal, it is
not always symmetric. Next we present some useful lemmas, the first a combinatorial
description of the Katzman coefficients.
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Lemma 33 For i = 0, . . . , n(r − 1) we have

A
n,r
i =

∑

0a0+1a1+···+(r−1)ar−1=i
a0+a1+···+ar−1=n

(
n

a0, a1, . . . , ar−1

)

, (35)

where a0, . . . , ar−1 run through nonnegative integers.

Proof Using the multinomial formula [38] we have

n(r−1)∑

i=0

A
n,r
i T i = (

1 + T + · · · + T r−1)n

=
∑

a0+a1+···+ar−1=n

(
n

a0, a1, . . . , ar−1

)

1a0T a1T 2a2 · · ·T (r−1)ar−1

=
∑

a0+a1+···+ar−1=n

(
n

a0, a1, . . . , ar−1

)

T 0a0+1a1+···+(r−1)ar−1 .

By grouping the powers of T we get (35). �

Next we present a generalization of a property of the binomial coefficients. The
following lemma relates the Katzman coefficients to Katzman coefficients with one
less element.

Lemma 34

A
n,r
i =

i∑

k=i−r+1

A
n−1,r
k , (36)

where we define A
n−1,r
p := 0 when p < 0 or p > (n − 1)(r − 1).

Proof

n(r−1)∑

i=0

A
n,r
i T i

= (
1 + T + · · · + T r−1)n = (

1 + T + · · · + T r−1)n−1(1 + T + · · · + T r−1)

=
((n−1)(r−1)∑

i=0

A
n−1,r
i T i

)
(
1 + T + · · · + T r−1)

=
(n−1)(r−1)∑

i=0

A
n−1,r
i T i +

(n−1)(r−1)∑

i=0

A
n−1,r
i T i+1 + · · · +

(n−1)(r−1)∑

i=0

A
n−1,r
i T i+r−1
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=
(n−1)(r−1)∑

i=0

A
n−1,r
i T i +

(n−1)(r−1)+1∑

i=1

A
n−1,r
i−1 T i + · · · +

(n−1)(r−1)+r−1∑

i=r−1

A
n−1,r
i−r+1T

i

=
(n−1)(r−1)+r−1∑

i=0

(
A

n−1,r
i + A

n−1,r
i−1 + · · · + A

n−1,r
i−r+1

)
T i.

Thus we get (36). �

The following lemma relates the Katzman coefficients of rank r with those of
rank r − 1.

Lemma 35

∑
A

n,r
i T i =

n∑

k=0

(
n

k

)

T k

(k(r−2)∑

l=0

A
k,r−1
l T l

)

or in other words

A
n,r
i =

∑

k+l=i
0≤k≤n

0≤l≤k(r−2)

(
n

k

)

A
k,r−1
l .

Proof From Definition 30

n(r−1)∑

i=0

A
n,r
i T i =(

1 + T + · · · + T r−1)n = (
1 + [

T + · · · + T r−1])n

=
n∑

k=0

(
n

k

)
[
T + · · · + T r−1]k =

n∑

k=0

(
n

k

)

T k
[
1 + · · · + T r−2]k

=
n∑

k=0

(
n

k

)

T k

( k(r−2)∑

l=0

A
k,r−1
l T l

)

.

�

Lemma 36 The Katzman coefficients are unimodal and symmetric in the index i.
That is, the vector (A

n,r
0 ,A

n,r
1 , . . . ,A

n,r
n(r−1)) is unimodal and symmetric.

Proof We first prove symmetry. Considering (35) we assume that

0a0 + 1a1 + · · · + (r − 1)ar−1 = i and a0 + a1 + · · · + ar−1 = n.

These two assumptions imply that
(
(r − 1) − 0

)
a0 + (

(r − 1) − 1
)
a1 + · · · + (

(r − 1) − (r − 1)
)
ar−1

= (r − 1)a0 + (r − 1)a1 + · · · + (r − 1)an − 0a0 − 1a1 − · · · − (r − 1)ar−1

= (r − 1)n − i.
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Therefore

A
n,r
i =

∑

0a0+1a1+···+(r−1)ar−1=i
a0+a1+···+ar−1=n

(
n

a0, a1, . . . , ar−1

)

=
∑

(r−1)a0+(r−2)a1+···+0ar−1=i
a0+a1+···+ar−1=n

(
n

a0, a1, . . . , ar−1

)

= A
n,r
n(r−1)−i .

To prove unimodality we proceed by induction on n, where r is fixed. First, A1,r is
unimodal. Assume for n − 1 that An−1,r = (A

n−1,r
0 ,A

n−1,r
1 , . . . ,A

n−1,r
(n−1)(r−1)) is uni-

modal. Using (36) and the fact that An−1,r is symmetric we get that An,r is unimodal.
To help see this, one can view (36) as a sliding window over r elements of the vector
An−1,r , that is, A

n,r
i is equal to the sum of the r elements in a window over the vector

An−1,r . As the window slides up the vector An−1,r , the sum will increase. When the
window is on the center of An−1,r symmetry and unimodality of An−1,r will imply
unimodality of An,r . �

Now we use the explicit equation for the h∗-vector of uniform matroid polytopes
to prove partial unimodality of rank 3 uniform matroids. First we note that the coef-
ficient of T l , h∗

l , in (33) is

h∗
l =

r−1∑

s=0

s∑

j=0

j∑

k=0

(−1)s+j+k

(
n

s

)(
s

j

)(
j

k

)

A
n−j,r−s

(p−k)(r−s).

Letting the rank r = 3, and using (33), we get the h∗-polynomial (which is grouped
by values of s from (33)),

∑

l≥0

[(
n

0

)

A
n,3
3l +

(
n

1

)
(−A

n,2
2l + A

n−1,2
2l − A

n−1,2
2(l−1)

)

+
(

n

2

)
(
A

n,1
l − 2A

n−1,1
l + 2A

n−1,1
l−1 + A

n−2,1
l − 2A

n−2,1
l−1 + A

n−2,1
l−2

)
]

T l.

Now using that A
n,2
i = (

n
i

)
and A

n,1
i = δ0(i), where

δj (p) =
{

1 if p = j,

0 else

we get

∑

l≥0

[

A
n,3
3l + n

(

−
(

n

2l

)

+
(

n − 1

2l

)

−
(

n − 1

2l − 2

))
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+
(

n

2

)
(
δ0(l) − 2δ0(l) + 2δ1(l) + δ0(l) − 2δ1(l) + δ2(l)

)
]

T l

=
∑

l≥0

[

A
n,3
3l + n

(

−
(

n

2l

)

+
(

n − 1

2l

)

−
(

n − 1

2l − 2

))

+ δ2(l)

(
n

2

)]

T l.

Using properties of the binomial coefficients, we see that
[

−
(

n

2l

)]

+
(

n − 1

2l

)

−
(

n − 1

2l − 2

)

=
[

−
(

n − 1

2l

)

−
(

n − 1

2l − 1

)]

+
(

n − 1

2l

)

−
(

n − 1

2l − 2

)

= −
(

n − 1

2l − 1

)

−
(

n − 1

2l − 2

)

= −
(

n

2l − 1

)

.

So the h∗-polynomial of rank three uniform matroid polytopes is

∑

l≥0

[

A
n,3
3l − n

(
n

2l − 1

)

+ δ2(l)

(
n

2

)]

T l. (37)

Using Lemma 36, the coefficient of T l , if 3l ≤ n, is

h∗
l =

∑

k+p=3l
0≤p≤k≤n

(
n

k

)(
k

p

)

− n

(
n

2l − 1

)

+ δ2(l)

(
n

2

)

=
[(

n

3l

)(
3l

0

)

+
(

n

3l − 1

)(
3l − 1

1

)

+ · · · +
(

n

3l − �3l/2�
)(

3l − �3l/2�
�3l/2�

)]

− n

(
n

2l − 1

)

+ δ2(l)

(
n

2

)

. (38)

Next we show that when g is fixed A
n,3
g is a polynomial of degree g in the indeter-

minate n, with positive leading coefficient. Assume g ≤ n. Considering Lemma 35
and when g ≤ n,

An,3
g =

∑

k+p=g
0≤p≤k≤n

(
n

k

)(
k

p

)

, (39)

where
(
n
q

)
is a polynomial of degree q with positive leading coefficient. The highest

degree polynomial in the sum is
(
n
g

)
, a degree g polynomial. Hence A

n,3
g is a poly-

nomial of degree g in the indeterminate n, with positive leading coefficient. If g ≥ n,
then A

n,3
g = A

n,3
n−g since the Katzman coefficients are symmetric by Lemma 36.
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Proof of Theorem 3 Part (2) Let I be a nonnegative integer. From above we see that
A

n,3
g is a degree g polynomial in the indeterminate n, with positive leading coeffi-

cient. Equation (37) is the h∗-polynomial of U3,n, which is a sum of polynomials in
n, the highest degree polynomial being A

n,3
3l , a polynomial of degree 3l. So, h∗

l −h∗
l−1

is the difference of a degree 3l and 3(l − 1) polynomial, hence h∗
l − h∗

l−1 is a degree
3l polynomial with positive leading coefficient. For sufficiently large n, call it n(I),
h∗

l − h∗
l−1 is positive for 0 ≤ l ≤ I . Hence, the h∗-vector of U3,n is nondecreasing up

to the index I for n ≥ n(I). �

One might ask if (39) has a simpler form. We ran the WZ algorithm on our ex-
pression, which proved that (39) cannot be written as a linear combination of a fixed
number of hypergeometric terms (closed form) [33]. There is still the possibility that
this expression has a simpler form, though not a closed form as described above.
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