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Abstract. Chiral polyhedra in ordinary euclidean space E3 are nearly regular polyhedra;
their geometric symmetry groups have two orbits on the flags, such that adjacent flags are
in distinct orbits. This paper completely enumerates the discrete infinite chiral polyhedra
in E3 with finite skew faces and finite skew vertex-figures. There are several families of
such polyhedra of types {4, 6}, {6, 4} and {6, 6}. Their geometry and combinatorics are
discussed in detail. It is also proved that a chiral polyhedron in E3 cannot be finite. Part II of
the paper will complete the classification of all chiral polyhedra in E3. All chiral polyhedra
not described in Part I have infinite, helical faces and again occur in families. So, in effect,
Part I enumerates all chiral polyhedra in E3 with finite faces.

1. Introduction

The study of highly symmetric polyhedra in ordinary euclidean space E3 has a long
history. With the passage of time, the concept of a polyhedron has undergone a number
of changes which have brought to light new classes of regular polyhedra. Coxeter’s
famous Regular Polytopes [6] and his various other writings treat the Platonic solids, the
Kepler–Poinsot polyhedra and the Petrie–Coxeter polyhedra in great detail, and cover
what might be called the classical theory. Around 1975, Grünbaum [11] generalized
the notion of a polyhedron by permitting discrete polyhedral structures with finite or
infinite, planar or skew, polygonal faces or vertex-figures, and discovered all, save one,
generalized regular polyhedra; Dress [8], [9] discovered the final instance around 1980,
and he also proved the completeness of the enumeration. We refer to Section 7E of
[18] (or [17]) for a quick method of arriving at the full characterization, as well as for
presentations of the symmetry groups.

∗ This research was done, in part, while the author visited I.H.E.S. in Bures-sur-Yvette, France, for two
months in 2002. The author thanks I.H.E.S. for the hospitality.
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This paper deals with chiral polyhedra in ordinary space. A polyhedron is (geomet-
rically) chiral if its geometric symmetry group has two orbits on the flags, such that
adjacent flags are in distinct orbits. Recall that a polyhedron is regular if its geometric
symmetry group is transitive on the flags. Thus chiral polyhedra are nearly regular. Most
regular polyhedra in E3 have either skew faces or skew vertex-figures, but it is quite
remarkable that none has both finite skew faces and finite skew vertex-figures. However,
this phenomenon changes drastically in the context of chiral polyhedra.

This paper describes a complete classification of the discrete chiral polyhedra with
finite skew faces and finite skew vertex-figures in E3. There are three integer-valued
two-parameter families of chiral polyhedra of this kind for each type {4, 6}, {6, 4} or
{6, 6}. Each chiral polyhedron with finite skew faces and finite skew vertex-figures in E3

necessarily belongs to one infinite family. Some infinite families split further into several
smaller subfamilies. The geometry and combinatorics of these polyhedra are discussed
in detail. It is also proved that there are no chiral polyhedra in E3 which are finite.

The paper is organized as follows. In Section 2 we begin with some basic notions about
chiral and regular polyhedra. Then in Section 3 we establish that a chiral polyhedron in
E

3 must necessarily be an apeirohedron, that is, a polyhedron with infinitely many faces.
All remaining sections of the paper deal with infinite polyhedra. In Section 4 we intro-
duce some general considerations, in particular those concerning the special group of the
symmetry group. The actual enumeration is then carried out in Sections 5 and 6. In partic-
ular, we describe in detail the chiral polyhedra of types {6, 6} and {4, 6} with skew faces
and vertex-figures. Finally, in Section 7 we briefly discuss relationships among them.

In Part II we then complete the enumeration of the chiral polyhedra in E3. All chiral
polyhedra not described in Part I have infinite, helical faces and again occur in families.
So, in effect, Part I enumerates all chiral polyhedra in E3 with finite faces.

2. Chiral Polyhedra

Since we discuss chiral polyhedra on the abstract as well as the geometric level, we begin
with a brief introduction to the underlying general theory (see Chapter 2 of [18]). An
(abstract) polyhedron (abstract 3-polytope) is a partially ordered set P with a strictly
monotone rank function whose range is {−1, 0, . . . , 3}. The elements of rank j are
called the j -faces ofP . For j = 0, 1 or 2, we also call j-faces vertices, edges and facets,
respectively. When there is no possibility of confusion, we adopt standard terminology
for polyhedra and use the term “face” to mean “2-face” (facet). The flags (maximal
totally ordered subsets) of P each contain one vertex, one edge and one facet, as well as
the unique minimal face F−1 and unique maximal face F3 of P . Further, P is strongly
flag-connected, meaning that any two flags� and� ofP can be joined by a sequence of
flags � = �0,�1, . . . , �k = �, where �i−1 and �i are adjacent (differ by one face),
and�∩� ⊆ �i for each i . Finally, if F and G are a ( j−1)-face and a ( j+1)-face with
F < G and 0 ≤ j ≤ 2, then there are exactly two j-faces H such that F < H < G.

When F and G are two faces of a polyhedron P with F ≤ G, we call G/F :=
{H | F ≤ H ≤ G} a section of P . We may usually safely identify a face F with the
section F/F−1. For a face F , the section F3/F is called the co-face of P at F , or the
vertex-figure at F if F is a vertex.
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An abstract polyhedronP is regular if its (combinatorial automorphism) group	(P)
is transitive on its flags. Let � := {F0, F1, F2} be a fixed or base flag of P (we usually
omit F−1 and F3 from the notation for flags). The group 	(P) of a regular polyhedron
P is generated by distinguished generators ρ0, ρ1, ρ2 (with respect to �), where ρj is
the unique automorphism which keeps all but the j-face of � fixed. These generators
satisfy the standard relations

ρ2
0 = ρ2

1 = ρ2
2 = (ρ0ρ1)

p = (ρ1ρ2)
q = (ρ0ρ2)

2 = ε, (2.1)

with p and q determined by the (Schläfli) type {p, q} of P; in general there are also
other independent relations. Observe that, in a natural way, the group of the facet of P
is 〈ρ0, ρ1〉, while that of the vertex-figure is 〈ρ1, ρ2〉.

An abstract polyhedron P is chiral if 	(P) has two orbits on the flags, such that
adjacent flags are in distinct orbits. Once again let � := {F0, F1, F2} be a base flag
of P , and let F ′j , with j = 0, 1, 2, denote the j-face of P with Fj−1 < F ′j < Fj+1

and F ′j �= Fj . The group 	(P) of a chiral polyhedron P is generated by distinguished
generators σ1, σ2 (with respect to �), where σ1 fixes the base facet F2 and cyclically
permutes its vertices such that F1σ1 = F ′1 (and thus F ′0σ1 = F0),1 and σ2 fixes the
base vertex F0 and cyclically permutes the vertices in the vertex-figure at F0 such that
F2σ2 = F ′2 (and thus F ′1σ2 = F1). Now we have the standard relations

σ
p

1 = σ q
2 = (σ1σ2)

2 = ε, (2.2)

where again p and q are determined by the type {p, q} of P and in general other
independent relations occur. We often take τ := σ1σ2 and σ2 as generators of	(P). Note
that τ acts like a “half-turn” about the “midpoint” of the base edge F1; it interchanges
the vertices F0 and F ′0 of F1, as well as the two facets F2 and F ′2 that meet at F1.

In a chiral polyhedron, adjacent flags are not equivalent under the group. If � is
replaced by the adjacent flag �2 := {F0, F1, F ′2} (say), then the generators σ1, σ2 of
	(P)must be replaced by the new generators σ1σ

2
2 , σ

−1
2 . Note that their product is again

τ . A chiral polyhedron occurs in two (combinatorially) enantiomorphic forms (see [22]
and [23]); an enantiomorphic form simply is a pair consisting of the underlying abstract
polyhedron and an orbit of flags (specifying a “combinatorial orientation”). These two
enantiomorphic forms ofP correspond to the two sets of generators σ1, σ2 and σ1σ

2
2 , σ

−1
2

of 	(P).
If P is a regular polyhedron, then the generators σ1 := ρ0ρ1 and σ2 := ρ1ρ2 of the

rotation subgroup 	+(P) of 	(P) also satisfy the relations (2.2). Moreover, τ = ρ0ρ2.
Now the two sets of generators of 	+(P) are conjugate in 	(P) under ρ2 (so that the
two enantiomorphic forms can be identified).

Let P be an abstract polyhedron, and let Pj denote its set of j-faces. Following
Section 5A of [18], a realization of P is a mapping β:P0 → E of the vertex-set
P0 into some euclidean space E . In our applications, E = E3. Define β0 := β and
V0 := V := P0β, and write 2X for the family of subsets of the set X . The realization β
recursively induces surjections βj :Pj → Vj , for j = 1, 2, 3, with Vj ⊂ 2Vj−1 consisting

1 Throughout, mappings act on the right.
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of the elements

Fβj := {Gβj−1 | G ∈ Pj−1 and G ≤ F}
for F ∈ Pj ; further, β−1 is given by F−1β−1 := ∅. Even though each βj is determined by
β, it is helpful to think of the realization as given by all the βj . A realization β is faithful
if each βj is a bijection; otherwise, β is degenerate. See Section 5B in [18], or [19], for
classes of abstract polyhedra or polytopes all of whose realizations in euclidean spaces
are known.

Except in one instance, we work with discrete and faithful realizations. In this case
the vertices, edges and facets of P are in one-to-one correspondence with certain points,
line segments and simple (finite or infinite) polygons in E , and it is safe to identify a
face of P and its image in E . The resulting family of points, line segments and polygons
is a geometric polyhedron in E and is denoted by P; it is understood that P inherits the
partial ordering of P , and when convenient P is identified with P . For related work see
also [12] and [13].

A realization β of P is symmetric if each automorphism of P induces an isometric
permutation of the vertex-set V = P0β; such an isometric permutation extends to an
isometry of E , uniquely if E is the affine hull of V . Thus associated with a realization
β of P is a euclidean representation of 	(P) as a group of isometries. The Grünbaum–
Dress polyhedra mentioned in the Introduction are precisely the realizations P of abstract
regular polyhedra in ordinary spaceE3, which are discrete, faithful and symmetric. They
are geometric polyhedra in E3 which are geometrically regular, meaning that they have
a flag-transitive symmetry group G(P).

In this paper we are mainly concerned with geometric polyhedra P in E3. We call
such a polyhedron P geometrically chiral if its symmetry group G(P) has two orbits
on the flags of P , such that adjacent flags are in distinct orbits. Then it is immediate that
the underlying abstract polyhedron P must be combinatorially chiral or combinatorially
regular. In any case, the above general results for abstract chiral polyhedra carry over
to geometrically chiral polyhedra. In particular, we now have distinguished generators
S1, S2 for G(P) corresponding to σ1, σ2, as well as their product T := S1S2 corre-
sponding to τ = σ1σ2. If P is also chiral, then 	(P) and G(P) are isomorphic, and the
realization is symmetric. If P is regular, then the geometric group G(P) is isomorphic
to the subgroup 	+(P) of 	(P), and the generators S1, S2 for G(P) correspond to those
of 	+(P); in this case the involutory automorphism ρ0 of P does not correspond to a
symmetry of P , so that only one-half of the automorphisms of P are realized as symme-
tries of P . In this situation we call P a chiral realization of the regular polyhedron P .
Not much is known about chiral realizations of regular polyhedra in euclidean spaces.

Regular or chiral polyhedra P (or P) can be obtained by Wythoff’s construction.
There are two variants, one based on reflections and applying only to regular polytopes
(see [6] and p. 124 of [18]), and the other based on rotations and applying to both kinds
of polyhedra.

Let P be an abstract regular polyhedron, and let G := 〈R0, R1, R2〉 be a euclidean
representation of its group 	(P) = 〈ρ0, ρ1, ρ2〉 in E3, where the (point, line or plane)
reflection Ri corresponds to ρi for each i . Each point v which is fixed by R1 and R2

yields a realization P of P; the base (or initial) vertex, base edge and base facet of P are
given by v, v〈R0〉 and v〈R0, R1〉, respectively, and the other vertices, edges and facets
of P are their images under G.
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Let P be abstractly chiral or abstractly regular, and let G := 〈S1, S2〉 be a euclidean
representation of its group 	(P) or its rotation subgroup 	+(P), respectively. Now each
point v which is fixed by S2 can serve as the initial vertex of a realization P , again
with vertex-set V = vG. Its base vertex, base edge and base facet are v, v〈T 〉 and
v〈S1〉, respectively, and the other vertices, edges and facets are again their images under
G. Note that, a priori, an abstract regular polyhedron can have a realization which is
geometrically chiral.

Our main goal is to describe the geometrically chiral polyhedra P whose symmetry
group G(P) is generated by rotatory reflections S1, S2 of finite period. In particular,
this will yield a complete enumeration of the geometrically chiral polyhedra with finite
skew facets and finite skew vertex-figures. Moreover, we shall see that there are no finite
geometric polyhedra that are geometrically chiral.

The regular polyhedra in E3 were extensively studied in Section 7E of [18] (see also
[8], [9], [11], [14], and [15]). It is interesting to observe that some of the basic operations
that can be applied to them have analogs that also apply to abstract chiral polyhedra,
and frequently to geometrically chiral polyhedra as well. Two examples are the duality
operation δ, yielding the generators for the group of the dual, and the (2nd) facetting
operation ϕ2 (see pp. 192 and 194 of [18]). If P is a chiral polyhedron with group
	(P) = 〈σ1, σ2〉, then δ and ϕ2 are given by

δ: (σ1, σ2) �→ (σ−1
2 , σ−1

1 ) and ϕ2: (σ1, σ2) �→ (σ1σ
−1
2 , σ 2

2 ), (2.3)

respectively. When applied to the rotation subgroup	+(P) of a regular polyhedronP , the
generators on the right become the distinguished generators for the rotation subgroups of
the polyhedra Pδ (the dual P∗) and Pϕ2 of Section 7B of [18], respectively. In Section 7
we shall meet a third example, the halving operation η (see p. 197 of [18]).

Finally, recall that the Petrial of a polyhedron P (orP) has the same vertices and edges
as P , and has as its facets the Petrie polygons of P , whose defining property is that two
successive edges, but not three, are edges of a facet of P . Note that the Petrie operation
on p. 192 of [18] cannot be expressed in terms of rotations only; in fact, this should not
come as a surprise, because a chiral polyhedron will generally have “right-handed” and
“left-handed” Petrie polygons of different lengths.

3. Finite Polyhedra

Let P be a geometric polyhedron in E3 which is (geometrically) regular or chiral, and
let� := {F0, F1, F2} be a base flag of P . Then G(P) contains elements S1, S2 as above,
and these generate G(P) if P is chiral, or a subgroup of index 2 in G(P) (isomorphic to
	+(P)) if P is regular. As before, let T := S1S2. If P is finite, then G(P) leaves a point
invariant, the origin o (say). Then G(P) is a finite subgroup ofO3, the orthogonal group.

We now establish that a chiral polyhedron in E3 cannot be finite. One possible proof
appeals to the enumeration of the finite subgroups of O3 (see Chapter 2 of [10]) and
exploits the geometry of the possible generators S1, S2 in the context of Wythoff’s con-
struction. However, here we borrow the shorter proof, suitably adapted, of a more general
non-existence result for certain classes of chiral polytopes in euclidean n-space En , re-
cently obtained by McMullen [16]; in fact, there are no finite chiral polytopes of rank n
in En . The following theorem is the special case n = 3.
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Theorem 3.1. There are no chiral geometric polyhedra in E3 which are finite. In other
words, in the above situation, P must be geometrically regular.

Proof. Since P is finite, its vertices must lie on a sphere centered at o. The vertices
adjacent to the base vertex F0 are cyclically permuted by S2, hence lie on a sphere
centered at F0. Thus the vertex-figures of P must be planar regular polygons. Moreover,
T is an involutory symmetry of P which interchanges the vertex-figures P/F0 at F0

and P/F ′0 at the adjacent vertex F ′0 of F1. As P/F0 is regular, we can also find two
reflections R1, R2 in planes through o which act on P/F0 like the standard generators
of its planar dihedral symmetry group. In particular, S2 = R1 R2. The generator R2 fixes
each point of F1 (its mirror contains F1) and determines the symmetry group of the
(regular one-dimensional) co-face P/F1 at F1. Moreover, R2 is also a symmetry of the
vertex-figure P/F ′0 at the adjacent vertex F ′0.

We then readily see that this local symmetry R2 is in fact a global symmetry of P .
The details of the proof exploit the existence of global symmetries (such as S2 and T )
and local symmetries determined by edges (such as R2). For example, the regularity of
the vertex-figures already forces R2 to be a symmetry of a “belt” of faces near the mirror
of R2; here it is useful to observe that, because they have full rotational symmetry,
the polygonal faces of P are actually also regular. We can further extend the belt by
employing global symmetries; for example, the vertex-figures at the vertices F ′0S2 and
F ′0S−1

2 are related by symmetry under R2, as are their images under T , and so on.
Hence R2 is a symmetry of P , and thus R1 = S2 R2 and R0 := S1 R1 are also

symmetries of P . In particular, P must be regular. (See also Lemma 2.1 of [21] for
another argument why P must be regular.)

The eighteen finite regular polyhedra in E3 split into two groups of nine, according
as T is a half-turn or a plane reflection (see p. 218 of [18]).

• If T is a half-turn, then P is either a Platonic solid {3, 3}, {3, 4}, {4, 3}, {3, 5} or
{5, 3}, or a Kepler–Poinsot polyhedron {3, 5

2 }, { 52 , 3}, {5, 5
2 } or { 52 , 5}.

• If T is a plane reflection, then P is the Petrial of either a Platonic solid or a
Kepler-Poinsot polyhedron.

Recall that P and its Petrial have the same group but with different sets of generators,
namely R0, R1, R2 and R0 R2, R1, R2, respectively [18, p. 192]; since R2 is a plane
reflection, the corresponding mappings T , given by R0 R2 and R0, respectively, have the
property that one is a half-turn if and only if the other is a plane reflection.

It is quite remarkable that there are examples of finite geometric polyhedra in E3

which are not chiral but still have a symmetry group with only two orbits on the flags.
Their flag orbits must necessarily contain pairs of adjacent flags. Wills [24] proved that,
up to similarity, there are precisely five such polyhedra with planar faces which are
realizations of orientable abstract regular polyhedra (see also [2]). The corresponding
abstract polyhedra are given by the two dual pairs {4, 5}6 and {5, 4}6 of genus 4, and
{6, 5}4 and {5, 6}4 of genus 9 (see [7]), as well as a certain self-dual map of type {6, 6}
of genus 11 (also described on p. 151 of [25]).

Observe that these examples also illustrate that we cannot omit the requirement that
adjacent flags be in distinct orbits from the definition of chirality.
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With a very similar proof as above we can also establish the following:

Theorem 3.2. A chiral geometric polyhedron in E3 cannot be planar.

This is the special case n = 3 of the more general result that there are no discrete
faithful chiral realizations of polytopes of rank n in En−1 (see again [16]). An alternative
proof of Theorem 3.2 can be given, which again is based on Wythoff’s construction and
inspection of the geometry of the possible generators S1, S2.

4. General Considerations for Infinite Polyhedra

We now investigate geometrically chiral apeirohedra, or infinite geometric polyhedra, in
E

3. Throughout we assume discreteness. In particular, this implies that the vertex-figures
are finite polygons.

We begin with a lemma which restricts the groups that can occur as symmetry groups.
Recall that an infinite discrete group G of isometries of E3 is said to act irreducibly if
there is no non-trivial linear subspace L of E3 which is invariant in the sense that G
permutes the translates of L . If such an invariant subspace L exists, then its orthogonal
complement L⊥ is also invariant in the same sense. In effect, the following lemma was
proved on p. 220 of [18].

Lemma 4.1. An irreducible infinite discrete group of isometries in E3 is a crystallo-
graphic group. In particular, it does not contain rotations of periods other than 2, 3, 4
or 6.

Bieberbach’s theorem now tells us that such a group G contains a subgroup T (G) of
the group T3 of translations ofE3, such that the quotient G/T (G) is finite; in effect, T (G)
can be thought of as a lattice inE3 (see [1] and Section 7.4 of [20]). If R: x �→ x R′ + t is
a general element of G, with R′ ∈ O3 and t ∈ E3 a translation vector (we may thus think
of t ∈ T3), then the mappings R′ clearly form a subgroup G0 of O3, called the special
group of G. Thus G0 is the image of G under the homomorphism on I3, the group of
isometries of E3, whose kernel is T3 (the image is, of course, O3). In other words,

G0 = GT3/T3
∼= G/(G ∩ T3) = G/T (G),

if T (G) is the full translation subgroup of G.
In this context the following lemma is useful.

Lemma 4.2. Let R ∈ I3, R′ ∈ O3 and t ∈ E3, such that x R = x R′+t for each x ∈ E3.
Let H be a plane through o, with orthogonal complement H⊥, and let t = t1 + t2 with
t1 ∈ H and t2 ∈ H⊥.

(a) If R′ is the reflection in H , then R is the glide reflection given by the reflection
in the plane through 1

2 t2 parallel to H , followed by the translation by t1 parallel
to H .
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(b) If R′ is a non-trivial rotation about H⊥, then R is a twist (screw motion) given
by a rotation about an axis parallel to H⊥, followed by the translation by t2 in
the direction of this axis.

(c) If R′ is a rotatory reflection with reflection plane H and rotation axis H⊥, such
that R′ is not the reflection in H , then R is a rotatory reflection with a reflection
plane parallel to H and passing through 1

2 t2, and with a rotation axis parallel to
H⊥.

Now let P be a geometrically chiral apeirohedron inE3 of type {p, q}, and let G(P) act
irreducibly on E3 (that is, P is a pure realization in the sense of [18, p. 126]). We assume
that the base vertex is at the origin o. Then G(P) = 〈S1, S2〉 must be a crystallographic
group, whose special group G0(P) is a finite subgroup of O3 generated by the images
S′1 of S1 and S′2 of S2 under the above homomorphism on I3. The isometries S′1 and S′2
are rotations or rotatory reflections of finite period at least 3. Note that S′2 = S2, because
S2 fixes the base vertex o.

If the apeirohedron P has finite faces, then each of the four isometries S1, S2, S′1, S′2
must be a rotation or rotatory reflection of finite period. Moreover, if P has finite skew
faces and skew vertex-figures, then indeed all four must be rotatory reflections. In this
case the products T = S1S2 and T ′ = S′1S′2 are proper involutory isometries and thus
are half-turns.

From now on we assume that the generators S1 and S2 of G(P) are rotatory reflections
of finite period. The next lemma limits the groups that can occur as special groups to
only two possibilities. Let C = {4, 3} be a cube centered at o with edges parallel to
the coordinate axes, and let K = {3, 3} be a tetrahedron inscribed in C as in Fig. 4.1.
Consider the subgroup

[3, 3]∗ := [3, 3]+ ∪ (−I )[3, 3]+ (4.1)

of [3, 4] = G(C) isomorphic to A4×C2. Then [3, 3]∗ consists of the rotational symme-
tries of C which map K to itself, as well as of the symmetries of C obtained from those
by adjoining −I , the negative of the identity mapping I .

Fig. 4.1. A regular tetrahedron inscribed in a cube.
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Lemma 4.3. As before, let P be a geometrically chiral apeirohedron in E3 with group
G(P) = 〈S1, S2〉, let P be discrete and pure and let o be the base vertex of P . If S1 and
S2 are rotatory reflections of finite period (this is true if P has finite skew faces and finite
skew vertex-figures), then G0(P) = 〈S′1, S′2〉 is either the group [3, 4] or its subgroup
[3, 3]∗. Moreover, P is of type {4, 6}, {6, 4} or {6, 6}.

Proof. We know that G0(P) is a finite subgroup of O3 generated by two rotatory
reflections of period at least 3, whose product is of period 2. Since P is pure, we must
have rotatory reflections in G0(P) for more than one axis. Moreover, by Lemma 4.1
we cannot have five-fold rotations in G0(P). Inspection of the finite subgroups of O3

(see Chapter 2 of [10]) now limits the admissible groups to only two, namely [3, 4] and
[3, 3]∗.

In [3, 3]∗ we have eight rotatory reflections of period 6, each given by a rotation by
±π/3 about a diagonal of C , followed by a reflection in the plane through o perpendicular
to the diagonal (see Fig. 4.1). They correspond to Petrie polygons of C , or, equivalently,
faces of K . In particular, we obtain pairs S′1, S′2 of generators from pairs of adjacent faces
of K , suitably oriented to yield products of period 2. Thus P must be a polyhedron of
type {6, 6}, whose faces and vertex-figures are skew hexagons of type {6}#{ } (see p. 222
of [18]). Note that T ′ = S′1S′2 is a half-turn about a coordinate axis (passing through the
centers of antipodal faces of C).

In [3, 4] we have six rotatory reflections of period 4 and eight of period 6, the latter
being those of the subgroup [3, 3]∗. Each rotatory reflection of period 4 is given by a
rotation by ±π/2 about a coordinate axis, followed by a reflection in the plane through
o perpendicular to the axis. Since the product of the two generators S′1, S′2 must be of
period 2, one generator must be of period 4 and the other of period 6. In fact, given
a rotatory reflection of period 6 in [3, 4], exactly three rotatory reflections of period 4
will yield a product with it of period 2, one for each coordinate axis. Now P must be a
polyhedron of type {4, 6} or {6, 4}, whose faces and vertex-figures are skew quadrilaterals
{4}#{ } or skew hexagons {6}#{ }, respectively. Note that T ′ = S′1S′2 is a half-turn about
the midpoint of an edge of C .

Next we investigate translations in G(P). Once again, let P be a geometrically chiral
apeirohedron with base vertex o, and let G(P) be generated by rotatory reflections S1

and S2. We concentrate on the types {4, 6} and {6, 6}, and later derive the type {6, 4} by
duality. Then S2 has period 6, and hence

S3
2 = −I ∈ G(P).

Now let R := S3
2 T , and let R′ := S3

2 T ′ = −T ′ be its image in G0(P); since T ′ is
a half-turn, R′ is a plane reflection. The base edge F1 with vertices o and v := oT
is perpendicular to the axes of T and T ′, and thus lies in the reflection plane of R′.
Moreover, oR = oS3

2 T = v, and hence R is the glide reflection given by

x R = x R′ + v (x ∈ E3).

This gives us the translation R2 in G(P) by the vector 2v. However, then the conjugates of
R2 by elements of 〈S2〉will yield all translations by vectors 2w, withw in the hexagonal
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vertex-figure of P at o. In particular, if we identify a translation with its translation
vector, we see that 2�0, with

�0 := 〈w | w a vertex of P adjacent to o〉
Z
, (4.2)

is a subgroup of G(P). Note that �0 will generally be a lattice spanned by any three
independent vectors in the (generally skew) vertex-figure at o. However, there are more
translations in G(P), as the following general considerations explain.

Let P be a realization of an abstract n-polytope in euclidean d-space Ed (see Sec-
tion 5A of [18]), and let o be a vertex of P . In our applications, n = d = 3. Now define
the edge-module � of P by

� := 〈x − y | x, y adjacent vertices of P〉
Z
. (4.3)

Then � is the Z-module generated by the “oriented” edges of P; alternatively, if for a
given vertex y we call the set of vectors {x− y | x a vertex adjacent to y} the vertex-star
of P at y, then � is the Z-module generated by all the vertex-stars of P . If V denotes
the vertex-set of P , then

V ⊂ �,
because P is connected. In fact, if x is a vertex of P , then there is a chain of vertices
o = x0, x1, . . . , xk = x of P such that consecutive vertices are adjacent; then

x =
k∑

i=1

(xi − xi−1) ∈ �

because each summand is in �.
More can be said if the realization P is vertex-transitive; in particular, this applies if

P is chiral or regular. If G0(P) is the special group of G(P), then

� = 〈x R′ | R′ ∈ G0(P), x ∈ V, xadjacent to o〉
Z
,

and � is invariant under G0(P). (In fact, under an element R ∈ G(P) direction vectors
are changed by R′.) In our applications, P will be centrally symmetric with respect to
o, and −I will be an element of G(P) contained in the group of the vertex-figure at o.
In this context we then have

2� ⊂ V ⊂ �, (4.4)

so that V is the union of certain cosets of�modulo 2�. In fact, if y is a vertex adjacent to
o, and if y = oR with R ∈ G(P), then the translation by 2y is simply (−I )R−1(−I )R,
and hence belongs to G(P). The conjugates of such translations by elements in G(P)
then yield all the generating translations of 2�. Therefore,

2� ≤ G(P). (4.5)

Its orbit containing o, which we identify with 2�, then is a subset of V . However, 2�
yields translations, so V must be the union of certain cosets of � modulo 2�. Observe



Chiral Polyhedra in Ordinary Space, I 65

also that, in effect, we have proved that “twice an oriented edge” (pointing from a vertex
to its neighbor) will always determine a translation in G(P).

We mention in passing that edge-modules are particular examples of diagonal-
modules. The diagonals (pairs of vertices) of a realization P fall into diagonal classes,
consisting of equivalent diagonals modulo G(P). With any diagonal class of P is asso-
ciated the Z-module spanned by the diagonals (the vectors x − y) in this class. Every
diagonal module of P is a submodule of the edge module.

In the next sections we describe all chiral polyhedra of types {4, 6} and {6, 6} with
a group generated by rotatory reflections. In particular, this yields the polyhedra with
skew faces and skew vertex-figures. We construct these polyhedra from their vertex-sets
and their edge-modules by identifying the vectors which point from a given vertex to the
adjacent vertices. The pure regular polyhedra of types {4, 6} and {6, 6} with finite faces
all have their generators S1, S2 given by rotatory reflections (see p. 225 of [18]), so they
also naturally arise in this context.

In Part II of the paper we shall prove that a polyhedron P with reducible group G(P)
cannot be chiral; that is, a chiral polyhedron in E3 cannot be a blend (see p. 125 of [18]).
This then settles the enumeration of polyhedra with finite skew faces and vertex-figures.
Moreover, we have already seen in Theorem 3.2 that a chiral polyhedron cannot be planar
(see also [16]).

5. Type {6, 6}

In this section we derive the chiral polyhedra of type {6, 6} and describe their geometry
and combinatorics in detail.

For a polyhedron P of type {6, 6}we must begin with the group [3, 3]∗ and realize it as
the special group of a suitable group G, the group of P . Once again we pick o as the base
vertex of P; its orbit under G will then be the vertex-set V (P) of P . The six faces which
contain o must correspond to six rotatory reflections of period 6; their reflection planes
are parallel in pairs, with one pair for each pair of antipodal faces which contain o. If we
move these planes into o and include the mirror of the reflection component of S2, we
obtain four planes, each perpendicular to one of four diagonals of a cube (see Fig. 4.1).

The following lemma implies that there is essentially only one way in which the group
G and its generators may be taken to give a chiral polyhedron.

Lemma 5.1. Let S2 (= S′2) be a rotatory reflection of period 6 in [3, 3]∗. Then there
are precisely three rotatory reflections S′1 of period 6 in [3, 3]∗ such that the product
S′1S2 is of period 2. If S′1 is one of them, then the other two are S−1

2 S′1S2 and S−2
2 S′1S2

2 ,
and their products with S2 are S−1

2 (S′1S2)S2 and S−2
2 (S′1S2)S2

2 , respectively.

Proof. Let H := [3, 3]∗ = [3, 3]+ ∪ (−I )[3, 3]+. Each rotatory reflection S of period
6 in H is of the form S = −R with R ∈ [3, 3]+ (∼= A4). If S′1 = −R1 and S2 = −R2

(say), then S′1S2 = R1 R2. It is easy to see that, given R2, there are just three possible
choices for R1 such that R1 R2 is of period 2. If R1 is one of them, then the other two are
R−1

2 R1 R2 and R−2
2 R1 R2

2. Accordingly, we obtain S−1
2 S′1S2 and S−2

2 S′1S2
2 from S′1. Note

that, since S3
2 = −I , we have S− j

2 S′1S j
2 = S−( j+3)

2 S′1S j+3
2 for j = 0, 1, 2.
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Since the four diagonals of the cube are equivalent under the group [3, 3]∗, and there
are just three equivalent ways to pick the first generator for [3, 3]∗ once the second is
chosen, we may confine ourselves to some very specific choices for S2 and T = S1S2.
There is of course the further possibility of reversing the orientation of the generator
S2 and replacing it by its inverse S−1

2 . However, as we shall see, this just replaces the
polyhedron P by its enantiomorphic image (with an adjacent base flag).

Thus we take the group G = G(a, b) generated by

S2: x �→ −(ξ3, ξ1, ξ2),

T : x �→ (−ξ1, ξ2,−ξ3)+ (a, 0, b),
(5.1)

described in terms of x = (ξ1, ξ2, ξ3), and with real parameters a and b, not both zero.
Since S1 = T S−1

2 , we then have

S1: x �→ (−ξ2, ξ3, ξ1)+ (0,−b,−a). (5.2)

When necessary we indicate the parameters a and b more explicitly and write T =
T (a, b), S1 = S1(a, b), and so on; note that S2 does not depend on a and b. The
polyhedron P = P(a, b) is now obtained by Wythoff’s construction applied to G. In
particular, v := oT = (a, 0, b) is the vertex in the base edge F1 distinct from o. Note
that F1 lies in the ξ1ξ3-plane and is perpendicular to the rotation axes of T , which is
parallel to the ξ2-axis and passes through 1

2v.
Before we move on, let us note that

P(−a,−b) = −P(a, b) = P(a, b) (5.3)

for all a and b. In fact,−I = S3
2 ∈ G, and conjugation by−I maps the generators T, S2

of G = G(a, b) to those of G(−a,−b).
The orbit V0 of v under 〈S2〉 is given by

V0 := {(a, 0, b), (−b,−a, 0), (0, b, a), (−a, 0,−b), (b, a, 0), (0,−b,−a)}; (5.4)

its elements are the vertices in the vertex-figure at o and are listed in cyclic order. We
think of them as a set of six vectors, called the vertex-star at the vertex o. Similarly,
V2 := V0T ′ = V0T − v is the vertex-star at the vertex v, and is given by

V2 = {(−a, 0,−b), (b,−a, 0), (0, b,−a), (a, 0, b), (−b, a, 0), (0,−b, a)}. (5.5)

The vertex-stars at the other vertices adjacent to o can be computed using the half-turns

T1 := S−2
2 T S2

2 : x �→ (ξ1,−ξ2,−ξ3)+ (0, b, a),
T3 := S−4

2 T S4
2 : x �→ (−ξ1,−ξ2, ξ3)+ (b, a, 0).

(5.6)

In particular, the vertex-stars V1 := V0T1−(0, b, a) at (0, b, a) and V3 := V0T3−(b, a, 0)
at (b, a, 0) are given by

V1 = {(a, 0,−b), (−b, a, 0), (0,−b,−a), (−a, 0, b), (b,−a, 0), (0, b, a)},
V3 = {(−a, 0, b), (b, a, 0), (0,−b, a), (a, 0,−b), (−b,−a, 0), (0, b,−a)}, (5.7)

respectively. It is also convenient to set T2 := T , so that V2 = V0T2 − (a, 0, b).
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Alternatively we can obtain the vertex-star at a vertex w := vS j
2 as V2S j

2 , for j =
0, . . . , 5. Since Vi = −Vi for each i , this also shows that the vertex-stars at ±w are the
same. In fact, the latter should not come as a surprise, because the translation by 2w is
an element in G, namely S− j

2 (S3
2 T )2S j

2 with j as above (see Section 4). Note also that
|Vi ∩ Vj | = 2 for all i, j with i �= j , provided that a, b �= 0.

Before we move on, let us recall that the base face F2 of P is determined by the orbit
of o under S1. If we identify a face with its vertex-set, then F2 is given by

F2 = {(0, 0, 0), (0,−b,−a), (b,−a − b,−a),

(a + b,−a − b,−a + b), (a + b,−a, b), (a, 0, b)}, (5.8)

where the vertices are listed in cyclic order. The other faces with vertex o are the images
of F2 under the non-trivial elements of 〈S2〉. Note that the faces are skew hexagons of
type {6}#{ } (see p. 222 of [18]); their vertices are among those of a hexagonal prism.

Next consider the set of (generally 12) vectors

V := V0 ∪ V1 ∪ V2 ∪ V3 = {(±a, 0,±b), (±b,±a, 0), (0,±b,±a)}. (5.9)

The corresponding points are the vertices of a convex 3-polytope, which is combinato-
rially equivalent to an icosahedron if a, b �= 0 and a �= ±b, or is a cuboctahedron if
a = ±b �= 0, or an octahedron if a = 0 or b = 0. Figure 5.1 shows the 12 points of V
for a = 1 and b = 3. The fat lines indicate the five triangles meeting at a vertex of the
convex polytope with vertex set V . The fine grid lines are drawn in for reference.

Note that V is invariant under S2 and T ′, and thus under the special group [3, 3]∗ of
G. In fact,

V0S2 = V0, V1S2 = V2, V2S2 = V3, V3S2 = V1, V0T ′ = V2, V1T ′ = V3.

(5.10)
In particular, since the vertex-stars at the vertices of P are the images of the vertex-star
at o under the special group, (5.10) implies that V0, V1, V2, V3 are the only vertex-stars
which can occur in P . Moreover, (5.10) gives a permutation representation on the indices

Fig. 5.1. The points of V for a = 1 and b = 3.
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Fig. 5.2. The six faces of the polyhedron P(1, 0) containing o.

0, 1, 2, 3 of the vertex-stars; in particular,

S2 = (1 2 3), T ′ = (0 2) (1 3), S′1 = (0 1 2), (5.11)

and these permutations generate the alternating group A4 (= [3, 3]∗/{±I } = [3, 3]+).
Observe that if a = 0 or b = 0, then the vertex-stars Vi all coincide as sets, but not as

sets equipped with the cyclic ordering of their vectors as in (5.4), (5.5) and (5.7); these
orderings correspond to the Petrie polygons of the octahedron.

Figure 5.2 shows the polyhedron P(1, 0) obtained for the parameters a = 1 and
b = 0. Its skew hexagonal faces are Petrie polygons of cubes in the cubical tessellation
{4, 3, 4}. The six faces which contain o are represented by fat lines, dotted lines or
circled lines, such that opposite faces are indicated in the same way. The vertex-figure of
P(1, 0) at o is also a skew hexagon given by a Petrie polygon of the vertex-figure {3, 4}
of {4, 3, 4}. Note that the edges of P(1, 0) are edges of {4, 3, 4}, but this is generally not
the case for the other polyhedra.

Let � := Z[V ] denote the Z-module spanned by the vectors in V ; this is the edge-
module of P . Then it follows from the above considerations that each vector in 2�
determines a translation in G. More precisely, the generating translations by vectors
in 2V are either conjugates of (S3

2 T )2 by elements in 〈S2〉, or their conjugates by T1,
T2 or T3; the former correspond to the vectors in 2V0, the latter to those in 2V1, 2V2

or 2V3, respectively. In general, 2� will not be the full translation subgroup of G (see
Lemma 5.5).

We now discuss discreteness. Since 2� is a subgroup of G, it maps vertices to vertices;
it follows that 2� itself, being the orbit which contains o, is a subset of the vertex-set
(see (4.4)).

Lemma 5.2. G is discrete if and only if a or b is zero or a and b are rational multiples
of each other.
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Proof. If G is discrete, then � must also be discrete. We have

2(a, 0, 0) = (a, 0, b)+ (a, 0,−b) ∈ �,

and, similarly, 2(b, 0, 0) ∈ �; hence 2(na + mb, 0, 0) ∈ � for all integers n and m.
However, the subset {na +mb | n,m ∈ Z} of R is dense in R, unless a or b is zero or a
and b are rational multiples of each other. This proves one direction.

Conversely, if a = (k/ l) b with integers k, l such that (k, l) = 1, then (a, 0, b) =
(b/ l) (k, 0, l), and we can rescale to obtain an equivalent group with parameters k and
l. This group is a subgroup of [4, 3, 4], the symmetry group of the cubical tessellation
with vertex-set Z3; hence it is discrete. Similarly, if a or b is zero, we can rescale to a
group with parameters 0 and 1, so once again we have a subgroup of [4, 3, 4].

In the present context we are mainly interested in discrete groups and discrete poly-
hedra. However, the reader should be aware that there are interesting chiral polyhedra
which are non-discrete. For example, if a = 1 and b = τ , the golden ratio, then the
polyhedron in Fig. 5.1 is a regular icosahedron and � is the Z-module spanned by its
vertices. We remark that similar Z-modules have occurred in the context of icosahedral
quasicrystals (see [3]).

Thus, up to similarity, we can take a and b to be integers with (a, b) = 1. If nothing is
said to the contrary, we explicitly allow a = 0 or b = 0; in this case, b = ±1 or a = ±1,
respectively. Now G is a subgroup of [4, 3, 4] and each vertex is in Z3, the vertex-set of
{4, 3, 4}. In fact, we have

2Z3 ⊂ � ⊂ Z3. (5.12)

If a = 0 or b = 0, then� = Z3. To prove the first inclusion in general, choose integers n
and m with na+mb = 1 and argue as in the proof of Lemma 5.2; this yields (2, 0, 0) ∈ �,
and then by symmetry also (0, 2, 0), (0, 0, 2) ∈ �.

The further properties of the edge-module� depend on the parity of a and b. Let s be
a positive integer, let k = 1, 2 or 3, and let s := (sk, 03−k), the vector with k components
s and 3− k components 0. Following [18, p. 166], we write �s for the sublattice of Z3

generated by s and its images under permutation and changes of sign of coordinates.
Observe that

�s = s�(1k ,03−k ),

when s = (sk, 03−k). Of course, �(1,0,0) is just the cubic lattice Z3. The lattice �(1,1,0)

is the face-centered cubic lattice (the root lattice D3) and consists of all integral vec-
tors whose coordinate sum is even (see [4]); a basis (with determinant 2) is given by
(1, 1, 0), (−1, 1, 0), (0,−1, 1). The lattice �(1,1,1) is the body-centered cubic lattice,
with a basis (with determinant 4) given by (2, 0, 0), (0, 2, 0), (1, 1, 1).

Lemma 5.3. As before, let � be the lattice spanned by V . Then

(a) � = �(1,0,0) = Z3 if a or b is even;
(b) � = �(1,1,0) if a and b are odd.
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Proof. We know that 2Z3 ⊂ �. Since (a, b) = 1, the parameters a and b cannot both
be even. If a is odd and b is even (say), the generator (a, 0, b) of � is equivalent to
(1, 0, 0) modulo 2Z3; hence (1, 0, 0) ∈ �, and then also (0, 1, 0), (0, 0, 1) ∈ �. This
proves the first part. If both a and b are odd, we similarly obtain (1, 0, 1) ∈ �, and hence
also (1, 1, 0), (0, 1, 1) ∈ �; but the coordinate sum of each generator, and thus of each
element, of � is even, so this also proves the second part.

Next we determine the vertex-set V (P) of the polyhedron P , that is, the orbit of o
under G. From (4.4) we know that

2� ⊂ V (P) ⊂ �. (5.13)

More precisely, we have

Lemma 5.4. The vertex-set V (P) of the polyhedron P is given by

(a) V (P) = Z3 (= �) if a or b is even;
(b) V (P) = �(1,1,0) (= �) if a and b are odd with a + b ≡ 0 (mod 4);
(c) V (P) = ⋃3

i=0 (xi + 2�(1,1,0)), with x0 := (0, 0, 0), x1 := (0, 1, 1), x2 :=
(1, 0, 1) and x3 := (1, 1, 0), if a and b are odd with a + b �≡ 0 (mod 4).

Proof. We generate new vertices as images of o under G and use the fact that 2� is
both a subgroup of G and a subset of V (P).

If a is odd and b is even (say), the vertices (a, 0, b), (a+ b,−a, b) and (a+ b,−a−
b,−a + b) of F2 are equivalent to (1, 0, 0), (1, 1, 0) or (1, 1, 1) modulo 2� = 2Z3,
respectively, and hence the latter are vertices. From those we obtain (0, 1, 0), (0, 0, 1),
(1, 0, 1) and (0, 1, 1) as vertices by applying S2 and once again reducing modulo 2�. It
follows that each coset of�modulo 2� is represented by a vertex, and hence V (P) = �.

If a and b are odd, then 4Z3 ⊂ 2�(1,1,0) = 2�. If a + b ≡ 0 (mod 4), then (a, 0, b)
and (a + b,−a, b) are equivalent to (1, 0,−1) or (0, 1, 1) modulo 2�, respectively;
applying S2 to them now yields all points (±1,±1, 0), (±1, 0,±1) and (0,±1,±1) as
vertices. Moreover, we also obtain (2, 0, 0) as vertex from (a + b,−a − b,−a + b) in
F2 modulo 2�. However, then each coset of � modulo 2� is represented by a vertex,
and hence � itself is the vertex-set.

Finally, let a and b be odd with a + b �≡ 0 (mod 4). Now (a, 0, b) is equivalent to
x2 = (1, 0, 1), and under S2 we also obtain x1 = (0, 1, 1) and x3 = (1, 1, 0) as vertices.
This proves that each coset xi + 2�, with i = 0, 1, 2, 3 (and x0 = o), is a subset of
V (P). However, these cosets are permuted by the generators S2 and T , so G must map
a vertex contained in their union U (say) to a vertex which is again contained in U .
Since the base vertex o is also in U , and G is transitive on the vertices, this proves that
V (P) = U .

We now determine the full translation subgroup T (G) of G. We already know that it
must contain 2�.

Lemma 5.5. The subgroup T (G) of all translations in G is given by

(a) �(1,1,1) if a or b is even;
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(b) 2Z3 if a and b are odd with a + b ≡ 0 (mod 4);
(c) 2�(1,1,0) = 2� if a and b are odd with a + b �≡ 0 (mod 4).

In particular, T (G) contains 2� as a subgroup of index 2, 2 or 1, respectively.

Proof. In general we have additional translations arising from products like T2T1T3,
with T2 = T as in (5.1) and T1, T3 as in (5.6). In fact, T2T1T3 is the translation by
(−a + b, a − b, a − b), since the sign changes in the three linear parts cancel out.

If a is odd and b is even (say), then this vector is equivalent to (1, 1, 1) modulo
2� = 2Z3, hence the translation by (1, 1, 1) is also in G. However, the lattice�(1,1,1) is
generated by 2Z3 and (1, 1, 1) and thus yields translations in G.

If a and b are odd with a + b ≡ 0 (mod 4), the vector (−a + b, a − b, a − b) is
equivalent to (2, 0, 0)modulo 2� = 2�(1,1,0). However, 2�(1,1,0) and (2, 0, 0) generate
2Z3, so now the latter yields translations in G.

If a and b are odd with a + b �≡ 0 (mod 4), there are no translations in G other than
those in 2� = 2�(1,1,0). The proof is rather tedious, so we only sketch it here. The
arguments also extend to the previous two cases and will show that the full translation
subgroup of G cannot be larger than �(1,1,1) or 2Z3, respectively.

Since G = 〈T, S2〉, we have G = N · 〈S2〉 (as a product of subgroups) with N :=
〈S− j

2 T S j
2 | j = 0, . . . , 5〉. Define T̂j := S− j

2 T S j
2 ; then T̂0 = T , T̂2 = T1, T̂4 = T3, and

T̂j+3 = (−I )T̂j (−I ) for each j . The translation part of the generator T̂j of N belongs to
V0, and the linear part of T̂j involves two sign changes but no permutation of coordinates.
Then a translation in G must necessarily belong to N ; in fact, in the special group, the
images of a translation in G or an element of N must involve an even number of sign
changes but no permutation of coordinates, whereas an element in 〈S2〉 either involves
an odd number of sign changes or a permutation of coordinates.

Now let R be any element of N , and let R = T̂j1 · · · T̂jn for some j1, . . . , jn . If
j2 ≡ j1 + 3 (mod 6), then T̂j1 T̂j2 is a translation by a vector in 2V0 and thus be-
longs to 2�. If the first three generators T̂j1 , T̂j2 , T̂j3 involve the three sign changes
(−,−,+), (−,+,−), (+,−,−) (in some order), then their product is also a transla-
tion. If j2 �≡ j1 + 3 (mod 6), then this certainly can be achieved by inserting a trivial
subproduct T̂j T̂j between the second and third term, and this would only increase n by
2. Therefore, by applying a combination of these two operations, we can rewrite R as
a product involving only translations and at most two additional generators T̂j . Clearly,
no additional factor T̂j can occur if R itself is a translation.

It remains to identify the translations obtained as products of three generators involv-
ing all three sign changes. In a product of this kind, if we replace one of the factors T̂j by
T̂j+3, then the new translation vector is equivalent to the old modulo 2�. The same re-
mains true if we cyclically permute the factors in the product (by conjugation). This, then,
reduces the consideration to the two products T̂0T̂1T̂2 and T̂2T̂1T̂0, the latter being equiva-
lent to the product T2T1T3 modulo 2� discussed earlier, and the former being its inverse.

It follows that the structure of the full translation subgroup of G is entirely determined
by the translation vector (−a+b, a−b, a−b) of T2T1T3 modulo 2�. In particular, this
completes the proofs for the first and second parts. Finally, for the third part observe that
(−a + b, a − b, a − b) itself belongs to 2� if a and b are odd with a + b �≡ 0 (mod 4),
so there are no translations in addition to those of 2�.
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Note that the proof gives more. In fact, the translation subgroup of G is a subgroup of
N of index 4, and I, T1, T2, T3 is a system of coset representatives in N (and the quotient
group is C2 × C2). Moreover, G = N · 〈S2〉 is a semidirect product.

Now that we know the vertex-set and the translation group for given parameters a
and b, we can give a direct description of the vertex-figure of the polyhedron P at any
given vertex x . This is done in Theorem 5.8. First consider the canonical mapping

π : V (P) → V (P)/T (G),
x �→ x + T (G).

In the case when V (P) is a lattice (that is, when a or b is even, or a or b is odd and
a+b ≡ 0 (mod 4)), then T (G) is a sublattice of V (P) of index 4, π is a homomorphism,
and V (P)/T (G) is isomorphic to C2 × C2. However, when V (P) itself is not a lattice
(that is, when a and b are odd with a + b �≡ 0 (mod 4)), then V (P) is the union of four
cosets of�(1,1,0) modulo T (G) (see Lemmas 5.4 and 5.5); these cosets are the elements
of a set, again denoted by V (P)/T (G).

We now color each vertex x of P with one of four elements of

C := {0, 1, 2, 3},
the set of colors; the color of x will be the suffix of the vertex-star at x . We take the
mapping

c′: V (P)/T (G)→ C

which associates with a coset x + T (G) a label i ∈ C as specified in Table 1 for its coset
representative, and then consider the induced coloring mapping

c: V (P)→ C

defined by (x)c := (x + T (G))c′ = (xπ)c′. We call (x)c the color of the vertex x . Thus
the color of a vertex x is obtained by reducing x modulo T (G), and then assigning to
x the color which is associated with its coset modulo T (G) according to Table 1. Note
that the vectors in the columns of Table 1 give a complete set of coset representatives
for the cosets in V (P)/T (G); they represent the vertices

o, oT1 = (0, b, a), oT2 = (a, 0, b), oT3 = (b, a, 0) (5.14)

of P , in this order (see (5.1) and (5.6)). If a or b is even, then, in effect, we are coloring
the vertices of a cube with colors 0, 1, 2, 3, such that antipodal vertices receive the

Table 1. The colors i assigned to the cosets in V (P)/T (G).

a odd, a even, a, b odd, a, b odd,
i b even b odd a + b ≡ 0 (mod 4) a + b �≡ 0 (mod 4)

0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
1 (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 1, 1)
2 (1, 0, 0) (0, 0, 1) (1, 0, 1) (1, 0, 1)
3 (0, 1, 0) (1, 0, 0) (1, 1, 0) (1, 1, 0)
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same color, and are extending this coloring to a coloring of the vertices of the cubical
tessellation, such that antipodal vertices of a cube always receive the same color.

When V (P) is a lattice, it is convenient to make C into a group such that c′ becomes an
isomorphism and c a homomorphism between groups. This is done by defining addition
by

0⊕ i := i if i = 0, 1, 2, 3,
i ⊕ j := k if {i, j, k} = {1, 2, 3}.

Then C is isomorphic to C2 × C2.
Note that G acts on the four cosets in V (P)/T (G) as an alternating group A4. In fact,

since S2 and T ′ (the linear part of T ) map T (G) onto itself, the generators S2 and T of
G map cosets of V (P) modulo T (G) to cosets of V (P) modulo T (G). It follows that
G also acts as a permutation group on C . In particular, S2 = (1 2 3) and T = (0 2)(1 3),
as permutations on C .

For the proof of Theorem 5.8 we require the following two lemmas about the vectors
in the intersections Vi ∩ Vj of two vertex-stars. The first deals with the case when V (P)
is a lattice, and the second with the case when V (P) is not a lattice. The proof of one
lemma does not extend to the other.

Lemma 5.6. Let a or b be even and non-zero, or let a and b be odd with a + b ≡ 0
(mod 4).

(a) If y ∈ Vi ∩ Vj for some i, j = 0, 1, 2, 3 with i �= j , then (y)c = i ⊕ j .
(b) If y ∈ Vi and k := (y)c (�= 0), then y ∈ Vj with j = i ⊕ k.

Proof. Every set Vi ∩ Vj consists of one pair of antipodal vectors for each i �= j (we
have excluded the case that a or b is zero). Reducing a vector y ∈ Vi ∩Vj modulo T (G),
and then applying c′, yields the color (y)c of y. In the cases we are considering, y is a
vertex of P , so (y)c is defined. A simple case-by-case inspection then shows that indeed
(y)c = i ⊕ j in each case. This proves the first part.

None of the vectors in a vertex-star is equivalent to o modulo T (G). So in the second
part we must have k �= 0. However, y ∈ Vj for some j , and k = (y)c = i ⊕ j by the
first part. Hence j = i ⊕ k, as required.

The coset representatives x0 = (0, 0, 0), x1 = (0, 1, 1), x2 = (1, 0, 1) and x3 =
(1, 1, 0) occurring in Lemma 5.4(c) allow a simple description of the vertex-stars Vl

modulo 2�(1,1,0), for l = 0, 1, 2, 3. First note that the sums xi+xj of two representatives
will generally not represent elements in V (P).

Lemma 5.7. Let a and b be odd with a + b �≡ 0 (mod 4), and let l = 0, 1, 2 or 3.

(a) Then V̂l := {xl + xi , xl + xj , xl + xk}, with {i, j, k, l} = {0, 1, 2, 3}, is a system
of representatives for the vectors in Vl modulo 2�(1,1,0).

(b) If y ∈ Vl is equivalent to xl + xm modulo 2�(1,1,0) for some m �= l, then also
y ∈ Vm .
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Proof. A simple computation shows that, modulo 2�(1,1,0), the set xl+Vl is represented
by {xi , xj , xk}, with i, j, k as above. Hence Vl itself is represented by V̂l . This proves the
first part.

We know that Vl ∩ Vn consists of one pair of antipodal vectors for each n �= l. If
y ∈ Vl ∩Vn , then y must be equivalent to xl + xr and xn+ xs for some r and s with r �= l
and s �= n. An inspection of the possible sums now shows that indeed {l, r} = {n, s},
and thus r = n and s = l. Therefore, if y ∈ Vl and y is equivalent to xl + xm for some
m �= l, then necessarily y ∈ Vm (and y �∈ Vp for p �= l,m).

We now have the following alternative description of the edge-graph of P .

Theorem 5.8. Let a and b be integers with (a, b) = 1. Let P be the polyhedron
associated with G, and let V (P) and T (G) be as in Lemmas 5.4 and 5.5, respectively.
If x is a vertex of P , then x + V(x)c is the set of vertices of P adjacent to x ; that is,
the vertex-star at x is given by V(x)c. Moreover, P has no multiple vertices; that is, if
x ∈ V (P) and y ∈ V(x)c, then −y ∈ V(x+y)c.

Proof. There are only four orbits of vertices of P under T (G), namely the four cosets in
V (P)/T (G), with coset representatives as in Table 1. Any two vertices of P belonging
to the same orbit have the same vertex-stars, since they are equivalent under a translation;
in particular, a vertex x of P has the same vertex-star as its coset representative modulo
T (G). The coset representatives of Table 1 are representing the four vertices in (5.14)
modulo T (G), and hence their vertex-stars are V0, V1, V2 and V3, respectively.

It remains to show that the assignment of vertex-stars to vertices is indeed consistent
and produces only simple vertices each of valency 6; that is, if x is a vertex and y ∈ V(x)c,
then x + y is again a vertex and −y ∈ V(x+y)c (so that we have x = (x + y)+ (−y) ∈
(x + y)+ V(x+y)c). Now Lemmas 5.6 and 5.7 come in.

First, let a or b be even and non-zero, or let a and b be odd with a+b ≡ 0 (mod 4). Let
x ∈ V (P) with (x)c = i , and let y ∈ Vi with (y)c = k. Then x + y is a vertex because
V (P) = �, and y ∈ Vj with j = i ⊕ k by Lemma 5.6(b). Now c is a homomorphism
between groups and thus (x+y)c = (x)c⊕(y)c = i⊕k = j . It follows that y ∈ V(x+y)c,
and hence also that −y ∈ V(x+y)c.

If a = 0 or b = 0, then V (P) = Z3 = � and V0 = V1 = V2 = V3 (as sets). Now the
statement holds trivially because V(x+y)c = V(x)c.

Finally, let a and b be odd with a + b �≡ 0 (mod 4). Let x ∈ V (P) with (x)c = i .
Then Lemma 5.7(a) shows that x+ y is equivalent to one vector in xi+ V̂i = {xj | j �= i}
modulo T (G), so must belong to V (P). If x + y is equivalent to xj (say) with j �= i ,
then (x + y)c = j and y is equivalent to xi + xj . Now Lemma 5.7(b) applies and proves
that y ∈ Vj = V(x+y)c. Therefore, −y ∈ V(x+y)c, as required.

We can rephrase the theorem (and its proof) to obtain a new definition of the edge-
graph of P which is independent of G. Let a and b be integers with (a, b) = 1, and
let Va,b and Ta,b denote the vertex-set and the translation group associated with a and
b (that is, the sets V (P) and T (G) of Lemmas 5.4 and 5.5), respectively. Take Va,b as
the vertex-set of the polyhedron. Then color each vertex x ∈ Va,b by (c)x as above,
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and assign to x the set V(x)c as its vertex-star. This can be done in a consistent way.
The resulting adjacency relationships between vertices now yield the edge-graph of the
polyhedron.

Next we investigate the faces of the polyhedron. In particular, we are interested in
cyclic sequences of six vectors in V = V0 ∪ · · · ∪ V3. These sequences describe how
we can move around the faces of P , going from one vertex to the next. We begin with a
lemma about the vertex-stars.

Lemma 5.9. Let a, b �= 0, let i = 0, 1, 2 or 3 and let Vi = {x, y, z,−x,−y,−z}
(say). Let ẑ be obtained from z by changing one sign of a non-zero coordinate of z (it
does not matter which). If u := ẑ, then

(i) {x, y, u} �⊂ Vl for l = 0, 1, 2, 3;
(ii) x, y ∈ Vi , y, u ∈ Vj and u, x ∈ Vk , for some j, k with i, j, k mutually distinct;

(iii) x ∈ Vi ∩ Vk , y ∈ Vi ∩ Vj and u ∈ Vj ∩ Vk , for some j, k with i, j, k mutually
distinct.

Moreover, if a vector u satisfies the first two properties for some j and k, then necessarily
u = ẑ.

Proof. This is easily verified by inspection. Note that any two vertex-stars intersect in
a pair of vectors, and that each such pair determines the two vertex-stars which contain
it. Clearly, either one of the second or third property of the lemma follows from the
other. For the proof of the last statement observe that if the two pairs ±x and ±y of
vectors in Vi are also known to belong to Vk or Vj , respectively, then the third pair in Vi

is obtained from the unique pair of vectors in Vj ∩Vk by changing one sign of a non-zero
component.

Let a, b �= 0. A sequence of vectors ζ := (z1, . . . , z6) in V is said to be admissible
if the following properties hold, with indices considered modulo 6:

(i) zi+3 = −zi and zi · zi+1 = ab, for i = 1, . . . 6 (here · denotes
the scalar product);

(ii) z1, z2 ∈ Vi , z2, z3 ∈ Vj and z3,−z1 ∈ Vk, for some i, j, k,
mutually distinct.

(5.15)

Clearly, any cyclic permutation of the vectors in an admissible sequence gives again an
admissible sequence. The same remains true if their order is reversed and each vector is
replaced by its negative. Note that the second condition implies that the vectors z1, z2, z3

in ζ cannot all be contained in one vertex-star.
With any face F of P we can associate a sequence ζ(F) = (z1, . . . , z6) in V , defined

up to a cyclic permutation and the reversal of order and signs. We say that ζ(F) is
associated with F . More precisely, if F = {y1, . . . , y6} (say), with vertices y1, . . . , y6

in cyclic order, we set zi := yi+1 − yi for i = 1, . . . , 6. Then we can recover F from
ζ(F) and y := y1, that is,

F = {y, y+z1, y+z1+z2, . . . , y+z1+· · ·+z5} =: y+{o, z1, z1+z2, . . . , z1+· · ·+z5}.
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Notice that {o, z1, z1 + z2, . . . , z1 + · · · + z5} is the vertex-set of a (generally skew)
regular hexagon. In particular, zi+3 = −zi for each i , and

∑6
i=1 zi = o. The center c(F)

of F is the centroid of the vertex-set of F and is given by

c(F) := y + 1
2 (z1 + z2 + z3).

If F is the base face F2 given by (5.8), then ζ(F) is easily seen to be admissible. In
fact, we have

Theorem 5.10. Let a and b be non-zero integers with (a, b) = 1. The admissi-
ble sequences in V are precisely the sequences ζ(F) associated with the faces F
of the polyhedron P . In particular, if ζ = (z1, . . . , z6) is an admissible sequence
with indices i, j, k as in (5.15), and if y is a vertex of P colored k, then F := y +
{o, z1, z1 + z2, . . . , z1 + · · · + z5} is the vertex-set of a face of P , and ζ = ζ(F).

Proof. Each element of the special group of G permutes the four vertex-stars Vi as well
as the four cosets (colors) of vertices of P , so takes admissible sequences to admissible
sequences. We already know that ζ(F2) is admissible; if the vertices of F2 are taken
in the order in which they occur in (5.8), then the corresponding indices are given by
(i, j, k) = (1, 2, 0). Now each face F of P is an image of F2 under some element R
in G. Hence, if R′ denotes the image of R in the special group, then R′ takes ζ(F2) to
ζ(F), and thus ζ(F)must also be admissible. This proves that the sequences associated
with faces of P are admissible.

Conversely, let ζ = (z1, . . . , z6) be an admissible sequence with indices i, j, k as
in (5.15). Then z6, z1 ∈ Vk , z1, z2 ∈ Vi and z2, z6 ∈ Vj . From Lemma 5.9 applied
to the vertex-star Vk we obtain Vk = {z6, z1, ẑ2,−z6,−z1,−ẑ2}, where ẑ2 is defined
as in Lemma 5.9. Hence z2 is determined up to sign, and then in fact uniquely, since
zi · zi+1 = ab for each i . Thus ζ is uniquely determined by z1 and z6. Now, if y is
a vertex of P colored k, then Vk is the vertex-star at y, and z1 and z6 determine a
face F of P which has y as a vertex. Then ζ(F) is an admissible sequence by the
first part of the proof, and ζ(F) contains z1 and z6. However, since there is only one
admissible sequence which contains z1 and z6, we now have ζ = ζ(F) and therefore
also F = y + {o, z1, z1 + z2, . . . , z1 + · · · + z5}.

We can say more about the faces of P . Each face F which contains a given vertex y
of P is of the form F := y + {o, z1, z1 + z2, . . . , z1 + · · · + z5} for some admissible
sequence ζ = (z1, . . . , z6). The same face F also occurs at the vertex y + z1 + z2 + z3

opposite to y in F . However, z1 + z2 + z3 yields a translation in G, so F is a translate
of the face opposite to F in the vertex-figure at y. For the proof that z1 + z2 + z3 indeed
yields a translation we observe that the vertex opposite to o in the base face F2 is obtained
from o by a translation in G (it has the same color), and that under G this property must
continue to hold for any pair of opposite vertices of a face. Thus, modulo T (G), there
are only three faces at a given vertex. This also remains true if a = 0 or b = 0, because
once again opposite vertices in a face are related by a translation in T (G).

Since the four classes of vertices modulo T (G) are represented by the base vertex o
and the adjacent vertices oT2 = oT , oT1 and oT3, every face of P must be equivalent
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modulo T (G) to a face which contains such a vertex, and every center of a face of P
must be equivalent to the center of such a face. The following lemma describes the full
set of face centers that occur. The details of the proof are omitted.

Lemma 5.11. Let P be the polyhedron associated with G. Then the set of centers of
faces of P is given by

(a) 1
2 (1, 1, 1)+ Z3 if a or b is even;

(b) (1, 1, 1)+�(1,1,0) if a and b are odd and a + b ≡ 0 (mod 4);
(c) z+V (P) if a and b are odd and a+b �≡ 0 (mod 4), with V (P) as in Lemma 5.4(c),

where z = o if a ≡ b (mod 8), or z = (2, 0, 0) if a �≡ b (mod 8).

Note that the set of face centers in Lemma 5.11(c) consists of four cosets of �(1,1,0)

modulo T (G) = 2�(1,1,0). If a ≡ b (mod 8), then every vertex of P is the center of
a face of P , and vice versa; their cosets are represented by the vectors x0 = (0, 0, 0),
x1 = (0, 1, 1), x2 = (1, 0, 1) and x3 = (1, 1, 0) as in Lemma 5.4(c). However, if a �≡ b
(mod 8), the four cosets modulo T (G) are just those which do not yield vertices of P;
now they are represented by (2, 0, 0), (0, 1,−1), (1, 0,−1) and (1,−1, 0).

We can also decide when the polyhedron has planar faces or vertex-figures.

Lemma 5.12. Let a and b be integers with (a, b) = 1. Let P be the polyhedron
associated with G. Then

(a) P has planar vertex-figures if and only if a = −b = ±1;
(b) P has planar faces if and only if a = b = ±1.

Proof. The points in V0 are the vertices of P adjacent to o, so P has planar vertex-figures
if and only if these points lie in a plane. The latter holds if and only if the determinant
of any three mutually non-collinear vectors in V0 is 0. We have

∣∣∣∣∣∣
a 0 b
b a 0
0 b a

∣∣∣∣∣∣ = a3 + b3 ;

hence the points lie in a plane if and only a = −b. Since a and b must be coprime, this
settles the first part. Note that P(−1, 1) = P(1,−1) (see (5.3)).

For the second part consider an admissible sequence (z1, . . . , z6) for the base face
F2. Then P has planar faces if and only if det(z1, z2, z3) = 0. However, det(z1, z2, z3) =
±(a3 − b3), so P has planar faces if and only if a = b. Once again, since (a, b) = 1,
the latter means that a = b = ±1. Note that P(−1,−1) = P(1, 1).

Next we discuss duality. In the present context the generators S1 and S2 of G are
rotatory reflections and thus have a unique fixed point. When taken as initial vertices for
Wythoff’s construction, these fixed points yield a pair of “geometrically” dual polyhedra.
The original polyhedron P is obtained from the point fixed by S2, namely o. Its dual P∗

is derived from

w := 1
2 (a + b,−a − b,−a + b),
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the fixed point of S1. Actually, as we remarked near the end of Section 2, it is more natural
to take S−1

2 , S−1
1 as distinguished generators when G is considered as the symmetry group

of P∗. Note that S−1
2 S−1

1 = (S1S2)
−1 = T , so the distinguished element T will remain

the same.
Since the base vertex w of P∗ is the center of the base face F2 of P , the vertex-set

V (P∗) of P∗ is just the set of face centers of P and thus is given by Lemma 5.11.
Moreover, wT is the vertex in the base edge of P∗ distinct from w, and the orbit of
wT under 〈S1〉 (or, rather, 〈S−1

1 〉) consists of the vertices in the vertex-figure at w. In
particular, we obtain the vertex-star atw from V3 by interchanging a and b in each vector.
The action of the special group G0 of G on the collection of vertex-stars Vi = Vi (a, b) of
P (see (5.10)) induces a corresponding action on the collection of sets Vi (b, a) obtained
by interchanging a and b in each vector. The vertex-star at a general vertex wR of P∗ is
given by V3(b, a)R′, where R′ is the image of the element R of G in G0. It follows that P∗

is the polyhedron associated with the vertex-stars Vi (b, a). Hence we have established
the following:

Theorem 5.13. The dual P(a, b)∗ of P(a, b) is congruent to P(b, a), or, less formally,
P(a, b)∗ ∼= P(b, a).

By Lemma 5.12 it is trivially true that the vertex-figures of P are planar if and only
if those of P∗ are planar. However, it is not true that P has planar vertex-figures if and
only if P∗ has planar faces.

Next we shall prove that the two polyhedra P(a, b) and P(b, a) are congruent for
any a and b. Indeed, if R denotes the reflection in the plane ξ1 − ξ3 = 0, so that

R: (ξ1, ξ2, ξ3) �→ (ξ3, ξ2, ξ1), (5.16)

then

P(a, b)R = P(b, a). (5.17)

For the proof, let S2 and T = T (a, b) be the generators of G = G(a, b) as in (5.1).
Then R−1S2 R = S−1

2 and R−1T (a, b)R = T (b, a), and thus R−1G(a, b)R = G(b, a).
However, oR = o, so R maps V (P(a, b)) = oG(a, b) to V (P(b, a)) = oG(b, a). In
fact, R also maps T (G(a, b)) to T (G(b, a)) (see Lemma 5.5) and takes each vertex
of P(a, b) colored 0, 1, 2 or 3 to a vertex of P(b, a) colored 0, 3, 2 or 1, respectively
(see Table 1 and note that the first two columns are interchanged under R if a or b is
even). Finally, since also V1(a, b)R = V3(b, a), V3(a, b)R = V1(b, a) and Vi (a, b)R =
Vi (b, a) for i = 0 or 2, we must in fact have P(a, b)R = P(b, a).

Now the following corollary is immediate.

Corollary 5.14. The polyhedron P(a, b) is geometrically self-dual, that is, P(a, b) is
congruent to its dual P(a, b)∗.

Before we move on, let us further comment on the case b = ±a. If b = ±a, then the
above mapping R takes P(a, b) to itself and induces an automorphism (see (5.3)); in
fact, since oR = o and V0 R = V0, it induces an automorphism of the vertex-figure at o.



Chiral Polyhedra in Ordinary Space, I 79

On the other hand, R acts like a transposition on the colors of the vertices, so it certainly
does not belong to G0, which acts on the colors like a group A4 (see (5.11)). However,
then R also cannot belong to G (it already fixes o), so even combinatorially it must act on
the vertex-figure at o like a reflection. Hence P(a, b) is geometrically regular if b = ±a,
and its full symmetry group is generated by G and R. We shall see later that R maps the
base flag of P(a, b) to either an adjacent flag if b = a, or the image of an adjacent flag
under the central symmetry −I (= S3

2) if b = −a.
Next we briefly discuss the general question when two polyhedra P(a, b) and P(c, d)

are affine images of each other. Here we do not need to assume that the parameters are
integers.

Lemma 5.15. Let a, b, c and d be real numbers, and let (a, b) �= (0, 0) �= (c, d). Let
P(a, b) and P(c, d) be the polyhedra associated with a, b and c, d, respectively. Then
P(a, b) and P(c, d) are affinely equivalent if and only if (c, d) = s(a, b) or t (b, a) for
some real numbers s or t . Moreover, P(a, b) and P(c, d) are congruent if and only if
this holds with s, t = ±1.

Proof. We only sketch the proof. Suppose that we have P(a, b)R = P(c, d) for some
affine mapping R. Since the group G(c, d) acts transitively on the vertices, and the sta-
bilizer of the vertex o in G(c, d) acts transitively on the vertices adjacent to o, we can
further assume that oR = o and that (a, 0, b)R = (c, 0, d). The affine transformation
R−1T (a, b)R acts on the polyhedron P(c, d) locally in exactly the same way as the
symmetry T (c, d) of P(c, d), so it must indeed be the same transformation (because
an affine transformation of E3 is uniquely determined by its effect on four indepen-
dent points). Moreover, the cyclic order of the vertices in the vertex-figure at o is ei-
ther preserved or reversed by R (see (5.4)); that is, R−1S2 R = S2 or S−1

2 (and hence
R−1G(a, b)R = G(c, d)). These two properties translate directly into conditions for
the matrix entries of R and prove that there are essentially only two possibilities. If the
order of the vertices in the vertex-figure is preserved, then R is the identity mapping,
up to scaling by s := c/a (or d/b if a = 0). If the order is reversed, then R is the
mapping defined in (5.16), up to scaling by t := c/b (or d/a if b = 0). In particular,
(c, d) = s(a, b) or t (b, a). Furthermore, R can only be an isometry if s = ±1 or t = ±1,
respectively. The other direction is obvious.

The same proof actually establishes that the polyhedra are generally chiral. In fact,
we have

Theorem 5.16. The polyhedron P(a, b) is geometrically chiral if b �= ±a, or geomet-
rically regular if b = ±a.

Proof. It is clear that every polyhedron P(a, b) is either geometrically chiral or geo-
metrically regular; in fact, G acts transitively on the vertices, and S2 permutes cyclically
the vertices adjacent to o. Now suppose that P(a, b) is geometrically regular. Then its
symmetry group must contain an element R which maps the base flag of P(a, b) to
the adjacent flag differing in the 2-face. In particular, R must fix the two vertices o and
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(a, 0, b) of the base edge. Now apply the arguments of the proof of Lemma 5.15 with
c = a and d = b. Since R−1S2 R = S−1

2 , the order of the vertices in the vertex-figure
is reversed, so R must be the mapping as defined in (5.16), or its negative. In particular,
we must have (a, b) = t (b, a) with t = ±1. Hence we must have b = ±a. On the other
hand, we already proved above that P(a, b) is geometrically regular if b = ±a.

We now address enantiomorphism. As explained in Section 2, the two enantiomorphic
forms of a chiral polyhedron are represented by different pairs of generators of its group.
If S1, S2 is the pair associated with the base flag {F0, F1, F2} (say) of P(a, b), then
S1S2

2 , S−1
2 is the pair associated with the adjacent flag {F0, F1, F ′2} of P(a, b). For each

pair, the product of the generators is T . If Wythoff’s construction is applied to G with
the new generators S1S2

2 , S−1
2 and with the same initial vertex o, which again is fixed by

S−1
2 , then we indeed obtain the same underlying polyhedron, namely P(a, b), but now

with a new base flag adjacent to the original base flag. To see this, we once again employ
the mapping R defined in (5.16).

In fact, we know that R−1G(a, b)R = G(b, a), and that

R−1S2 R = S−1
2 , R−1T (a, b)R = T (b, a),

R−1S1(a, b)R = R−1T (a, b)S−1
2 R = T (b, a)S2 = S1(b, a)S2

2 .
(5.18)

In other words, conjugation by R transforms the pair of generators S1(a, b), S2 of G(a, b)
into the pair S1(b, a)S2

2 , S−1
2 of G(b, a), and vice versa; the same also remains true with

a and b interchanged. It follows that the polyhedron P (say), obtained by Wythoff’s
construction from G(a, b) and its generators S1(a, b)S2

2 , S−1
2 , is mapped by R to the

polyhedron obtained from G(b, a) and its generators S1(b, a), S2. However, the lat-
ter is just P(b, a), so its preimage under R is P(a, b) itself. Hence, P = P(a, b).
Note that R takes the base flag {F0(a, b), F1(a, b), F2(a, b)} of P(a, b) to the flag
{F0(b, a), F1(b, a), F ′2(b, a)} adjacent to the base flag {F0(b, a), F1(b, a), F2(b, a)} of
P(b, a) (and differing from it in the 2-face). If b = ±a, this once again proves that
P(a, b) is geometrically regular. In fact, then R maps P(a, b) to itself, and takes the
base flag to either an adjacent flag if b = a, or the image of an adjacent flag under the
central symmetry −I (= S3

2) if b = −a.
These considerations also justify our initial hypothesis, pointed out at the beginning

of this section, that it is enough to concentrate on only one orientation for the generator
S2. Indeed, the opposite orientation (given by S−1

2 ) is implied by enantiomorphism.
We now address the question of abstract isomorphism between the polyhedra con-

structed in this section. The two cases a = b and a = −b are special because the
corresponding polyhedra P(1, 1) and P(1,−1) are regular. Initially we might conjec-
ture that each polyhedron P(a, b) is combinatorially isomorphic to P(1, 1) or P(1,−1),
but this turns out to be false.

First we identify the two regular polyhedra. We know from Theorem 7E15 of [18] that
there are only two pure regular polyhedra of type {6, 6} inE3, namely the Petrie–Coxeter
polyhedron {6, 6 |3} (with planar faces and skew vertex-figures), and {6, 6}4 (with skew
faces and planar vertex-figures). The polyhedron {6, 6}4 has its vertices at alternating
vertices of the Petrie–Coxeter polyhedron {4, 6 |4}; its faces are the vertex-figures at the
remaining vertices of {4, 6 |4}. We know from Lemma 5.12 that P(1, 1) has planar faces
and that P(1,−1) has planar vertex-figures. So we have
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Theorem 5.17. P(1, 1) = {6, 6 |3} and P(1,−1) = {6, 6}4 are the only polyhedra
P(a, b) which are regular.

It is instructive to see how the general polyhedron P(a, b) is different from the two
special polyhedra P(1, 1) and P(1,−1). We know that P(1, 1) = {6, 6 |3} has 2-holes
of length 3 (see also [5]), and that P(1,−1) = {6, 6}4 has Petrie polygons of length 4
(see pp. 193 and 196 of [18]); in other words, if their full symmetry group is 〈R0, R1, R2〉
(say), then their elements

S1S−1
2 = R0 R1 R2 R1, S2

1 S2
2 = (R0 R1 R2)

2

have periods 3 and 2, respectively. Now consider the two elements S1S−1
2 and S2

1 S2
2 in G

for general a and b. Once again they are associated with a right-handed 2-hole or Petrie
polygon of the polyhedron P(a, b). Now we have

(S1S−1
2 )3 : x �→ x + s(−1, 1, 1),

(S2
1 S2

2)
2 : x �→ x + t (1, 0, 0),

(5.19)

with s = a−b and t = −2a−2b. Hence (S1S−1
2 )3 and (S2

1 S2
2)

2 are genuine translations
unless a = b or a = −b, respectively. The two cases a = b and a = −b yield
P(1, 1) and P(1,−1) as a and b are relatively prime, and for them we already know
that the periods of S1S−1

2 and S2
1 S2

2 are 3 and 2, respectively. Note that the elements
(S1S2

2)(S
−1
2 )−1 = S1(−I ) and (S1S2

2)
2(S−1

2 )2 = S1S2
2 S1 of G are associated with a left-

handed 2-hole or Petrie polygon of P(a, b), respectively; their cube or square is again a
translation unless a = b = ±1 or a = −b = ±1.

In particular, these considerations imply that none of the polyhedra P(a, b) with
a �= ±b is combinatorially isomorphic to P(1, 1) or P(1,−1). More generally, the
following theorem holds.

Theorem 5.18. Let a, b and c, d be pairs of relatively prime integers. Then the polyhe-
dra P(a, b) and P(c, d) are combinatorially isomorphic if and only if (c, d) = ±(a, b)
or (c, d) = ±(b, a).

Proof. Suppose that κ is a combinatorial isomorphism between (the face lattices of)
P(a, b) and P(c, d). Consider the image of the base flag {F0(a, b), F1(a, b), F2(a, b)}
of P(a, b) under κ . Since G(c, d) has at most two orbits on the flags of P(c, d), we
can compose κ with an element of G(c, d) (if need be) and obtain an isomorphism κ ′

between P(a, b) and P(c, d) which maps the base flag of P(a, b) to either the base
flag {F0(c, d), F1(c, d), F2(c, d)} or the adjacent flag {F0(c, d), F1(c, d), F ′2(c, d)} of
P(c, d). Moreover, in the latter case we can further compose κ ′ with the isomorphism
between P(c, d) and P(d, c) determined by the reflection R of (5.16) (see also (5.18));
the resulting isomorphism κ ′′ between P(a, b) and P(d, c) then maps the base flag of
P(a, b) to the base flag of P(d, c). It follows that, up to interchanging the parameters
c and d , we may assume that we have an isomorphism between P(a, b) and P(c, d)
which maps the base flag of P(a, b) to the base flag of P(c, d).

Then this isomorphism of polyhedra induces an isomorphism of groups

µ: G(a, b)→ G(c, d)
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which maps the generators S1(a, b), S2 of G(a, b) to the generators S1(c, d), S2 of
G(c, d). (By composing with R as above, we have already accounted for the possibility
that µ would take the pair of generators S1(a, b), S2 into the other distinguished pair of
generators S1(c, d)S2

2 , S−1
2 of G(c, d)). Then µ also maps T (a, b) to T (c, d).

First we show that µmaps translations in G(a, b) to translations in G(c, d). Let T (z)
denote the translation ofE3 by the vector z ∈ E3. Now, if x is a vertex of P(a, b) adjacent
to o, then x = oL with L := T (a, b)S j

2 for some j , and

T (2x) = (−I )L−1(−I )L = S3
2 L−1S3

2 L

(see the proof of (4.5)). The conjugates of such translations by elements in G(a, b) then
yield all the generating translations of the subgroup 2� = 2�(a, b) of T (G(a, b)). Then
under µ we obtain

T (2x)µ = (S3
2 L−1S3

2 L)µ = S3
2(Lµ)

−1S3
2(Lµ) = (−I )(Lµ)−1(−I )(Lµ) = T (2y),

with y := o(Lµ) a vertex in P(c, d); but y is adjacent to o because Lµ = (T (a, b)S j
2 )µ

= T (c, d)S j
2 . However, µ takes conjugates to conjugates, so µ must map 2�(a, b) to

2�(c, d). Finally, to account for all translations in G(a, b) we must also consider the
translation

T2(a, b)T1(a, b)T3(a, b)

in G(a, b) (see the proof of Lemma 5.5). This is mapped by µ onto the corresponding
product for the parameters c, d, which again is a translation. Hence µ takes translations
to translations.

We now employ the translations in (5.19). Let e1, e2, e3 denote the canonical basis of
E

3. Then the two translations are given by

(S2
1(a, b)S2

2)
2 = T (−2(a + b)e1), (S1(a, b)S−1

2 )3 = T ((a − b)(−e1 + e2 + e3)),

(5.20)
and similarly for the parameters c, d. However, µ takes S1(a, b), S2 to S1(c, d), S2, so
µ must also take the two translations for a, b to those for c, d. By Lemmas 5.3 and 5.5
we have 2e1 ∈ �(a, b) and T (4e1) ∈ G(a, b) for every choice of parameters a, b. We
also know that T (4e1)µ is a translation. Clearly, (T (z)µ)k = T (kz)µ for any integer k
and any translation T (z) in G(a, b). In particular, setting k := a + b we obtain

(T (4e1)µ)
a+b = T (4(a + b)e1)µ

= (T (−2(a + b)e1))
−2µ

= (T (−2(c + d)e1))
−2

= T (4(c + d)e1).

Therefore, if a + b �= 0, then T (4e1)µ itself must be translation in the direction of e1.
Moreover, if a = −b = ±1, then also c = −d = ±1, as required.

Now let a + b �= 0 (and hence c + d �= 0), and let T (4e1)µ = T (re1) for some
integer r . Then

T (r(a + b)e1) = (T (re1))
a+b = T (4(c + d)e1),
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and thus we have the linear equation r(a + b) = 4(c + d) for a, b, c, d. To derive a
second linear equation we first observe that T (4ei )µ = T (rei ) for each i = 1, 2, 3. This
is proved by conjugation with S2

2 or S4
2 ; for example, we have

T (4e3)µ = (S−2
2 T (4e1)S

2
2)µ = S−2

2 T (re1)S
2
2 = T (re3).

We now use the fourth power of the second translation in (5.20). In fact, we have

T (4(c − d)(−e1 + e2 + e3)) = T (4(a − b)(−e1 + e2 + e3))µ

= (T (4e1)
−1T (4e2)T (4e3))

a−bµ

= (T (re1)
−1T (re2)T (re3))

a−b

= T (r(a − b)(−e1 + e2 + e3)).

This leads to the second linear equation, r(a − b) = 4(c − d). Together with the first
equation this implies ra = 4c and rb = 4d. Hence, bearing in mind that a, b and c, d
are relatively prime, we arrive at r = ±4; that is, (c, d) = ±(a, b), as required. This
concludes the proof.

In general we do not know if any polyhedron P(a, b) other than P(1, 1) and P(1,−1)
is combinatorially regular, but we do know that none is geometrically regular. If indeed
any such P(a, b) is combinatorially regular, then P(a, b) would be a chiral realization
of itself.

6. Types {4, 6} and {6, 4}

In this section we describe the geometrically chiral polyhedra of type {4, 6}. Their duals
are the chiral polyhedra of type {6, 4}.

Once again we consider only polyhedra whose symmetry group is generated by
rotatory reflections of finite periods. We now prefer to denote such a polyhedron by Q.
We know from Lemma 4.3 that there are only two groups, namely [3, 3]∗ and [3, 4],
which can occur as the special group for a geometrically chiral polyhedron Q. In this
section we discuss the polyhedra associated with [3, 4]. They must necessarily be of
type {4, 6} or {6, 4}. We begin with the polyhedra of type {4, 6} and obtain those of type
{6, 4} by duality.

As in the previous section we begin by realizing [3, 4] as the special group of a
suitable group H (we now denote the group by H ), and then obtain the polyhedron Q by
Wythoff’s construction. In particular, o is the initial vertex of Q, and the orbit of o under
H is the vertex-set V (Q) of Q. Geometrically we take [3, 4] in the form [4, 3], that is,
as the symmetry group of the cube. The following lemma shows that there is essentially
only one way in which H and its generators may be taken.

Lemma 6.1. Let S2 (= S′2) be a rotatory reflection of period 6 in [3, 4]. Then there are
precisely three rotatory reflections S′1 of period 4 in [3, 4] such that the product S′1S2 is
of period 2. If S′1 is one of them, then the other two are S−1

2 S′1S2 and S−2
2 S′1S2

2 , and their
products with S2 are S−1

2 (S′1S2)S2 and S−2
2 (S′1S2)S2

2 , respectively.
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Proof. Let C be a cube centered at o with edges parallel to the coordinate axes. Each
rotatory reflection of period 4 in its symmetry group [3, 4] is given by a rotation by±π/2
about a coordinate axis, followed by a reflection in the plane through o perpendicular
to the axis. Each rotatory reflection of period 6 in [3, 4] is given by a rotation about a
vertex of C , followed by a reflection in the plane through o perpendicular to the rotation
axis. Any two rotatory reflections of period 4 or 6, respectively, are conjugate in [3, 4].
(Note that the analogous statement was not true for [3, 3]∗.) Once S2 is chosen, then
exactly three rotatory reflections of period 4 will yield a product with S2 of period 2,
one for each coordinate axis; in particular, any two of them are conjugate by an element
of 〈S2

2 〉.

It follows from Lemma 6.1 that any two pairs of admissible generators S′1, S2 of [3, 4]
are conjugate in [3, 4]. In each case, S′1S2 is necessarily the half-turn about the midpoint
of an edge of C which contains a vertex of C invariant under S2. (The half-turns about
face centers of C yield the group [3, 3]∗, and the half-turns about the midpoints of those
edges which do not contain a vertex invariant under S2 correspond to elements S′1 of
period 2.)

Thus, as in the previous section, we may confine ourselves to some very specific
choices for S2 and T := S1S2. We take the group H = H(c, d) generated by

S2: x �→ −(ξ3, ξ1, ξ2),

T : x �→ (ξ2, ξ1,−ξ3)+ (c,−c, d),
(6.1)

with real parameters c and d, not both zero. Then S1 := T S−1
2 is given by

S1: x �→ (−ξ1, ξ3,−ξ2)+ (c,−d,−c). (6.2)

The base vertex of the corresponding polyhedron Q = Q(c, d) isw := oT = (c,−c, d),
and the base edge F1 with vertices o andw lies in the plane ξ1+ ξ2 = 0. In particular, F1

is perpendicular to the rotation axes of T , which is the line through 1
2w with direction

vector (1, 1, 0). Observe that the same argument as in the previous section shows that

Q(−c,−d) = Q(c, d). (6.3)

Now the orbit W0 of w under 〈S2〉 is given by

W0 := {(c,−c, d), (c,−d,−c), (d, c,−c), (−c, c,−d), (−c, d, c), (−d,−c, c)},
(6.4)

where again the points are listed in cyclic order; we simply write

W0 = {±(c,−c, d),±(c,−d,−c),±(d, c,−c)}, (6.5)

with the understanding that, up to cyclic permutation, plussigns precede minussigns.
Then W0 is the vertex-star of Q at its vertex o, and the vertex-stars at the vertices
adjacent to o are the images of W0 under the conjugates of T by elements of 〈S2〉 (more
exactly, under their images in the special group H0 of H ). In particular, the vertex-star
W2 := W0T ′ = W0T − w at (c,−c, d) = w is given by

W2 = {±(c,−c, d),±(c, d, c),±(−d, c, c)}. (6.6)
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As before, define

T1 := S−2
2 T S2

2 , T2 := T, T3 := S−4
2 T S4

2 .

Then the vertex-stars W1 := W0T1 − (−c, d, c) at (−c, d, c) and W3 := W0T3 −
(d, c,−c) at (d, c,−c) are given by

W1 = {±(c, c,−d),±(c,−d,−c),±(−d,−c,−c)},
W3 = {±(c, c, d),±(c,−d, c),±(−d,−c, c)}, (6.7)

respectively. Moreover, since−I = S3
2 belongs to H , the vertex-stars at pairs of opposite

vertices±z in the vertex-figure at o are necessarily the same. This also follows from the
observation that the translation by 2z, which maps −z to z, is an element of H , namely
S− j

2 (S3
2 T )2S j

2 , with j such that z = wS j
2 .

So far we have identified four vertex-stars for Q. Their vectors comprise certain triples
of the four vertices on each square face of the “truncated octahedron” shown in Fig. 6.3
for the case 0 < |c| < |d|. We shall see that there are four more vertex-stars which
occur in Q; together with the first set of four, these yield all the vertices of the truncated
octahedron. The missing vertex in each square face is the image of the opposite vertex
in the square face under the reflection in the mirror half-way between the two vertices.
This reflection is indeed contained in [3, 4], but it remains to prove that it is also the
image of an element of H in H0. The latter can be accomplished as follows.

The image T ′1 S3
2 of T1S3

2 in H0 is the reflection in the plane perpendicular to the
rotation axis of T1. We now conjugate to obtain the desired reflection. In fact, the image
of

R := T3T1S3
2 T3: x �→ (ξ2, ξ1, ξ3)+ (−2c + d,−d,−d) (6.8)

in H0 is the reflection R′ = T ′3T ′1 S3
2 T ′3 in the plane ξ1 = ξ2, and the vertex-star W4 :=

W0 R′ at the vertex oR = (−2c + d,−d,−d) of Q is given by

W4 = {±(−c, c, d),±(−c,−d, c),±(d,−c, c)}. (6.9)

More generally, we obtain the vertex-star Wi := Wi−4 R′ for i = 4, 5, 6, 7 at a vertex
which is the image of a vertex with vertex-star Wi under R. In particular,

W5 = {±(c, c,−d),±(c, d, c),±(d,−c, c)},
W6 = {±(−c, c, d),±(−c, d,−c),±(−d,−c,−c)},
W7 = {±(c, c, d),±(c, d,−c),±(d,−c,−c)}.

(6.10)

We now have a full set of vertex-stars for Q. In fact, since H acts transitively on the
vertices of Q, the vertex-stars of Q are images of W0 under H0, so H0 must act transitively
on them. However, since H0 contains S2, the stabilizer of W0 must be at least of order 6,
and hence the number of vertex-stars cannot exceed 8.

Observe that the elements S′1, S2 and T ′ of H0 act on the labels of the vertex-stars in
the following way:

S′1 = (0 1 5 2) (3 6 4 7), S2 = (1 2 3) (5 7 6), T ′ = (0 2) (1 7) (3 5) (4 6).
(6.11)
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✑
✑✑

5 2

1 0

4 7

6 3

Fig. 6.1. The cube representing the action of H0.

These permutations generate the rotation subgroup [3, 4]+ (= [3, 4]/{±I } ∼= S4) for
the cube with vertices 0, . . . , 7 shown in Fig. 6.1. The figure represents the action of
H0 on the vertex-stars; bear in mind that −I acts trivially on the labels, so the above
permutations really correspond to the geometric symmetries−S′1, S2 and T ′, respectively.

The base face F2 of Q is given by

F2 = {(0, 0, 0), (c,−d,−c), (0,−c − d,−c + d), (c,−c, d)}, (6.12)

where the vertices are listed in cyclic order. Thus the faces are generally skew quadran-
gles.

Figure 6.2 shows the six faces of the polyhedron Q(1, 1) which contain o. They are
represented by circled lines or by dotted lines with small or large dots, respectively, such
that opposite faces are indicated in the same way. The vertex-figure of Q(1, 1) at o is a
skew hexagon given by a Petrie polygon of the cube.

Fig. 6.2. The six faces of the polyhedron Q(1, 1) containing o.
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Fig. 6.3. The points of W for c = 1 and d = 4.

Now consider the set of (generally 24) vectors

W :=
7⋃

i=0

Wi = {(±d,±c,±c), (±c,±d,±c), (±c,±c,±d)}. (6.13)

This is the vertex-set of a convex 3-polytope which is one of the following: a suitably
truncated octahedron or cube, with 24 vertices, if 0 < |c| < |d| or 0 < |d| < |c|,
respectively; a cube if c = ±d; an octahedron if c = 0; or a cuboctahedron if d = 0.
Figure 6.3 illustrates the truncated octahedron obtained for c = 1 and d = 4; the fat
lines indicate the squares or rectangles surrounding a triangular face, and the fine grid
lines are drawn in for reference.

If c, d �= 0 and c �= ±d , then each vector in W belongs to exactly two vertex-stars;
moreover, if two vertex-stars have a vector in common, then they intersect in precisely
two vectors, one being the negative of the other. In particular, the eight vertex-stars are
distinct as sets. In all other cases the vertex-stars coincide (as cyclically ordered sets) in
pairs, namely we have

W0 = W4, W1 = W7, W2 = W6, W3 = W5. (6.14)

If c = ±d or c = 0, then they correspond to the Petrie polygons of the cube or octahedron,
respectively; if c = 0, they all coincide as sets of vectors. Finally, if d = 0, they are
planar and correspond to the four equatorial hexagons in the cuboctahedron.

Let� := Z[W ] denote theZ-module spanned by the vectors in W . Then each vector in
2� determines again a translation in H ; in fact, we shall see that 2� is the full translation
subgroup T (H) of H . Moreover, by (4.4), 2� is a subset of the vertex-set V (Q) of the
polyhedron Q. In particular, we again have the following criterion for discreteness.

Lemma 6.2. H = H(c, d) is discrete if and only if c or d is zero or c and d are rational
multiples of each other.
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Proof. The proof of Lemma 5.2 carries over with appropriate changes. Now

2(d, 0, 0) = (d, c, c)+ (d,−c,−c) ∈ �,
and, similarly, 2(c, 0, 0) ∈ �. In the discrete case, after rescaling (if need be), H is again
a subgroup of [4, 3, 4].

Therefore, up to similarity, we may assume that c and d are integers with (c, d) = 1.
Again we explicitly allow c = 0 or d = 0. Then H is a subgroup of [4, 3, 4] and each
vertex of Q is in Z3. Moreover,

2Z3 ⊂ � ⊂ Z3,

for the same reason as in the previous section. Now we have

Lemma 6.3. Let � be the lattice spanned by W . Then

(a) � = �(1,1,0) if c is odd and d is even;
(b) � = �(1,0,0) = Z3 if c is even and d is odd;
(c) � = �(1,1,1) if c and d are odd.

Proof. Reduce certain vectors modulo � and use the fact that 2Z3 ⊂ �. For example,
in the three cases for c and d, the vector (c, c, d) of W is equivalent to (1, 1, 0), (0, 0, 1)
and (1, 1, 1), respectively. Now appeal to symmetry.

Next we determine the vertex-set V (Q) of Q. We know from (4.4) that 2� ⊂ V (Q) ⊂
�, such that V (Q) is a union of cosets of�modulo 2�. Leaving aside the special cases
when c = 0, d = 0 or c = ±d (that is, c, d = ±1) for the moment, we now are tempted to
proceed as follows, but unfortunately the argument is flawed. There are at most eight such
cosets, and in each coset the vertex-stars at its vertices are necessarily the same (because
any two vertices are related by a translation). Since Q has altogether eight vertex-stars,
all eight cosets must actually occur and thus V (Q) = �. The trouble is that the argument
assumes vertex-faithfulness, that is, no vertex occurs with multiplicity. However, as we
shall see, in one parameter family the polyhedra have vertices of multiplicity 2, so only
four of the eight cosets occur. In fact, we have

Lemma 6.4. The vertex-set V (Q) of the polyhedron Q is given by

(a) V (Q) = ⋃3
i=0 (xi + 2�(1,1,0)), with x0 := (0, 0, 0), x1 := (1, 0, 1), x2 :=

(1, 1, 0) and x3 := (0, 1, 1), if c is odd and d ≡ 2 (mod 4);
(b) V (Q) = � otherwise.

Proof. Once again we generate new vertices as images of o under H and employ the
translations in 2�. In particular, once we find one representative vertex for a coset of �
modulo 2�, then the entire coset is a subset of V (Q). Obviously, o yields 2� itself.

If c is even and d is odd, the vertices (c,−d,−c) and (0,−c− d,−c+ d) of F2 (see
(6.12)) are equivalent to (0, 1, 0) and (0, 1, 1) modulo 2� = 2Z3, respectively; their
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images under 〈S2〉 also yield (1, 0, 0), (0, 0, 1), (1, 0, 1) and (1, 1, 0). Finally we obtain
(1, 1, 1) from oR = (−2c + d,−d,−d), with R as in (6.8). Hence, V (Q) = �.

If c is odd and d is even, then the vertex (0,−c − d,−c + d) of F2, as well as
its images under 〈S2〉, give the coset representatives x1 = (1, 0, 1), x2 = (1, 1, 0) and
x3 = (0, 1, 1)modulo 2� = 2�(1,1,0). From the vertices in W0 we also obtain (−1, d, 1),
(1,−1, d) and (d, 1,−1) modulo 2�; these three coincide with the first three if d ≡ 2
(mod 4), but yield (−1, 0, 1), (1,−1, 0) and (0, 1,−1) if d ≡ 0 (mod 4). The vertex
oR = (−2c+d,−d,−d), with R as in (6.8), also contributes (2, 0, 0) if d ≡ 0 (mod 4),
so that all eight cosets are present in this case, proving that V (Q) = �. Finally, if d ≡ 2
(mod 4), the union of the four cosets xi + 2�(1,1,0), with i = 0, 1, 2, 3, is seen to be
invariant under the two generators S2 and T of H , and hence must be the full vertex-set
V (Q), as it contains the base vertex. In this case each vertex of Q is of multiplicity 2;
we discuss this again below.

If both c and d are odd, then the vertices in W0 contribute the representatives (−1, 1, 1),
(1,−1, 1) and (1, 1,−1) modulo 2� = 2�(1,1,1), and the vertex (0,−c − d,−c +
d) and its images under 〈S2〉 yield (2, 0, 0), (0, 2, 0) and (0, 0, 2). The eighth coset
representative (1, 1, 1) is derived from (−2c + d,−d,−d). Hence, V (Q) = �.

In the exceptional case when c is odd and d ≡ 2 (mod 4), each point x ∈ E3 taken by
a vertex is in fact occupied by exactly two vertices. Each vertex is assigned a vertex-star,
so there are always two vertex-stars positioned at x . Once we know the two vertex-stars
at one point, then we can determine them at any point by appealing to vertex-transitivity.
Consider the point x = (−2c + d,−d,−d) occupied by the vertex oR, with R as
in (6.8). By construction, x receives the vertex-star W4 = W0 R′. On the other hand,
since −2c + d ≡ 0 (mod 4), the point x is equivalent to o modulo the translations in
2� = 2�(1,1,0), so x must also receive the vertex-star W0. Hence both W0 and W4 occur
at (−2c + d,−d,−d). Now, appealing to R once again we see that W0 and W4 must
also be the vertex-stars at o, the point occupied by the base vertex. Moreover, observe
that the two vertex-stars at a point taken by a vertex are always disjoint, so that there are
twelve edges of Q emanating from it.

We should point out here that a polyhedron Q(c, d) with c odd and d ≡ 2 (mod 4)
is not a faithful realization of its underlying abstract polyhedron, so in particular is not
a (faithful) geometric polyhedron or apeirohedron as defined in Sections 2 and 4. Each
such Q(c, d) is an infinite discrete realization and is geometrically chiral (as we shall
see).

Next we determine the translations which map the polyhedron Q onto itself.

Lemma 6.5. Let c, d be integers with (c, d) = 1. The subgroup T (H)of all translations
in H is given by T (H) = 2�.

Proof. The translates of the base vertex are again vertices of Q, so we certainly
have

2� ⊂ T (H) = oT (H) ⊂ V (Q) ⊂ �.
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Moreover, V (Q) is the union of either four or eight cosets of�modulo 2�; in particular,
V (Q) = � unless c is odd and d ≡ 2 (mod 4) (see Lemma 6.4(a)). Clearly, if two vertices
of Q are equivalent under a translation, then their vertex-stars or pairs of vertex-stars,
respectively, must be the same.

First consider the case c, d �= 0 and c �= ±d, when there are eight distinct vertex-
stars. If V (Q) consists of eight cosets of � modulo 2�, then each coset must uniquely
determine the vertex-star at its vertices, and no two cosets can be associated with the
same vertex-star. If V (Q) consists of only four cosets, then the same remains true for the
pairs of vertex-stars at the vertices. In any case, we must have T (H) = 2�; otherwise
Q could have at most four distinct vertex-stars.

If c = ±d = ±1, then 2�(1,1,1) ⊂ T (H) ⊂ �(1,1,1) = �. Bearing in mind that
T (H) is invariant under H0, particularly under S2 and T ′, we find that a translation
group strictly larger than 2�(1,1,1) would necessarily lead to a polyhedron with at most
two distinct vertex-stars; hence T (H) = 2� also in this case. For the remaining cases
c = 0 or d = 0 we can refer to Theorem 6.12 and directly use the geometry of {4, 6 |4}
and {4, 6}6 (the Petrial of {6, 6}4).

We should mention that there is also a direct proof of Lemma 6.5. This considers the
factorization H = N · 〈S2〉, with N the normal closure of the generator T in H , and then
describes the elements of N . In particular, N is generated by the half-turns R0, . . . , R5,
where Ri is given by Ri := S−i

2 T Si
2. However, while instructive, the details are rather

tedious, so we omit them here.
We now discuss an analog of Theorem 5.8. Once again we color the vertices x of Q,

now with colors from the set C := {0, . . . , 7}. We consider the mapping

c′: V (Q)/T (H)→ C

which associates with a coset x+T (H) a label i ∈ C as specified in Table 2 for its coset
representative, and then take the induced coloring mapping

c: V (Q)→ C

defined by (x)c := (x + T (H))c′. (If V (Q) is not a lattice, then V (Q)/T (H) simply
denotes the set of cosets of V (Q)modulo T (H); it is not a group in this case.) In effect, c
assigns to every vertex x the index i = (x)c (say) of its vertex-star Wi as its color. In the
exceptional case when points are doubly occupied by vertices of Q (that is, c is odd and
d ≡ 2 (mod 4)), this associates with such a point two colors, one for each vertex; in fact,
in the penultimate column of Table 2 each representative occurs twice. Moreover, when
the eight vertex-stars of Q coincide in pairs (see (6.14)), then the eight assignments of
vertex-stars to cosets modulo T (H) also coincide in pairs.

Note that the vectors in a column of Table 2 represent the vertices

(0, 0, 0) = o, (−c, d, c) = oT1, (c,−c, d) = oT2, (d, c,−c) = oT3,

(−2c + d,−d,−d) = oR, (0,−c − d,−c + d) = oS2
1 ,

(−c − d,−c + d, 0) = oS2
1 S2

2 , (−c + d, 0,−c − d) = oS2
1 S4

2 ,

(6.15)
in this order, with R as in (6.8).
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Table 2. The colors i assigned to the cosets in V (Q)/T (H).

c, d odd, c, d odd, c odd, c odd, c even,
c ≡ d (mod 4) c �≡ d (mod 4) d ≡ 0 (mod 4) d ≡ 2 (mod 4) d odd

0 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
1 (−1, 1, 1) (1, 1,−1) (−1, 0, 1) (1, 0, 1) (0, 1, 0)
2 (1,−1, 1) (−1, 1, 1) (1,−1, 0) (1, 1, 0) (0, 0, 1)
3 (1, 1,−1) (1,−1, 1) (0, 1,−1) (0, 1, 1) (1, 0, 0)
4 (1, 1, 1) (1, 1, 1) (2, 0, 0) (0, 0, 0) (1, 1, 1)
5 (0, 2, 0) (0, 0, 2) (0, 1, 1) (0, 1, 1) (0, 1, 1)
6 (2, 0, 0) (0, 2, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
7 (0, 0, 2) (2, 0, 0) (1, 0, 1) (1, 0, 1) (1, 0, 1)

We summarize the above discussion in the following:

Theorem 6.6. Let c and d be integers with (c, d) = 1. Let Q be the polyhedron
associated with H , and let V (Q) and T (H) be as in Lemmas 6.4 and 6.5, respectively.
If x is a vertex of Q, then x +W(x)c is the set of vertices of Q adjacent to x ; that is, the
vertex-star at x is given by W(x)c. If c is odd and d ≡ 2 (mod 4), then every vertex is a
double vertex. In all other cases, every vertex is single.

Next we discuss when the polyhedron has planar vertex-figures or faces.

Lemma 6.7. Let Q be the polyhedron associated with H . Then

(a) Q has planar vertex-figures if and only if d = 0;
(b) Q has planar faces if and only if c = 0.

Proof. The polyhedron Q has planar vertex-figures if and only if the points in W0 lie
in a plane. Now the corresponding determinant is∣∣∣∣∣∣

c −c d
c −d −c
d c −c

∣∣∣∣∣∣ = d (3c2 + d2).

Hence the points lie in a plane if and only if d = 0.
The vertices of the base face F2 of Q are (0, 0, 0), (c,−d,−c), (0,−c−d,−c+d) and

(c,−c, d), in this order (see (6.12)). Hence F2 is planar if and only if (0,−c−d,−c+d)
is the sum of (c,−d,−c) and (c,−c, d); this gives the condition c = 0.

We now characterize the faces of the polyhedron. We only consider the case when Q
has eight distinct vertex-stars. Once again we associate with each face F of Q a sequence
ζ(F) := (z1, . . . , z4) in W , defined up to cyclic permutation and reversal of order. If
F = {y1, . . . , y4} (say), with vertices y1, . . . , y4 in cyclic order, we set zi := yi+1 − yi

for i = 1, . . . , 4 (all indices are considered modulo 4); then
∑4

i=1 zi = o and

F = y + {o, z1, z1 + z2, z1 + z2 + z3},
with y := y1. If F = F2, with the vertices as in (6.12), then

z1 = (c,−d,−c), z2 = (−c,−c, d), z3 = (c, d, c), z4 = (−c, c,−d),
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and z1, z2 ∈ W1, z2, z3 ∈ W5, z3, z4 ∈ W2 and z4, z1 ∈ W0; note that the labels of the
vertex-stars occurring here are just those of the cycle of 0 in the cycle representation
for S′1 in (6.11). Moreover, zi · zi+1 = −c2 (scalar product) for each i . Observe that if
F = F2S for some S ∈ H , then the vertex-stars occurring for ζ(F) will be just those of
the cycle of i , with Wi = W0S′, in the cycle representation for (S′)−1S′1S′.

Accordingly we now define a sequence of vectors ζ := (z1, . . . , z4) in W to be
admissible if

(i) zi · zi+1 = −c2 for i = 1, . . . , 4;
(ii) z1, z2 ∈ Wi , z2, z3 ∈ Wj , z3, z4 ∈ Wk and z4, z1 ∈ Wl , where i, j, k, l are

such that the cycle (i j k l) represents a face, in cyclic order, of the cube
in Fig. 6.1.

(6.16)
Any cyclic permutation or reversal of order of the vectors in an admissible sequence
gives again an admissible sequence. Although the appearance is quite different, this is
the exact analog of the definition in (5.15). In the previous section the special group acts
on a tetrahedron instead of a cube (see (5.11)), so faces are necessarily triples of indices.
In the present context we must allow all faces of the cube of Fig. 6.1, because their vertex
cycles are precisely the cycles which occur in the cycle representation of the conjugates
of S′1 in H0.

Theorem 6.8. Let c and d be non-zero integers with c �= ±d and (c, d) = 1. The
admissible sequences in W are precisely the sequences ζ(F) associated with the faces
F of the polyhedron Q. In particular, if ζ = (z1, . . . , z4) is an admissible sequence with
indices i, j, k, l as in (6.16), and if y is a vertex of Q colored l, then F = y+{o, z1, z1+
z2, z1 + z2 + z3} is the vertex-set of a face of Q, and ζ = ζ(F).

Proof. We already know that the sequence associated with a face of Q is admissible. If
ζ(F2) = (z1, . . . , z4) is as above, then z1 ∈ W0 ∩W1, z2 ∈ W1 ∩W5, z3 ∈ W5 ∩W2 and
z4 ∈ W2 ∩W0, so the corresponding cycle is given by (0 1 5 2). Using (6.11) we see that
the cycles for ζ(F2S2) and ζ(F2S2

2) are (0 2 7 3) and (0 3 6 1), respectively. These three
cycles represent the three faces of the cube in Fig. 6.1 which contain the vertex labeled
0. Now recall that the images of F2 under 〈S2〉 give all the faces of Q containing o, and
that 0 is the color of o as a vertex of Q. However, then we can appeal to transitivity and
conclude that the sequences ζ which are associated with the faces containing a given
vertex of Q colored l (say), must correspond to cycles which represent faces of the cube
in Fig. 6.1 containing the vertex labeled l.

Now let ζ = (z1, . . . , z4) be an admissible sequence with cycle (i j k l) as in (6.16);
then z1 ∈ Wl ∩Wi , z2 ∈ Wi ∩Wj , z3 ∈ Wj ∩Wk and z4 ∈ Wk ∩Wl . However, each such
intersection of vertex-stars consists of a single vector and its negative, so it determines
its vectors up to sign. Once a vector in one intersection is chosen, then the others are
determined by the scalar product condition of (6.16). Hence ζ is determined by (i j k l)
and a single vector, for example, z1.

Now, if y is a vertex of Q colored l, then Wl is the vertex-star at y and the vectors
z1, z4 of Wl determine a face F ′ (say) of Q which has y as a vertex. Then ζ(F ′) is an
admissible sequence which contains z1, z4, and it has a cycle of indices which represents
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a face of the cube in Fig. 6.1 with vertex l. Since the sequences for the six faces of Q with
vertex y lead to the three cycles which contain l, the sequence associated with one such
face F (say) must have (i j k l) as its cycle, and F must be either F ′ itself or adjacent
to F ′. The two vectors of Wl which determine F thus include z1 or z4, or both. Hence
ζ(F) is an admissible sequence with cycle (i j k l), and ζ(F) includes z1 or z4. However,
then ζ = ζ(F), because an admissible sequence is determined by its cycle and a single
vector. Now the theorem follows.

We now compute the face centers of Q. Every face of Q must be equivalent modulo
T (H) = 2� to a face which contains a vertex from the list in (6.15) of vertex represen-
tatives modulo T (H), and every center of a face must be equivalent to the center of such
a face. The face center of the base face F2 (see (6.12)) is given by

c(F2) = 1
2 (c,−c − d,−c + d),

so every face center of Q must be a point in 1
2Z

3. The following lemma describes the
full set of face centers that occur. The details of the computation are omitted.

Lemma 6.9. Let Q be the polyhedron associated with H , and let� be as in Lemma 6.3.
Then the set of face centers of Q is the union of cosets of 1

2Z
3 modulo 2�. The cosets

which occur can be represented by the following vectors:

(a) ± 1
2 (2,−1, 0), ± 1

2 (2, 3, 0), all cyclic permutations of coordinates, if c and d are
odd with c + d ≡ 0 (mod 4);

(b) ± 1
2 (1,−2, 0), ± 1

2 (3, 2, 0), all cyclic permutations of coordinates, if c and d are
odd with c + d ≡ 2 (mod 4);

(c) ± 1
2 (0, 1,−1), ± 1

2 (2, 1,−1), all cyclic permutations of coordinates, if c is even
and d is odd;

(d) ± 1
2 (1, 1,−1),± 1

2 (1, 1, 3), all cyclic permutations of coordinates, if c is odd and
d ≡ 0 (mod 4);

(e) ± 1
2 (1, 1,−3), if c ≡ ±1 (mod 8) and d ≡ 2 (mod 4);

(f) ± 1
2 (1, 1, 1), if c ≡ ±3 (mod 8) and d ≡ 2 (mod 4).

Note that the number of cosets occurring in Lemma 6.9 is twelve in each of the first four
cases, but is only two in the last two cases.

The face centers of Q = Q(c, d) are just the vertices of the dual polyhedron of type
{6, 4} denoted by Q∗ = Q(c, d)∗. Its face centers are the vertices of Q. This polyhedron
Q∗ can also be obtained by Wythoff’s construction applied to the same group H , but
with new generators S−1

2 , S−1
1 and initial (base) vertex

w := 1
2 (c,−c − d,−c + d) = c(F2),

the fixed point of S−1
1 . Alternatively we could describe Q∗ in terms of the vertex-stars

at its vertices, but we do not discuss this here in detail. Suffice it to say that the vertex
in the base edge of Q∗ distinct from w is given by wT , and that the orbit of wT under
〈S−1

1 〉 yields the vertices in the vertex-figure at w. This determines the vertex-star at w,
and then the remaining vertex-stars are just its images under H0.
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We can also decide when two polyhedra Q(c, d) and Q(e, f ) are affinely equivalent.
Once again we need not assume that the parameters are integers.

Lemma 6.10. Let c, d , e and f be real numbers, and let Q(c, d) and Q(e, f ) be the
polyhedra associated with c, d and e, f , respectively. Then Q(c, d) and Q(e, f ) are
affinely equivalent if and only if (e, f ) = s(c, d) or t (−c, d) for some real numbers
s and t . Moreover, Q(c, d) and Q(e, f ) are congruent if and only if this holds with
s, t = ±1.

Proof. We can argue as in the proof of Lemma 5.15. Suppose that we have Q(c, d)R =
Q(e, f ) for some affine mapping R, and that oR = o and (c,−c, d)R = (e,−e, f ). We
can prove as before that there are essentially only two choices for R. If the cyclic order
of the vertices in the vertex-figure at o is preserved by R (see (6.4)), then R is the identity
mapping, up to scaling (by s := e/c if c �= 0). On the other hand, if the order is reversed
by R, then R is the reflection in the plane ξ1 = ξ2 of E3, up to scaling (by t := e/c if
c �= 0). In particular, (e, f ) = s(c, d) or t (−c, d), respectively, with s, t = ±1 in the
case of congruence.

Using Lemma 6.10 we now settle the question when a polyhedron Q(c, d) is chiral
or regular. We have

Theorem 6.11. The polyhedron Q(c, d) is geometrically chiral if c, d �= 0, or geo-
metrically regular if c = 0 or d = 0.

Proof. By construction, each polyhedron Q(c, d) is either geometrically chiral or
geometrically regular. Suppose that Q(c, d) is geometrically regular. Then its sym-
metry group must contain an element R which fixes the two vertices F0 := o and
w := (c,−c, d) of the base edge F1 and interchanges the two faces F2, F ′2 containing
F1. Now appeal to the proof of Lemma 6.10 with e = c and f = d. Since R−1S2 R = S−1

2 ,
the order of the vertices in the vertex-figure is reversed, so R or−R must be the reflection
in the plane ξ1 = ξ2 given by

R: (ξ1, ξ2, ξ3) �→ (ξ2, ξ1, ξ3). (6.17)

In particular, (c, d) = t (−c, d) with t = ±1. Hence either c = 0 or d = 0.
Conversely, let c = 0 or d = 0; then d = 1 or c = 1, respectively. Although we could

appeal to Theorem 6.12 below, we give a direct proof. Let R be the reflection in (6.17).
We show that R or−R, respectively, belongs to the symmetry group of Q(c, d) and maps
the base flag {F0, F1, F2} onto the adjacent flag {F0, F1, F ′2}. In fact, if c = 0, we have
oR = o, wR = w, R−1T R = T and R−1S2 R = S−1

2 , and hence also R−1S1 R = S1S2
2

and R−1 H R = H . However, since

F ′2(S1S2
2) = (F ′2T )S2 = F2S2 = F ′2,

we must have

F2 R = (o〈S1〉)R = (oR)〈S1S2
2 〉 = o〈S1S2

2 〉 = F ′2,
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as required. Moreover, if S ∈ H and Fi S is any vertex, edge or face of Q(c, d), then
(Fi S)R = (Fi R)(R−1S R) is again a vertex, edge or face, so R maps Q(c, d) onto itself.
This settles the case c = 0. If d = 0, we can replace R by −R and argue in exactly the
same way.

For non-zero parameters c and d, the reflection R of (6.17) maps the polyhedron
Q(c, d) onto the polyhedron Q(−c, d), or rather the enantiomorphic image of Q(−c, d).
In fact, conjugation by R transforms the group H(c, d)with generators S1(c, d), S2 into
the new group H(−c, d) with generators S1(−c, d)S2

2 , S−1
2 . However, since oR = o,

(c,−c, d)R = (−c, c, d) and (o〈S1〉)R = o〈S1S2
2 〉, the reflection R maps Q(c, d)

onto Q(−c, d) and takes the base flag {F0(c, d), F1(c, d), F2(c, d)} (say) of Q(c, d) to
{F0(−c, d), F1(−c, d), F ′2(−c, d)}, the flag adjacent to the base flag of Q(−c, d). In
fact, the image Q(c, d)R is just the polyhedron obtained from H(−c, d) by Wythoff’s
construction with generators S1(−c, d)S2

2 , S2 and initial vertex (−c, c, d). Observe that
the mapping −R takes Q(c, d) to Q(c,−d), but the latter is simply Q(−c, d) again.

Next we identify the two polyhedra Q(c, d) which are regular. We know from Theo-
rem 7E15 of [18] that there are only two regular polyhedra of type {4, 6} in E3, namely
the Petrie–Coxeter polyhedron {4, 6 |4} (with planar faces and skew vertex-figures),
and {4, 6}6 (with skew faces and planar vertex-figures). The latter is the Petrial of the
polyhedron P(1,−1) = {6, 6}4 occurring in Theorem 5.17; its skew “square” faces are
inscribed in three fourths of the cubes of the cubical tessellation {4, 3, 4} of E3, such
that the vertex-figures are planar hexagons. We know from Lemma 6.7 that Q(0, 1) has
planar faces and that Q(1, 0) has planar vertex-figures. So we have

Theorem 6.12. Q(0, 1) = {4, 6 |4} and Q(1, 0) = {4, 6}6 are the only polyhedra
Q(c, d) which are regular. Their duals are Q(0, 1)∗ = {6, 4 |4} and Q(1, 0)∗ = {6, 4}6.

The two elements (S1S−1
2 )4 and (S2

1 S2
2)

3 of H(c, d) are given by

(S1S−1
2 )4 : x �→ x + 4c(0, 1, 0),

(S2
1 S2

2)
3 : x �→ x + 2d(−1, 1,−1).

(6.18)

In particular, (S1S−1
2 )4 = I if c = 0, and (S2

1 S2
2)

3 = I if d = 0. These relations confirm
that Q(0, 1) has 2-holes of length 4, and that Q(1, 0) has Petrie polygons of length
6 (see pp. 193 and 196 of [18]). For non-zero parameters c and d, these elements are
genuine translations. Note that it is generally not true that Q(c, d) is the Petrial of some
polyhedron P(a, b) (the Petrial generally has infinite faces, but Q(c, d) does not); the
only exception is Q(1, 0).

We conclude with an analog of Theorem 5.18 about combinatorial isomorphism.

Theorem 6.13. Let c, d and e, f be pairs of relatively prime integers. Then the polyhe-
dra Q(c, d) and Q(e, f ) are combinatorially isomorphic if and only if (e, f ) = ±(c, d)
or (e, f ) = ±(−c, d).

Proof. We adapt the proof of Theorem 5.18. The same general argument (but with
R as in (6.17)) shows that, up to replacing e by −e, we may assume that there is an
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isomorphism between Q(c, d) and Q(e, f ) which maps the base flag of Q(c, d) to the
base flag of Q(e, f ). Then there also is a group isomorphism µ: H(c, d) → H(e, f )
which maps S1(c, d), S2 to S1(e, f ), S2. In particular,µmaps translations to translations.

Now the two translations in (6.18) take the form

(S1(c, d)S−1
2 )4 = T (4ce2), (S1(c, d)2S2

2)
3 = T (2d(−e1 + e2 − e3)), (6.19)

and similarly for the parameters e, f . Then

(T (4e2)µ)
c = T (4ce2)µ = T (4ee2) = T (4e2)

e.

Hence, if c = 0, then also e = 0 and we are done. Let c �= 0. Then T (4e2)µ = T (re2)

for some integer r , and thus T (cre2) = T (re2)
c = T (4ee2). This yields the equation

cr = 4e. Moreover, we have T (4ei )µ = T (rei ) for each i and therefore obtain the
equation dr = 4 f from

T (4 f (−e1 + e2 − e3)) = T (4d(−e1 + e2 − e3))µ

= (T (4e1)
−1T (4e2)T (4e3)

−1)dµ

= (T (re1)
−1T (re2)T (re3)

−1)d

= T (dr(−e1 + e2 − e3)).

Finally, bearing in mind that c, d and e, f are relatively prime, we must have r = ±4,
that is, (e, f ) = ±(c, d).

We do not know if any polyhedron Q(c, d) other than Q(0, 1) and Q(1, 0) is combi-
natorially regular, but we do know that none is geometrically regular.

7. Relationships Among Chiral Polyhedra

In this final section we briefly discuss relationships among the chiral polyhedra of Sec-
tions 5 and 6 (see Theorem 7.1) which are based on an analog of the halving operation
for regular polyhedra (see p. 197 of [18]). They were observed by Peter McMullen and
are reproduced here with his permission.

The halving operation η of [18] applies to an (abstract) regular polyhedronQ of type
{4, q} for some q ≥ 3, and turns it into a self-dual regular polyhedron P := Qη of type
{q, q}. If 	(Q) = 〈α0, α1, α2〉 (say), then 	(P) = 〈ρ0, ρ1, ρ2〉 is the subgroup of 	(Q)
of index at most 2 determined by

η: (α0, α1, α2) �→ (α0α1α0, α2, α1) =: (ρ0, ρ1, ρ2).

The index is 2 if and only if the edge-graph of Q is bipartite. Alternatively, in terms of
the generators β1 := α0α1, β2 := α1α2 of 	+(Q) and σ1 := ρ0ρ1, σ2 := ρ1ρ2 of 	+(P),
the same operation is given by

η: (β1, β2) �→ (β2
1β2, β

−1
2 ) =: (σ1, σ2). (7.1)

Now, for a chiral polyhedron Q of type {4, q} with group 	(Q) = 〈β1, β2〉, the
halving operation η is directly defined by (7.1). This will generally yield (except perhaps



Chiral Polyhedra in Ordinary Space, I 97

in a few degenerate cases) a self-dual polyhedron P := Qη of type {q, q} with group
	(P) = 〈σ1, σ2〉, which is either chiral or regular. Note that σ1σ2 = β2

1 is indeed an
involution because Q is of type {4, q}. Moreover, 	(P) is again a subgroup of 	(Q) of
index at most 2, and β1 �∈ 	(P) if and only if the index is 2. The self-duality of P can
be verified as follows.

We first conjugate by β1 to replace the generators σ1, σ2 for 	(P) by the generators
σ2, (σ1σ

2
2 )
−1 for the conjugate subgroup β−1

1 	(P)β1 in 	(Q) (in effect, this replaces
P by an isomorphic copy), and then obtain their images σ1σ

2
2 , σ

−1
2 under the duality

operation δ of (2.3); but the latter are just the basic generators for 	(P) associated with
a flag adjacent to the base flag (and determining the other enantiomorphic form of P),
so P must indeed be isomorphic to its dual. In fact, we have

β−1
1 σ1β1 = β−1

1 β2
1β2β1 = β1β2β1 = β−1

2 = σ2,

β−1
1 σ2β1 = β2

1 (β1σ2β
−1
1 )β−2

1 = β2
1σ1β

−2
1 = β2β

−2
1 = σ−2

2 σ−1
1 = (σ1σ

2
2 )
−1.

Here the first equation also elucidates why 	(P) will generally satisfy the intersection
property with respect to its generators σ1, σ2 (see [22]); in fact, since σ1 = β1σ2β

−1
1 ,

any element in 〈σ1〉 ∩ 〈σ2〉must necessarily fix both the base vertex F0 and the adjacent
vertex F0β

−1
1 of the original polyhedronQ, and hence must be trivial, except perhaps in

a few degenerate cases (when adjacent vertices are joined by more than one edge).
If 	(P) is of index 2 in 	(Q), we can recover the original polyhedron Q from its

image P = Qη by twisting with β1 (in the sense of [18, p. 245]). In fact, β1 acts on
	(P) by conjugation and we can adjoin it to 	(P) to recover 	(Q); the corresponding
twisting operation is

κ: (σ1, σ2;β1) �→ (β1, σ
−1
2 ) = (β1, β2). (7.2)

We now apply these considerations to the polyhedra Q(c, d) and P(a, b) of the
previous sections. Let H(c, d) = 〈B1(c, d), B2〉 and G(a, b) = 〈S1(a, b), S2〉 be their
groups with generators as in (6.1), (6.2), (5.1) and (5.2), respectively; here we have
renamed the generators of H(c, d) to distinguish them better from those of G(a, b).
Note that B2 = S2. In the geometric context it is more convenient to modify η by
conjugating the new generators of η by C := B1(c, d)B4

2 . The resulting operation η′

then takes the form

η′: (B1(c, d), B2) �→ (C−1 B1(c, d)2 B2C, C−1 B−1
2 C) = (S−1

2 , S1(a, b)−1), (7.3)

with a := −c + d and b := −c − d. However, the pair of generators on the right is
just the image of the distinguished pair of generators S1(a, b), S2 of G(a, b) under the
duality operation δ of (2.3). Using Corollary 5.14 and (5.3) we therefore have

Q(c, d)η
′ = P(−c + d,−c − d)∗ ∼= P(−c + d,−c − d) = P(c − d, c + d), (7.4)

where ∼= means congruence. Note that the parameters c − d, c + d are relatively prime
unless both c and d are odd; in the latter case they should be halved for classification
purposes (and then congruence replaced by similarity). Now the first part of the following
theorem follows.
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Theorem 7.1. Let c and d be integers with (c, d) = 1. Then we have

(a) Q(c, d)η ∼= P(c − d, c + d),
(b) (Q(c, d)η)κ = Q(c, d).

The first part of Theorem 7.1 implies that each polyhedron P(a, b) is the image under
η of a suitable polyhedron Q(c, d), once again up to rescaling. Moreover, as expected,
η pairs up the regular polyhedra among the P(a, b) and Q(c, d); in particular, we have

{4, 6 |4}η = Q(0, 1)η ∼= P(1,−1) = {6, 6}4,
{4, 6}η6 = Q(1, 0)η ∼= P(1, 1) = {6, 6 |3}

(see also p. 224 of [18]).
Under the original operationη, the two generators B1(c, d), B2 of H(c, d) are changed

to new generators B1(c, d)2 B2, B−1
2 whose product is B1(c, d)2. However,

B1(c, d)2 = T1(−c + d,−c − d),

with T1 as in (5.6), so the parameters for Q(c, d)η can be read off directly from η. This
also shows that the opposite vertex of o in the base face of Q(c, d) becomes the vertex
of the base edge of Q(c, d)η distinct from the base vertex o. The six edges of Q(c, d)η

at o are thus the diagonals containing o, of the six faces of Q(c, d) at o.
Finally, we know from the above that we can recover Q(c, d) from Q(c, d)η by

twisting with the generator B1(c, d) of H(c, d), that is, by applying κ . Note that B1(c, d)
is not contained in the group of Q(c, d)η, so the latter is indeed of index 2 in H(c, d).
In fact, the image B1(c, d)′ of B1(c, d) in the special group of H(c, d) is given by

B1(c, d)′: (ξ1, ξ2, ξ3) �→ (−ξ1, ξ3,−ξ2)

(see (6.2)), so in particular does not belong to [3, 3]∗, with [3, 3]∗ as in (4.1); but the
latter is just the special group of Q(c, d)η.
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Dordrecht, 1994, pp. 43–70.
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