The Maximal Number of Geometric Permutations for n Disjoint Translates of a Convex Set in \mathbb{R}^{3} Is $\Omega(n)^{*}$

Andrei Asinowski and Meir Katchalski
Faculty of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
\{andrei,meirk\}@tx.technion.ac.il

Abstract

A geometric permutation induced by a transversal line of a finite family of disjoint convex sets in \mathbb{R}^{d} is the order in which the transversal meets the members of the family. It is known that the maximal number of geometric permutations in families of n disjoint translates of a convex set in \mathbb{R}^{2} is 3 . We prove that for $d \geq 3$ the maximal number of geometric permutations for such families in \mathbb{R}^{d} is $\Omega(n)$.

1. Introduction

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a finite family of n pairwise disjoint convex sets in \mathbb{R}^{d}. A line l is a transversal of \mathcal{F} if it intersects all the members of \mathcal{F}. Each non-directed transversal intersects the members of \mathcal{F} in an order which can be described by a pair of permutations of $\{1,2, \ldots, n\}$ which are reverses of each other. Such a pair is called a geometric permutation.

There are several results concerning the maximal number of geometric permutations for families of n disjoint convex sets in \mathbb{R}^{d} (we denote it by $g_{d}(n)$). Among them: $g_{2}(n)=$ $2 n-2$ for $n \geq 4$ ([4] as the upper bound, [10] as the lower bound); $g_{d}(n)=O\left(n^{2 d-2}\right)$ [14], and $g_{d}(\bar{n})=\Omega\left(n^{d-1}\right)$ [9]. Some results deal with families with the restriction that the members of the family are disjoint translates of a convex set. Katchalski et al. proved [8], [9] that for such families in \mathbb{R}^{2}, the maximal number of geometric permutations is 3 . They also conjectured [9] that for each natural d, there is a constant upper bound on the number of geometric permutations for families of translates in \mathbb{R}^{d} (the conjectured upper bound was $\left.\frac{(d+1)!}{2}\right)$. However, the only known upper bound in \mathbb{R}^{d} is $O\left(n^{d-1}\right)$ (follows

[^0]from [12]). A constant upper bound is known in a special case: for families of congruent balls in \mathbb{R}^{d} [11] (improved in [3]; the bound is 2 when $n \geq 9$).

We refute the conjecture mentioned above by proving that there is no constant bound for the maximal number of geometric permutations for families of disjoint translates of a general convex set:

Theorem 1. For each $n \in \mathbb{N}, n>1$, there exists a convex set $X=X(n)$ in \mathbb{R}^{3} and a family $\mathcal{F}=\mathcal{F}(n)$ of $2 n$ disjoint translates of X that admits at least $n+1$ geometric permutations.

In Section 3 we show that a stronger results holds: there is a set Y that does not depend on n and satisfies Theorem 1.

A motivation for studying geometric permutations is Helly-type problems on the existence of common transversals for families of disjoint translates of a convex set. For example, geometric permutations were used in Tverberg's solution [13] of Grünbaum's conjecture: if in a family of disjoint translates of a convex set in \mathbb{R}^{2} each five sets have a transversal line, then the whole family has a transversal. Geometric permutations were also used in the proofs of Helly-type theorems on transversals for disjoint unit balls in \mathbb{R}^{d}. The most recent result, by Cheong et al., is the following: If \mathcal{F} is a family of disjoint unit balls in \mathbb{R}^{d} such that every $4 d-1$ members of \mathcal{F} have a transversal line, then the whole family \mathcal{F} has a transversal line [2]; weaker results (for \mathbb{R}^{3}) appeared earlier in [1] and [6].

Holmsen and Matoušek showed [7] that in \mathbb{R}^{3} there is no Helly-type theorem analogous to Tverberg's result mentioned above (the proof of Grünbaum's conjecture). For each $n \in \mathbb{N}$ they construct a family of disjoint translates of a convex set such that each n members of the family have a transversal line, while the entire family does not. In general, the idea of their construction is to take first a family of disjoint sets that have the desired transversal properties, but are not translates of each other, and then to append them one to another in order to obtain translates, preserving their disjointness and transversal properties. Our construction uses a similar idea. Both constructions involve the hyperbolic paraboloid $\Sigma=\left\{(x, y, z) \in \mathbb{R}^{3}: z=x y\right\}$. This surface has been used earlier for the construction of several examples with transversal lines (see, for example, Theorem 2.9 by Aronov et al. on p. 171 of [5], and the construction described there).

2. The Construction

Let $n \in \mathbb{N}, n>1$.

Planes and Lines

Denote by Σ the hyperbolic paraboloid $\Sigma=\left\{(x, y, z) \in \mathbb{R}^{3}: z=x y\right\}$. For each $i \in\{0,1, \ldots, n\}$, let λ_{i} be the plane $y=i$, and let l_{i} be the line $\lambda_{i} \cap \Sigma=\{(x, y, z)$: $y=i, z=x i\}$. These $n+1$ lines will be transversal lines for \mathcal{F}, inducing different geometric permutations.

For each $m \in\{1,2, \ldots, n\}$, let u_{m} denote the plane $x=2 m n^{2}$, let u_{m}^{\prime} denote the plane $x=2 m n^{2}+1$, and let w_{m} denote the plane $x=2 m n^{2}+n^{2}+\frac{1}{2}$. These planes will be used in the construction of \mathcal{F}, and in the proof of the disjointness of its members.

The Set X
For each $m \in\{1,2, \ldots, n\}$, define four points on Σ as follows:

$$
\begin{aligned}
P_{m, 1} & =l_{m-1} \cap u_{m}=\left(2 m n^{2}, m-1,2 m n^{2} \cdot(m-1)\right) \\
P_{m, 2} & =l_{m} \cap u_{m}^{\prime}=\left(2 m n^{2}+1, m,\left(2 m n^{2}+1\right) \cdot m\right) \\
Q_{m, 1} & =l_{m} \cap u_{m}=\left(2 m n^{2}, m, 2 m n^{2} \cdot m\right) \\
Q_{m, 2} & =l_{m-1} \cap u_{m}^{\prime}=\left(2 m n^{2}+1, m-1,\left(2 m n^{2}+1\right) \cdot(m-1)\right)
\end{aligned}
$$

Note that $P_{m, 1}, P_{m, 2} \in \pi_{m}$, and $Q_{m, 1}, Q_{m, 2} \in \sigma_{m}$, where π_{m} is the plane $y=$ $x-2 m n^{2}+m-1$ and σ_{m} is the plane $y=-x+2 m n^{2}+m$. The planes π_{m} and σ_{m} are parallel to the planes $y=x$ and $y=-x$, respectively.

Let a_{m} be the segment that contains $P_{m, 1}$ and $P_{m, 2}$ with endpoints in the planes λ_{0} and λ_{n}, and let b_{m} be the segment that contains $Q_{m, 1}$ and $Q_{m, 2}$ with endpoints in the planes λ_{0} and λ_{n}. Figures 1 and 2 show a_{i} 's and b_{i} 's for $n=3$. (In these figures the solid parts of the segments are above Σ, and the dashed are below it. Note that the figures are not drawn to scale: in fact, the segments are much further apart.)

In what follows, "the highest (lowest) point" (of a set) means "the point with the maximal (minimal) z-coordinate." (This is used only when such points are unique.)

Now define two sets X^{L} and X^{U}. Each of them is a polygonal line:

$$
X^{\mathrm{L}}=\tilde{a}_{1} \cup \tilde{a}_{2} \cup \cdots \cup \tilde{a}_{n}, \quad X^{\mathrm{U}}=\tilde{b}_{1} \cup \tilde{b}_{2} \cup \cdots \cup \tilde{b}_{n},
$$

where each \tilde{a}_{m} is a translate of a_{m}, and each \tilde{b}_{i} is a translate of b_{i}, so that:

- the lowest point of \tilde{a}_{1} is $(0,0,0)$, and for each $m \in\{2,3, \ldots n\}$ the lowest point of \tilde{a}_{m} coincides with the highest point of \tilde{a}_{m-1};
- the highest point of \tilde{b}_{1} is $\left(0, n^{2}, H\right)$ (where H is a positive number that ensures that X_{L} is situated much higher than X_{U}), and for each $m \in\{2,3, \ldots, n\}$ the highest point of \tilde{b}_{m} coincides with the lowest point of \tilde{b}_{m-1}.

Fig. 1. The segments a_{i} and b_{i}, for $n=3$. The solid parts are above Σ, and the dashed are below it.

Fig. 2. The segments a_{i} and b_{i}, for $n=3$, viewed from above.

We make some observations on X^{L} and X^{U} :

1. The polygonal line X^{L} lies in the plane $y=x$ (this is true since each a_{m} lies in π_{m} which is a vertical plane parallel to $y=x$, see Fig. 2; and \tilde{a}_{1} contains the point $(0,0,0)$). Similarly, X^{U} lies in the plane $y=-x+n^{2}$.
2. Each a_{m} contributes n to the lengths of the x - and y-projections of X^{L}, and each b_{m} contributes n to the lengths of the x - and y-projections of X^{U}. Thus the x - and y-projections of X^{L} and X^{U} are [0, $\left.n^{2}\right]$.
3. The slopes of a_{m} and b_{m}, relative to the plane $z=0$, are, respectively,

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\left(2 m n^{2}+1\right) m-2 m n^{2}(m-1)\right)=\frac{1}{\sqrt{2}}\left(2 n^{2}+1\right) m \quad \text { and } \\
& \frac{1}{\sqrt{2}}\left(\left(2 m n^{2}+1\right)(m-1)-2 m^{2} n^{2}\right)=-\frac{1}{\sqrt{2}}\left(\left(2 n^{2}-1\right) m+1\right)
\end{aligned}
$$

This means that if $m<m^{\prime}$ then the slope of a_{m} is smaller than that of $a_{m^{\prime}}$, and the slope of b_{m} is smaller than that of $b_{m^{\prime}}$. It follows that X^{L} is a downward convex polygonal line, and X^{U} is an upward convex polygonal line.

Let $X=\operatorname{conv}\left(X^{\mathrm{L}} \cup X^{\mathrm{U}}\right)$ (see Fig. 3; note that in fact X^{U} is situated high above X^{L}).

Fig. 3. The set X for $n=3$: the bold polygonal lines are X^{L} and $X^{\mathrm{U}} ; X$ is their convex hull.

The Family \mathcal{F} of Disjoint Translates of X

For each $m \in\{1,2, \ldots, n\}$, define A_{m} to be a translate of X with \tilde{a}_{m} translated to a_{m}, and define B_{m} to be a translate of X with \tilde{b}_{m} translated to b_{m}. Denote by $A_{m}^{\mathrm{U}}\left(A_{m}^{\mathrm{L}}\right)$ the polygonal line on A_{m} that corresponds to $X^{\mathrm{U}}\left(X^{\mathrm{L}}\right)$ on X, and by $B_{m}^{\mathrm{U}}\left(B_{m}^{\mathrm{L}}\right)$ the polygonal line on B_{m} that corresponds to $X^{\mathrm{U}}\left(X^{\mathrm{L}}\right)$ on X.

The family $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots, A_{n}, B_{1}, B_{2}, \ldots, B_{n}\right\}$ is a family of $2 n$ translates of X. We prove that they are pairwise disjoint, and that \mathcal{F} has at least $n+1$ geometric permutations.

Disjointness of the Members of \mathcal{F}

First, note that for each $m \in\{1,2, \ldots, n-1\}$, the sets A_{m} and B_{m} have points ($P_{m, 1}$ and $Q_{m, 1}$, respectively) with the x-coordinate $2 m n^{2}$, and the sets A_{m+1} and B_{m+1} have points ($P_{m+1,2}$ and $Q_{m+1,2}$, respectively) with the x-coordinate $2(m+1) n^{2}+1$. The x-lengths of the sets are n^{2}. It follows that the plane w_{m} (recall that this plane is $x=2 m n^{2}+n^{2}+\frac{1}{2}$) separates the sets A_{m}, B_{m} from the sets A_{m+1}, B_{m+1}. Hence for $m \neq m^{\prime}, A_{m} \cap A_{m^{\prime}}$, $A_{m} \cap B_{m^{\prime}}$, and $B_{m} \cap B_{m^{\prime}}$ are \emptyset.

It remains to prove that $A_{m} \cap B_{m}=\emptyset$ for each $m \in\{1,2, \ldots, n\}$. Let τ_{m} be the plane that contains the point $\left(2 m n^{2}+\frac{1}{2}, m-\frac{1}{2},\left(2 m n^{2}+\frac{1}{2}\right)\left(m-\frac{1}{2}\right)\right)$, and is parallel to a_{m} and b_{m}. We claim that this plane separates A_{m} from B_{m}. Let $t_{m}=\pi_{m} \cap \tau_{m}$ and $s_{m}=\sigma_{m} \cap \tau_{m}$ (the planes π_{m} and σ_{m} were defined at the beginning of this section). The segment a_{m} is parallel to τ_{m} and lies in π_{m}, hence a_{m} is parallel to t_{m}, and it is easy to check that a_{m} is above t_{m} in the vertical plane π_{m}. We have observed that X^{L} is downward convex. Hence A_{m}^{L}, being a translate of X^{L}, is also above t_{m}, and thus above τ_{m}. Similarly, the segment b_{m} is parallel to s_{m} and is below it in the vertical plane σ_{m}. We have observed that X^{U} is upward convex. Hence B_{m}^{U}, being a translate of X^{U}, is also below s_{m}, and thus above τ_{m} (see Fig. 4).

Fig. 4. Illustration of the proof of the disjointness of A_{m} and B_{m} : the segment a_{m} is above b_{m}.

If H in the definition of X_{U} is large enough, then A_{m}^{U} is also above τ_{m}, and B_{m}^{L} is below τ_{m}. Since $A_{m}=\operatorname{conv}\left(A_{m}^{\mathrm{L}} \cup A_{m}^{\mathrm{U}}\right)$ and $B_{m}=\operatorname{conv}\left(B_{m}^{\mathrm{L}} \cup B_{m}^{\mathrm{U}}\right)$, it follows that A_{m} is above τ_{m}, and B_{m} is below τ_{m}. Hence $A_{m} \cap B_{m}=\emptyset$.

Transversal Properties

We prove that each A_{m} and each B_{m} meets each l_{i}.

- For A_{m} :

For $i=m-1, P_{m, 1}=l_{m-1} \cap a_{m}$; for $i=m, P_{m, 2}=l_{m} \cap a_{m}$.
For each $i \neq m-1, m$: since the curve $\Sigma \cap \pi_{m}$ is downward convex, the point $\lambda_{i} \cap a_{m}$, which belongs to A_{m}^{L}, lies below Σ and hence below l_{i}. Since the projection of A_{m}^{U} on the y-axis is equal to the projection of A_{m}^{L}, there is a point of A_{m}^{U} that belongs to λ_{i}. Since A_{m}^{U} is high above A_{m}^{L}, this point is above l_{i}, and it follows that A_{m} meets l_{i}.

- For B_{m} :

For $i=m-1, Q_{m, 2}=l_{m-1} \cap b_{m}$; for $i=m, Q_{m, 1}=l_{m} \cap b_{m}$.
For each $i \neq m-1, m$: since the curve $\Sigma \cap \sigma_{m}$ is upward convex, the point $\lambda_{i} \cap b_{m}$, which belongs to B_{m}^{U}, lies above Σ and hence above l_{i}. Since the projection of B_{m}^{L} on the y-axis is equal to the projection of B_{m}^{U}, there is a point of B_{m}^{L} that belongs to λ_{i}. Since B_{m}^{U} is high above B_{m}^{L}, this point is below l_{i}, and it follows that B_{m} meets l_{i}.

Geometric Permutations

Let T_{m}^{A} and T_{m}^{B} be the open halfspaces bounded by τ_{m} that contain A_{m} and B_{m}, respectively. Let $O_{i}=(0, i, 0) \in l_{i}$. For each i, order the points of l_{i} by the values of their x-coordinates, i.e., $\left(x_{1}, i, x_{1} i\right) \prec\left(x_{2}, i, x_{2} i\right)$ if and only if $x_{1}<x_{2}$. It follows that for each m, on each $l_{i}, O_{i} \prec A_{m}$ and $O_{i} \prec B_{m}$. Note also that for $m<m^{\prime}$, on each l_{i} we have $A_{m} \prec A_{m^{\prime}}, A_{m} \prec B_{m^{\prime}}, B_{m} \prec A_{m^{\prime}}$, and $B_{m} \prec B_{m^{\prime}}$, since the planes w_{m} separate such pairs of sets. However, the order of A_{m} and B_{m} on l_{i} depends on i :

- For $i=m-1$: on $l_{m-1}, O_{m-1} \prec P_{m, 1} \prec Q_{m, 2}$, and thus $A_{m} \prec B_{m}$. Note that $O_{m-1} \in T_{m}^{A}$.
- For $i=m$: on $l_{m}, O_{m} \prec Q_{m, 1} \prec P_{m, 2}$, and thus $B_{m} \prec A_{m}$. Note that $O_{m} \in T_{m}^{B}$.
- For any i : we have observed that $O_{m-1} \in T_{m}^{A}$ and $O_{m} \in T_{m}^{B}$. It follows that $O_{i} \in T_{m}^{A}$ for $i \leq m-1$, and $O_{i} \in T_{m}^{B}$ for $i \geq m$. Since both A_{m} and B_{m} meet each l_{i} after O_{i}, we have $A_{m} \prec B_{m}$ on l_{i} for $i \leq m-1$ and $B_{m} \prec A_{m}$ on l_{i} for $i \geq m$.
We obtain the following geometric permutations for \mathcal{F} :

$$
\begin{gathered}
l_{0}:\left(A_{1}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}, \ldots, A_{n}, B_{n}\right), \\
l_{1}:\left(B_{1}, A_{1}, A_{2}, B_{2}, A_{3}, B_{3}, \ldots, A_{n}, B_{n}\right), \\
l_{2}:\left(B_{1}, A_{1}, B_{2}, A_{2}, A_{3}, B_{3}, \ldots, A_{n}, B_{n}\right), \\
l_{3}:\left(B_{1}, A_{1}, B_{2}, A_{2}, B_{3}, A_{3}, \ldots, A_{n}, B_{n}\right), \\
\ldots \\
l_{n}:\left(B_{1}, A_{1}, B_{2}, A_{2}, B_{3}, A_{3}, \ldots, B_{n}, A_{n}\right) .
\end{gathered}
$$

Thus \mathcal{F} is a family of $2 n$ disjoint translates of the convex set X that has the $n+1$ geometric permutations listed above (they are distinct if $n>1$).

3. Concluding Remarks

1. The set $X=X(n)$ that has been constructed in Section 2, depends on n. Here we explain, leaving some details to the reader, how to construct a set that satisfies Theorem 1 for all values of $n \in \mathbb{N}$.

Recall the constuction of $X(n)$. It is easy to see that it is possible to modify the construction so that λ_{i} is the plane $y=i \varepsilon$ for some positive constant $\varepsilon \leq 1 ; l_{i}=\lambda_{i} \cap \Sigma$; all the segments a_{m} and b_{m} are still parallel to the planes $y=x$ and $y=-x$, respectively, but have x - and y-lengths $n \varepsilon$ (then the x - and y-lengths of X are $n^{2} \varepsilon$). Choosing $\varepsilon \leq$ $1 / n^{2}$, it is possible to modify the construction so that the planes $x=5(2 m-1)$ and $x=5(2 m+1)+\varepsilon$ play the roles of u_{m} and u_{m}^{\prime} (respectively) in the definition of the points $P_{m, j}$ and $Q_{m, j}$, and the planes $x=10 m$ play the role of w_{m} in the proof of the disjointness of the translates (note that in this case the x - and y-lengths of X are less than 1). Once this is done, it is possible to "squeeze" the construction (applying the transformation $(x, y, z) \mapsto(x, y, \delta z)$ for a constant $0<\delta \leq 1)$ so that the slopes of all a_{m} 's and b_{m} 's will be positive but less than a prescribed constant α.

Using these observations, we construct a set Y that satisfies Theorem 1 for each $n \in \mathbb{N}$.
For each $n \in \mathbb{N}$, construct modified $X^{\mathrm{L}}(n)$ and $X^{\mathrm{U}}(n)$, and modified $X(n)=$ $\operatorname{conv}\left(X^{\mathrm{L}}(n) \cup X^{\mathrm{U}}(n)\right)$, so that:

1. The x - and y-lengths of $X^{\mathrm{L}}(n)$ and $X^{\mathrm{U}}(n)$ are $1 / 2^{n}$.
2. The slopes of all $a_{m}(n)$'s and $b_{m}(n)$'s are positive but less than the slopes of all $a_{m}(n-1)$'s and $b_{m}(n-1)$'s, and less than $1 / 2^{n}$.

Append $X^{\mathrm{L}}(n)$'s ($X^{\mathrm{U}}(n)$'s) in order to obtain a polygonal line $Y^{\mathrm{L}}\left(Y^{\mathrm{U}}\right)$ in the way similar to the joining of the segments $a_{m}\left(b_{m}\right)$ in the construction of $X^{\mathrm{L}}\left(X^{\mathrm{U}}\right)$. That is, let $Y^{\mathrm{L}}=\bigcup_{n=1}^{\infty} \tilde{X}^{\mathrm{L}}(n)$ and $Y^{\mathrm{U}}=\bigcup_{n=1}^{\infty} \tilde{X}^{\mathrm{U}}(n)$ where $\tilde{X}^{\mathrm{L}}(n)\left(\tilde{X}^{\mathrm{U}}(n)\right)$ is a translate of modified $X^{\mathrm{L}}(n)\left(X^{\mathrm{U}}(n)\right)$, and the lowest point of $\tilde{X}^{\mathrm{L}}(n)$ coincides with the highest point of $\tilde{X}^{\mathrm{L}}(n+1)$ (the highest point of $\tilde{X}^{\mathrm{U}}(n)$ coincides with the lowest point of $\tilde{X}^{\mathrm{U}}(n+1)$). Because of conditions 1 and 2 above, the sequences of the lowest points of $\tilde{X}^{\mathrm{L}}(n)$ and of the highest points of $\tilde{X}^{\mathrm{U}}(n)$ converge, and the polygonal lines Y^{L} and Y^{U} have x - and y lengths $1\left(=\sum_{n \in \mathbb{N}} 1 / 2^{n}\right)$, and finite z-lengths. It remains to put Y^{U} high above Y^{L} (so that they have the same x - and y-projections, say, $[0,1])$, and to define $Y=\operatorname{conv}\left(Y^{\mathrm{L}} \cup Y^{\mathrm{U}}\right)$. The set Y looks similar to the set from Fig. 2, but the polygonal lines Y^{L} and Y^{U} consist of an infinite number of segments.

For each natural n, it is possible to place $2 n$ translates of Y so that the segments of Y^{L} $\left(Y^{\mathrm{U}}\right)$ that correspond to $a_{m}(n)$'s $\left(b_{m}(n)\right.$'s) coincide with these segments in $2 n$ translates of the modified $X(n)$. These translates are disjoint, and they have the $n+1$ geometric permutations mentioned above. This proves our statement.
2. Theorem 1 shows that for $d \geq 3$, for families of disjoint translates of a convex set, $g_{d}(n)=\Omega(n)$. We think that it is possible, using similar constructions, to improve this bound for $d>3$.
3. To summarize, for families of disjoint translates of a convex set, $g_{3}(n)=O\left(n^{2}\right)$ and $\Omega(n)$. The problem of narrowing this gap remains open.

References

1. O. Cheong, X. Goaoc, and A. Holmsen, Hadwiger and Helly-type theorems for disjoint unit spheres in \mathbb{R}^{3}, in Proc. 20th Annual Symposium on Computational Geometry, 2005, pp. 10-15.
2. O. Cheong, X. Goaoc, A. Holmsen, and S. Petitjean, Helly-type theorems for line transversals to disjoint unit balls, submitted to Discrete Comput. Geom.
3. O. Cheong, X. Goaoc, and H.-S. Na, Geometric permutations of disjoint unit spheres, Comput. Geom. 30 (2005), 253-270.
4. H. Edelsbrunner and M. Sharir, The maximum number of ways to stab n convex nonintersecting sets in the plane is $2 n-2$, Discrete Comput. Geom. 5 (1990), 35-42.
5. J.E. Goodman, R. Pollack, and R. Wenger, Geometric transversal theory, in New Trends in Discrete and Computational Geometry, J. Pach, ed., vol. 10 of Algorithms and Combinatorics, Springer-Verlag, Heidelberg, 1993, pp. 163-198.
6. A. Holmsen, M. Katchalski, and T. Lewis, A Helly-type theorem for line transversals to disjoint unit balls, Discrete Comput. Geom. 29 (2003), 595-602.
7. A. Holmsen and J. Matoušek, No Helly theorem for stabbing translates by lines in \mathbb{R}^{3}, Discrete Comput. Geom. 31(3) (2004), 405-410.
8. M. Katchalski, T. Lewis, and A. Liu, Geometric permutations of disjoint translates of convex sets, Discrete Math. 65 (1987), 249-260.
9. M. Katchalski, T. Lewis, and A. Liu, The different ways of stabbing disjoint sets, Discrete Comput. Geom. 7 (1992), 197-206.
10. M. Katchalski, T. Lewis, and J. Zaks, Geometric permutations for convex sets, Discrete Math. 54 (1985), 271-284.
11. M. Katchalski, S. Suri, and Y. Zhou, A constant bound for geometric permutations of disjoint unit balls, Discrete Comput. Geom. 29 (2003), 161-173.
12. M.J. Katz and K.R. Varadarajan, A tight bound on the number of geometric permutations of convex fat objects in \mathbb{R}^{d}, Discrete Comput. Geom. 26 (2001), 543-548.
13. H. Tverberg, Proof of Grünbaum's conjecture on common transversals for translates, Discrete Comput. Geom. 4 (1989), 191-203.
14. R. Wenger, Upper bounds on geometric permutations for convex sets, Discrete Comput. Geom. 5 (1990), 27-33.

Received July 3, 2004, and in revised form June 2, 2005, and August 6, 2005.
Online publication January 20, 2006.

[^0]: * These results are part of Andrei Asinowski's Ph.D. Thesis written under the supervision of Meir Katchalski.

