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Abstract. A geometric permutation induced by a transversal line of a finite family of
disjoint convex sets in Rd is the order in which the transversal meets the members of the
family. It is known that the maximal number of geometric permutations in families of n
disjoint translates of a convex set in R2 is 3. We prove that for d ≥ 3 the maximal number
of geometric permutations for such families in Rd is �(n).

1. Introduction

Let F = {A1, A2, . . . , An} be a finite family of n pairwise disjoint convex sets in Rd .
A line l is a transversal of F if it intersects all the members of F . Each non-directed
transversal intersects the members of F in an order which can be described by a pair of
permutations of {1, 2, . . . , n} which are reverses of each other. Such a pair is called a
geometric permutation.

There are several results concerning the maximal number of geometric permutations
for families of n disjoint convex sets inRd (we denote it by gd(n)). Among them: g2(n) =
2n − 2 for n ≥ 4 ([4] as the upper bound, [10] as the lower bound); gd(n) = O(n2d−2)

[14], and gd(n) = �(nd−1) [9]. Some results deal with families with the restriction that
the members of the family are disjoint translates of a convex set. Katchalski et al. proved
[8], [9] that for such families inR2, the maximal number of geometric permutations is 3.
They also conjectured [9] that for each natural d, there is a constant upper bound on the
number of geometric permutations for families of translates inRd (the conjectured upper
bound was (d+1)!

2 ). However, the only known upper bound in Rd is O(nd−1) (follows
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from [12]). A constant upper bound is known in a special case: for families of congruent
balls in Rd [11] (improved in [3]; the bound is 2 when n ≥ 9).

We refute the conjecture mentioned above by proving that there is no constant bound
for the maximal number of geometric permutations for families of disjoint translates of
a general convex set:

Theorem 1. For each n ∈ N, n > 1, there exists a convex set X = X (n) in R3 and
a family F = F(n) of 2n disjoint translates of X that admits at least n + 1 geometric
permutations.

In Section 3 we show that a stronger results holds: there is a set Y that does not depend
on n and satisfies Theorem 1.

A motivation for studying geometric permutations is Helly-type problems on the
existence of common transversals for families of disjoint translates of a convex set. For
example, geometric permutations were used in Tverberg’s solution [13] of Grünbaum’s
conjecture: if in a family of disjoint translates of a convex set in R2 each five sets have a
transversal line, then the whole family has a transversal. Geometric permutations were
also used in the proofs of Helly-type theorems on transversals for disjoint unit balls inRd .
The most recent result, by Cheong et al., is the following: IfF is a family of disjoint unit
balls in Rd such that every 4d − 1 members of F have a transversal line, then the whole
familyF has a transversal line [2]; weaker results (forR3) appeared earlier in [1] and [6].

Holmsen and Matoušek showed [7] that in R3 there is no Helly-type theorem anal-
ogous to Tverberg’s result mentioned above (the proof of Grünbaum’s conjecture). For
each n ∈ N they construct a family of disjoint translates of a convex set such that each
n members of the family have a transversal line, while the entire family does not. In
general, the idea of their construction is to take first a family of disjoint sets that have
the desired transversal properties, but are not translates of each other, and then to ap-
pend them one to another in order to obtain translates, preserving their disjointness and
transversal properties. Our construction uses a similar idea. Both constructions involve
the hyperbolic paraboloid � = {(x, y, z) ∈ R3: z = xy}. This surface has been used
earlier for the construction of several examples with transversal lines (see, for example,
Theorem 2.9 by Aronov et al. on p. 171 of [5], and the construction described there).

2. The Construction

Let n ∈ N, n > 1.

Planes and Lines

Denote by � the hyperbolic paraboloid � = {(x, y, z) ∈ R3: z = xy}. For each
i ∈ {0, 1, . . . , n}, let λi be the plane y = i , and let li be the line λi ∩ � = {(x, y, z):
y = i, z = xi}. These n + 1 lines will be transversal lines for F , inducing different
geometric permutations.

For each m ∈ {1, 2, . . . , n}, let um denote the plane x = 2mn2, let u′m denote the
plane x = 2mn2+1, and letwm denote the plane x = 2mn2+n2+ 1

2 . These planes will
be used in the construction of F , and in the proof of the disjointness of its members.
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The Set X

For each m ∈ {1, 2, . . . , n}, define four points on � as follows:

Pm,1 = lm−1 ∩ um = (2mn2,m − 1, 2mn2 · (m − 1)),

Pm,2 = lm ∩ u′m = (2mn2 + 1,m, (2mn2 + 1) · m);
Qm,1 = lm ∩ um = (2mn2,m, 2mn2 · m),
Qm,2 = lm−1 ∩ u′m = (2mn2 + 1,m − 1, (2mn2 + 1) · (m − 1)).

Note that Pm,1, Pm,2 ∈ πm , and Qm,1, Qm,2 ∈ σm , where πm is the plane y =
x − 2mn2+m − 1 and σm is the plane y = −x + 2mn2+m. The planes πm and σm are
parallel to the planes y = x and y = −x , respectively.

Let am be the segment that contains Pm,1 and Pm,2 with endpoints in the planes λ0 and
λn , and let bm be the segment that contains Qm,1 and Qm,2 with endpoints in the planes
λ0 and λn . Figures 1 and 2 show ai ’s and bi ’s for n = 3. (In these figures the solid parts
of the segments are above �, and the dashed are below it. Note that the figures are not
drawn to scale: in fact, the segments are much further apart.)

In what follows, “the highest (lowest) point” (of a set) means “the point with the
maximal (minimal) z-coordinate.” (This is used only when such points are unique.)

Now define two sets XL and XU. Each of them is a polygonal line:

XL = ã1 ∪ ã2 ∪ · · · ∪ ãn, XU = b̃1 ∪ b̃2 ∪ · · · ∪ b̃n,

where each ãm is a translate of am , and each b̃i is a translate of bi , so that:

• the lowest point of ã1 is (0, 0, 0), and for each m ∈ {2, 3, . . . n} the lowest point of
ãm coincides with the highest point of ãm−1;
• the highest point of b̃1 is (0, n2, H) (where H is a positive number that ensures that

XL is situated much higher than XU), and for each m ∈ {2, 3, . . . , n} the highest
point of b̃m coincides with the lowest point of b̃m−1.
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Fig. 1. The segments ai and bi , for n = 3. The solid parts are above �, and the dashed are below it.
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Fig. 2. The segments ai and bi , for n = 3, viewed from above.

We make some observations on XL and XU:

1. The polygonal line XL lies in the plane y = x (this is true since each am lies in πm

which is a vertical plane parallel to y = x , see Fig. 2; and ã1 contains the point
(0, 0, 0)). Similarly, XU lies in the plane y = −x + n2.

2. Each am contributes n to the lengths of the x- and y-projections of XL, and each
bm contributes n to the lengths of the x- and y-projections of XU. Thus the x- and
y-projections of XL and XU are [0, n2].

3. The slopes of am and bm , relative to the plane z = 0, are, respectively,

1√
2
((2mn2 + 1)m − 2mn2(m − 1)) = 1√

2
(2n2 + 1)m and

1√
2
((2mn2 + 1)(m − 1)− 2m2n2) = − 1√

2
((2n2 − 1)m + 1).

This means that if m < m ′ then the slope of am is smaller than that of am ′ , and the
slope of bm is smaller than that of bm ′ . It follows that XL is a downward convex
polygonal line, and XU is an upward convex polygonal line.

Let X = conv(XL ∪ XU) (see Fig. 3; note that in fact XU is situated high above XL).

UX

LX

Fig. 3. The set X for n = 3: the bold polygonal lines are XL and XU; X is their convex hull.
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The Family F of Disjoint Translates of X

For each m ∈ {1, 2, . . . , n}, define Am to be a translate of X with ãm translated to am ,
and define Bm to be a translate of X with b̃m translated to bm . Denote by AU

m (AL
m) the

polygonal line on Am that corresponds to XU (XL) on X , and by BU
m (BL

m) the polygonal
line on Bm that corresponds to XU (XL) on X .

The family F = {A1, A2, . . . , An, B1, B2, . . . , Bn} is a family of 2n translates of
X . We prove that they are pairwise disjoint, and that F has at least n + 1 geometric
permutations.

Disjointness of the Members of F

First, note that for each m ∈ {1, 2, . . . , n−1}, the sets Am and Bm have points (Pm,1 and
Qm,1, respectively) with the x-coordinate 2mn2, and the sets Am+1 and Bm+1 have points
(Pm+1,2 and Qm+1,2, respectively) with the x-coordinate 2(m + 1)n2+ 1. The x-lengths
of the sets are n2. It follows that the planewm (recall that this plane is x = 2mn2+n2+ 1

2 )
separates the sets Am , Bm from the sets Am+1, Bm+1. Hence for m �= m ′, Am ∩ Am ′ ,
Am ∩ Bm ′ , and Bm ∩ Bm ′ are ∅.

It remains to prove that Am ∩ Bm = ∅ for each m ∈ {1, 2, . . . , n}. Let τm be the plane
that contains the point (2mn2+ 1

2 ,m− 1
2 , (2mn2+ 1

2 )(m− 1
2 )), and is parallel to am and

bm . We claim that this plane separates Am from Bm . Let tm = πm ∩ τm and sm = σm ∩ τm

(the planes πm and σm were defined at the beginning of this section). The segment am

is parallel to τm and lies in πm , hence am is parallel to tm , and it is easy to check that
am is above tm in the vertical plane πm . We have observed that XL is downward convex.
Hence AL

m , being a translate of XL, is also above tm , and thus above τm . Similarly, the
segment bm is parallel to sm and is below it in the vertical plane σm . We have observed
that XU is upward convex. Hence BU

m , being a translate of XU, is also below sm , and thus
above τm (see Fig. 4).

a 

b 
m 

m 

Σ 

Fig. 4. Illustration of the proof of the disjointness of Am and Bm : the segment am is above bm .
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If H in the definition of XU is large enough, then AU
m is also above τm , and BL

m is
below τm . Since Am = conv(AL

m ∪ AU
m) and Bm = conv(BL

m ∪ BU
m ), it follows that Am is

above τm , and Bm is below τm . Hence Am ∩ Bm = ∅.

Transversal Properties

We prove that each Am and each Bm meets each li .

• For Am :
For i = m − 1, Pm,1 = lm−1 ∩ am ; for i = m, Pm,2 = lm ∩ am .
For each i �= m − 1,m: since the curve � ∩ πm is downward convex, the point

λi∩am , which belongs to AL
m , lies below� and hence below li . Since the projection

of AU
m on the y-axis is equal to the projection of AL

m , there is a point of AU
m that

belongs to λi . Since AU
m is high above AL

m , this point is above li , and it follows that
Am meets li .

• For Bm :
For i = m − 1, Qm,2 = lm−1 ∩ bm ; for i = m, Qm,1 = lm ∩ bm .
For each i �= m − 1,m: since the curve � ∩ σm is upward convex, the point

λi ∩bm , which belongs to BU
m , lies above� and hence above li . Since the projection

of BL
m on the y-axis is equal to the projection of BU

m , there is a point of BL
m that

belongs to λi . Since BU
m is high above BL

m , this point is below li , and it follows that
Bm meets li .

Geometric Permutations

Let T A
m and T B

m be the open halfspaces bounded by τm that contain Am and Bm , respec-
tively. Let Oi = (0, i, 0) ∈ li . For each i , order the points of li by the values of their
x-coordinates, i.e., (x1, i, x1i) ≺ (x2, i, x2i) if and only if x1 < x2. It follows that for
each m, on each li , Oi ≺ Am and Oi ≺ Bm . Note also that for m < m ′, on each li we
have Am ≺ Am ′ , Am ≺ Bm ′ , Bm ≺ Am ′ , and Bm ≺ Bm ′ , since the planes wm separate
such pairs of sets. However, the order of Am and Bm on li depends on i :

• For i = m − 1: on lm−1, Om−1 ≺ Pm,1 ≺ Qm,2, and thus Am ≺ Bm . Note that
Om−1 ∈ T A

m .
• For i = m: on lm , Om ≺ Qm,1 ≺ Pm,2, and thus Bm ≺ Am . Note that Om ∈ T B

m .
• For any i : we have observed that Om−1 ∈ T A

m and Om ∈ T B
m . It follows that Oi ∈ T A

m
for i ≤ m − 1, and Oi ∈ T B

m for i ≥ m. Since both Am and Bm meet each li after
Oi , we have Am ≺ Bm on li for i ≤ m − 1 and Bm ≺ Am on li for i ≥ m.

We obtain the following geometric permutations for F :

l0: (A1, B1, A2, B2, A3, B3, . . . , An, Bn),

l1: (B1, A1, A2, B2, A3, B3, . . . , An, Bn),

l2: (B1, A1, B2, A2, A3, B3, . . . , An, Bn),

l3: (B1, A1, B2, A2, B3, A3, . . . , An, Bn),

. . .

ln: (B1, A1, B2, A2, B3, A3, . . . , Bn, An).
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Thus F is a family of 2n disjoint translates of the convex set X that has the n + 1
geometric permutations listed above (they are distinct if n > 1).

3. Concluding Remarks

1. The set X = X (n) that has been constructed in Section 2, depends on n. Here we
explain, leaving some details to the reader, how to construct a set that satisfies Theorem 1
for all values of n ∈ N.

Recall the constuction of X (n). It is easy to see that it is possible to modify the
construction so that λi is the plane y = iε for some positive constant ε ≤ 1; li = λi ∩�;
all the segments am and bm are still parallel to the planes y = x and y = −x , respectively,
but have x- and y-lengths nε (then the x- and y-lengths of X are n2ε). Choosing ε ≤
1/n2, it is possible to modify the construction so that the planes x = 5(2m − 1) and
x = 5(2m + 1) + ε play the roles of um and u′m (respectively) in the definition of the
points Pm, j and Qm, j , and the planes x = 10m play the role of wm in the proof of the
disjointness of the translates (note that in this case the x- and y-lengths of X are less
than 1). Once this is done, it is possible to “squeeze” the construction (applying the
transformation (x, y, z) �→ (x, y, δz) for a constant 0 < δ ≤ 1) so that the slopes of all
am’s and bm’s will be positive but less than a prescribed constant α.

Using these observations, we construct a set Y that satisfies Theorem 1 for each n ∈ N.
For each n ∈ N, construct modified XL(n) and XU(n), and modified X (n) =

conv(XL(n) ∪ XU(n)), so that:

1. The x- and y-lengths of XL(n) and XU(n) are 1/2n .
2. The slopes of all am(n)’s and bm(n)’s are positive but less than the slopes of all

am(n − 1)’s and bm(n − 1)’s, and less than 1/2n .

Append XL(n)’s (XU(n)’s) in order to obtain a polygonal line Y L (Y U) in the way
similar to the joining of the segments am (bm) in the construction of XL (XU). That is,
let Y L = ⋃∞

n=1 X̃L(n) and Y U = ⋃∞
n=1 X̃U(n) where X̃L(n) (X̃U(n)) is a translate of

modified XL(n) (XU(n)), and the lowest point of X̃L(n) coincides with the highest point
of X̃L(n+ 1) (the highest point of X̃U(n) coincides with the lowest point of X̃U(n+ 1)).
Because of conditions 1 and 2 above, the sequences of the lowest points of X̃L(n) and of
the highest points of X̃U(n) converge, and the polygonal lines Y L and Y U have x- and y-
lengths 1 (=∑n∈N 1/2n), and finite z-lengths. It remains to put Y U high above Y L (so that
they have the same x- and y-projections, say, [0, 1]), and to define Y = conv(Y L ∪ Y U).
The set Y looks similar to the set from Fig. 2, but the polygonal lines Y L and Y U consist
of an infinite number of segments.

For each natural n, it is possible to place 2n translates of Y so that the segments of Y L

(Y U) that correspond to am(n)’s (bm(n)’s) coincide with these segments in 2n translates
of the modified X (n). These translates are disjoint, and they have the n + 1 geometric
permutations mentioned above. This proves our statement.

2. Theorem 1 shows that for d ≥ 3, for families of disjoint translates of a convex set,
gd(n) = �(n). We think that it is possible, using similar constructions, to improve this
bound for d > 3.
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3. To summarize, for families of disjoint translates of a convex set, g3(n) = O(n2)

and �(n). The problem of narrowing this gap remains open.
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