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Abstract. The “thirteen spheres problem,” also known as the “Gregory–Newton prob-
lem,” is to determine the maximum number of three-dimensional spheres that can simul-
taneously touch a given sphere, where all the spheres have the same radius. The history
of the problem goes back to a disagreement between Isaac Newton and David Gregory in
1694. Using a combination of harmonic analysis and linear programming it can be shown
that the maximum cannot exceed 13, but in fact 13 is impossible. The standard proof that
the maximum is 12 uses an ad hoc construction that does not appear to extend to higher
dimensions. In this paper we describe a new proof that uses linear programming bounds
and properties of spherical Delaunay triangulations.

1. Introduction

For n ≥ 3 let Sn−1 = {x ∈ �n: xT x = 1}, and −1 < z < 1. A finite set C = {xi }Mi=1 ⊂
Sn−1 is called a spherical z-code if xT

i xj ≤ z for all i 
= j . For z = 1
2 , {xi } correspond

to contact points between Sn−1 and M nonoverlapping spheres of radius 1 that are all
incident to Sn−1. Maximizing the number M of such spheres is called the kissing problem
in dimension n, and the maximal M is called the kissing number. The kissing problem in
dimension 3 has a long history, going back to a celebrated disagreement between Isaac
Newton and David Gregory in 1694. Newton believed that for n = 3 the kissing number
was 12, while Gregory thought that 13 might be possible. In fact, M = 13 is not possible,
but the proof was quite long in coming. Several German papers in 1874/75 described
approaches to the problem (see [2, first edition] and [19] for references), but the first
proof accepted as being complete is due to Schütte and van der Waerden [17] in 1953.
A subsequent proof by Leech [11] in 1956 is now the widely cited standard. Versions of
Leech’s proof also appear in the more recent references [2, first edition] and [19].

For general n and z there are several approaches that provide upper bounds on the
size M of a z-code C ⊂ Sn−1; see, for example, [7] and [19]. In low dimensions the
best known bounds are obtained using a combination of harmonic analysis and linear
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programming [7], [8], [10], [13], [19]. For z = 1
2 this approach leads to a complete

characterization of maximal codes in dimensions n = 8 and 24 [4], [7], but for n = 3
the result is a bound of 13. The proof that for n = 3 the kissing number is 12 is not
based on a general methodology, but instead uses an ad hoc construction to obtain a
contradiction if M = 13. The idea of the proof is simple and elegant, but there are many
details that require verification. In fact the authors of [2, first edition] decided that the
version published there was sufficiently incomplete that the entire chapter was removed
in the second edition. A more serious drawback of the standard proof is that it seems
impossible to extend it to higher dimensions, for two reasons. First, the proof is based
on a construction that is tailored to S2, and second, the final contradiction is obtained by
showing that a certain graph is not planar. The kissing number is unknown in dimensions
other than 3, 8, and 24; for example, for n = 4 a 1

2 -code with M = 24 is known, but the
linear programming bound is 25.

In this paper we describe a new proof that the kissing number is 12 for n = 3.
Our approach is based on linear programming bounds and properties of the spherical
Delaunay decomposition associated with C. We do not claim that the proof here is
“simpler” than the standard one [11]. However, because the new proof is based on
structure associated with C that is not dependent on n = 3, we believe that it has a much
better chance of being extended to higher dimensions, for example to n = 4.

An outline of the paper is as follows. In Section 2 we describe the linear programming
bounds on M that apply to a z-code C ⊂ Sn−1. (We eventually utilize bounds based on
z > 1

2 .) In Section 3 we consider the spherical Voronoi and Delaunay decompositions
associated with C. We describe an approach for obtaining lower bounds on the surface
areas of spherical Delaunay triangles that gives another proof that M ≤ 13. In Section 4
we use information from linear programming bounds to reduce the range of possible
included angles that can occur in a spherical Delaunay triangle. This reduction provides
a considerable improvement in the lower bound for the total surface area of a spherical
Delaunay star (the spherical triangles containing a given point xi ∈ C) not consisting of
five spherical triangles. The resulting lower bounds on the areas of Delaunay stars are
sufficient to prove that M = 13 is impossible.

Another recent proof for the 13 spheres problem is due to Böröczky [6] (see also
Section 4.4 of [5]). Böröczky’s proof also uses the spherical Delaunay triangulation,
but in a different way from the proof presented here. In Böröczky’s proof the spherical
Delaunay triangulation is used to induce a network on S2 that takes the place of the
network used in Leech’s proof. As in Leech’s proof the network gives a decomposition
of S2 into spherical polygons, the total areas of which are shown to exceed the area of
S2. A similar proof is also given by Hsiang [9].

The kissing number problem is closely related to problems of packing spheres in �n

[7], [19]. There has recently been considerable progress in settling the Kepler conjecture
regarding the maximal density of sphere packings in dimension 3. See [12] for a detailed
discussion and references.

2. Linear Programming Bounds

Let C = {xi }Mi=1 be a spherical z-code in �n , n ≥ 3. In this section we describe a
well-known linear programming bound for the size M of such a code. The distance
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distribution of the code is the function λ(·): [−1, 1]→ �+ defined as

λ(s) = |{(i, j): xT
i xj = s}|

M
. (1)

It is then easy to see that

λ(1) = 1, (2a)∑
−1≤s≤z

λ(s) = M − 1, (2b)

λ(s) ≥ 0, −1 ≤ s ≤ z. (2c)

Let 	k(·), k = 0, 1, . . . , denote the Gegenbauer, or ultraspherical, polynomials

	k(t) = P (β,β)

k (t)(
k+β

k

) , (3)

where P (β,β)

k is the Jacobi polynomial with β = (n− 3)/2 [1]. The normalization in (3)
is chosen so that 	k(1) = 1 for all k. Using techniques from harmonic analysis it can
be shown [10], [7, Chapter 9], [13], [19, Chapter 8] that

1+
∑
−1≤s≤z

λ(s)	k(s) ≥ 0, k = 1, 2, . . . . (4)

From (2) and (4), using k = 1, . . . , K , a bound on M can be obtained via the semi-infinite
linear programming problem

(LP) max
∑
−1≤s≤z

λ(s)

s.t.
∑
−1≤s≤z

λ(s)	k(s) ≥ −1, k = 1, . . . , K ,

λ(s) ≥ 0, −1 ≤ s ≤ z.

The dual of (LP) is the problem

(LD) min
K∑

k=1

fk

s.t.
K∑

k=1

fk	k(s) ≤ −1, −1 ≤ s ≤ z, (5)

fk ≥ 0, k = 1, . . . , K .

In practice it is impossible to solve (LD) exactly due to the infinite number of con-
straints. However a solution that is approximately feasible for (LD) can easily be adjusted
to provide a valid bound on M , as described in the followng lemma.

Lemma 1 [7, p. 339]. Suppose that 0 ≤ ε < 1, and for a given n and z, f ≥ 0 satisfies
the constraints of (LD) with the right-hand side of the constraints (5) relaxed to−(1−ε).
Then M ≤ 1+ (1/(1− ε))(∑K

i=1 fk) for any z-code in �n .
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Proof. As described above M ≤ 1 + vLD, where vLD denotes the optimal objective
value in (LD). However, under the assumptions of the lemma (1/(1− ε)) f is feasible
in (LD), and therefore vLD ≤ (1/(1− ε))(

∑K
i=1 fk).

In practice Lemma 1 can be used to obtain a valid bound on M by discretizing
[−1, z] using N + 1 points si = −1 + iδ, i = 0, . . . , N , where δ = (1+ z)/N . (LD)
is then solved using the constraints corresponding to {si }Ni=0, resulting in a solution
f ≥ 0. The value ε required in the lemma is easily obtained by bounding the derivative
of
∑K

k=1 fk	k(·) on the intervals [si−1, si ], i = 1, . . . , N . For z = 1
2 this approach

obtains the best known bounds on M for dimensions 4 ≤ n ≤ 24 [7], and leads to a
complete characterization of the maximal 1

2 -codes in dimensions 8 and 24 [4], [7]. For
n = 3, using K = 16 obtains a bound on M of about 13.16. This bound can be reduced
somewhat by imposing additional valid inequalities on the distance distribution λ(·), but
to our knowledge a linear programming bound below 13 has never been obtained. (Better
linear programming bounds on M = |C| can be obtained for special cases, for example
the case that C is antipodal [3].)

3. Spherical Delaunay Triangulations

Let C = {xi }Mi=1 ⊂ S2, M ≥ 4. We assume throughout that the origin is in the interior
of the convex hull of the points in C; this is certainly the case if C is a maximal 1

2 -code.
The spherical Voronoi cell associated with xi is the set

Vi = {x ∈ S2: ‖x, xi‖g ≤ ‖x, xj‖g,∀ j 
= i},

where ‖x, v‖g = cos−1(xT v) denotes the geodesic distance on S2. Each Voronoi cell is
a spherical polygon whose sides are arcs of great circles, and

⋃M
i=1 Vi = S2.

The spherical Delaunay1 decomposition, which is dual to the decomposition of S2

into Voronoi cells, is obtained by connecting each xi and xj such that Vi and Vj share
a nontrivial boundary with a geodesic arc. If the points of C are in general position,
then the Delaunay cells are all spherical triangles, and in any case spherical triangles
can be obtained by adding additional arcs if necessary. We refer to a triangulation of
S2 so obtained as a spherical Delaunay triangulation (SDT). The following proposition
describes the well-known Delaunay property that holds for an SDT.

Proposition 2 [5], [15]. Let {xi , xj , xk} be the vertices of a spherical triangle in an
SDT. Then there is a spherical cap {x : ‖x, v‖g ≤ R} that circumscribes {xi , xj , xk} such
that R < π/2 and ‖xl , v‖g ≥ R for all xl ∈ C.

The spherical Voronoi cells and Delaunay triangles for a typical C are depicted in
Fig. 1. The spherical caps circumscribing the Delaunay triangles for the same C are
depicted in Fig. 2. Figures 1 and 2 were produced by the ModeMap applet of Watson
[18].

1 The alternative translation Delone appears often in the literature.
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Fig. 1. Spherical Voronoi cells and Delaunay triangulation.

Consider a given spherical triangle in an SDT associated with C. Let a, b, c denote
the geodesic lengths of the sides, and α, β, γ denote the corresponding opposite angles.
We begin by collecting some useful formulas from spherical trigonometry [14], [16].
The law of cosines for spherical triangles is

cos c = cos a cos b + sin a sin b cos γ. (6)

The area is given by the spherical excess

E = α + β + γ − π, (7)

Fig. 2. Spherical Delaunay triangulation and circumscribing caps.
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where α + β can be obtained from a, b, and γ using Gauss’ formula

cos 1
2 (α + β) =

sin 1
2 γ cos 1

2 (a + b)

cos 1
2 c

. (8)

When a = b it is straightforward to show that the spherical radius of a circumscribing
spherical cap is given by

tan R = tan 1
2 a

cos 1
2 γ

, (9)

and in the general case [14, p. 78]

tan R = tan 1
2 c

sin(γ − 1
2 E)

. (10)

In what follows we consider γ to be fixed, and choose a and b to minimize the area
of the triangle, subject to valid constraints. We write c(a, b | γ ), E(a, b | γ ), and
R(a, b | γ ) to denote c, E , and R as functions of a and b for a given γ . Since C is a
1
2 -code we certainly have a ≥ π/3, b ≥ π/3, c(a, b | γ ) ≥ π/3. In addition we must
have R(a, b | γ ) ≤ π/3, since otherwise we could add another point at the center of
the circumscribing cap and still have a 1

2 -code, which is impossible if C is maximal. To
minimize the area of a spherical Delaunay triangle with included angle γ , associated
with a maximal 1

2 -code C, we are thus led to the problem

(Pγ ) min E(a, b | γ )
s.t. c(a, b | γ ) ≥ π

3
,

R(a, b | γ ) ≤ π
3
,

a ≥ b ≥ π
3
.

In the next two lemmas we give a complete characterization of the solution of (Pγ ). Let
γ 0 = cos−1( 1

3 ).

Lemma 3. (Pγ ) is infeasible for γ > 2γ 0. For γ 0 ≤ γ ≤ 2γ 0 the solution of (Pγ ) is
a = b = π/3.

Proof. It is obvious that the area E(a, b | γ ) is monotonically increasing in a and
b, and therefore the minimum possible value corresponds to a = b = π/3. Using (6)
and (9) it is straightforward to compute that c(π/3, π/3 | γ ) ≥ π/3 for γ ≥ γ 0, and
R(π/3, π/3 | γ ) ≤ π/3 for γ ≤ 2γ 0. Moreover for γ ≥ π/2 it is easy to see that
R(a, b | γ ) is monotonically increasing in a and b, and therefore (Pγ ) is infeasible for
γ > 2γ 0.

Lemma 4. (Pγ ) is infeasible for γ < 1
2 γ

0. For 1
2 γ

0 ≤ γ ≤ γ 0 the solution of (Pγ )
has b = c = π/3.
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Proof. Consider (Pγ ) with the constraint on R ignored. We will show that the solution
of this problem has b = c(a, b | γ ) = π/3, and then consider the effect of the constraint
on R. To start we argue that b = π/3. It is straightforward to compute that

∂ cos c(a, b | γ )
∂a

+ ∂ cos c(a, b | γ )
∂b

= (cos γ − 1) sin(a + b), (11a)

∂ cos c(a, b | γ )
∂a

− ∂ cos c(a, b | γ )
∂b

= −(cos γ + 1) sin(a − b). (11b)

Suppose that we have a ≥ b > π/3 with c(a, b | γ ) ≥ π/3. From (11a), if a + b ≥ π ,
then simultaneously decreasing a and b will increase c(a, b | γ ) while also decreasing
E(a, b | γ ). This process could be continued until either b = π/3 or a + b = π . In the
first case we are done, so consider now the case where a ≥ b > π/3, a + b ≤ π . From
(11b) simultaneously increasing a and decreasing b will increase c(a, b | γ ). Moreover,
from (8) this same operation will decrease α + β, and therefore also E(a, b | γ ), until
we reach b = π/3.

We have now shown that the solution of (Pγ ), with the constraint on R ignored, has
b = π/3. However, decreasing a will decrease E(a, b | γ ), and c(π/3, π/3 | γ ) < π/3
for γ < γ 0. We must therefore have c(a, b | γ ) = π/3 in the solution, for γ ≤ γ 0. This
completes the analysis of the problem with the constraint on R ignored.

Next we consider the effect of the constraint on R. For b = c = π/3, (6) implies that

cos a = 1− 3 cos2 γ

1+ 3 cos2 γ
. (12)

The analog of (9) gives

tan R = 1√
3 cos 1

2α
,

so R ≤ π/3 is equivalent to cos 1
2 α ≥ 1

3 , or cosα ≥ −7/9. From the analog of (6) we
obtain

cos a = 1
4 + 3

4 cosα, (13)

so cosα ≥ −7/9 is equivalent to

cos a ≥ −1/3. (14)

Comparing (12) and (14) we conclude that the solution with b = c = π/3 results

in R ≤ π/3 for γ ≥ cos−1
√

2
3 = 1

2 γ
0. However, for all γ ≤ γ 0 the solution with

b = c = π/3 simultaneously minimizes the numerator of the right-hand side in (10)
while maximizing the denominator, and therefore (Pγ ) is infeasible for γ < 1

2 γ
0.

For 1
2 γ

0 ≤ γ ≤ 2γ 0 we can easily obtain the minimal area associated with the
solution of (Pγ ) by computing α and β. In the case of γ 0 ≤ γ ≤ 2γ 0 we have a = b =
π/3, from Lemma 3. Therefore α = β, and cos c = 1

4 + 3
4 cos γ , from (6). Using (8)

and ordinary trigonometric identities we obtain

cosα = cosβ =
√

1− cos γ

5+ 3 cos γ
. (15)
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Fig. 3. Minimal area of a Delaunay triangle with included angle γ .

For 1
2 γ

0 ≤ γ ≤ γ 0 we have b = c = π/3, from Lemma 4. Therefore β = γ , and (12)
and (13) together imply that

cosα = 1− 5 cos2 γ

1+ 3 cos2 γ
. (16)

From (15) and (16) we can easily compute the solution value of (Pγ ) as a function of γ ,
using (7). In Fig. 3 we plot the resulting minimal area. (The vertical lines in the figure
are explained in the next section and can be ignored for the moment.) The minimal value
of 3γ 0 − π ≈ 0.55129 occurs at γ 0, 1

2 γ
0, and 2γ 0. Since the total surface area of S2 is

4π ≈ 12.5664, this lower bound implies that there can be at most 22 spherical Delaunay
triangles in an SDT associated with C. Let E and F denote the number of edges and faces
(triangles) in this SDT. From Euler’s theorem we have F + M = E + 2, and 3F = 2E
for a triangulation. Then M = 1

2 F + 2, so F ≤ 22 gives another proof that M ≤ 13.
Note that for γ = γ 0 the spherical triangle of minimal area is equilateral, with

edges of geodesic length π/3. In [5] it is shown directly that the area of this triangle
(≈ 0.55129) is minimal among all possible spherical triangles in an SDT induced by a
maximal 1

2 -code.
Let ni denote the number of edges incident to xi in the SDT (equal to the number

of Voronoi cells sharing a nontrivial border with Vi if the points of C are in general
position). If M = 13, then

13∑
i=1

ni = 2E = 66, (17)

implying that ni 
= 5 for at least one i . For each xi the spherical Delaunay star at xi

is the union of the spherical Delaunay triangles in the SDT that have xi as a vertex.
Our proof is based on examining the total surface area of spherical Delaunay stars, in
particular the star at an xi with ni 
= 5. Unfortunately the analysis of (Pγ ) above is not
sufficient to produce a contradiction based on the total surface area of such a star. For
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each spherical triangle in the star at a point xi we take γ to be the angle between the two
edges incident to xi . For ni = 5 we can then take four spherical triangles with γ = γ 0,
and one with γ = 2π − 4γ 0, to get a lower bound of the total surface area of the star
equal to about 2.7965. For ni = 6 we can use two triangles with γ = 1

2 γ
0 in place of

one of the triangles with γ = γ 0 to get a lower bound of about 3.3478. Summing the
bounds on the areas of the stars for 12 points xi with ni = 5, and one with ni = 6, and
dividing by 3 then obtains a lower bound on the total area of the triangles in the SDT of
about 12.3019. This is greater than 22(0.55129) ≈ 12.1284 but still less than 4π . In fact
the same lower bound can be achieved with any combination of ni having 3 ≤ ni ≤ 9,
i = 1, . . . , 13, satisfying (17).

In the next section we show how the analysis of an SDT can be improved by incor-
porating information from the (LP) bounds described in Section 2.

4. The Kissing Number for n = 3

As described in the previous two sections, bounds based on linear programming and an
analysis of SDTs both individually suffice to prove that M = |C| ≤ 13 for a 1

2 -code C
in S2. In this section we show how these two methodologies can be combined to give
a new proof that M ≤ 12. Our approach is based on strengthening the constraint on R
used in the formulation of problem (Pγ ) of the previous section. Recall that the logic of
this constraint is based on the fact that if C is a maximal 1

2 -code, then it is impossible to
have R ≥ π/3 for a spherical Delaunay triangle since otherwise C could be augmented
to obtain a larger 1

2 -code. We now consider the possibility of adding a point to C such
that the augmented code C+ is a z-code, with z > 1

2 . The following lemma is useful for
obtaining valid constraints on the distance distribution of the augmented code C+.

Lemma 5. Suppose that a spherical triangle has c ≥ π/3, 0 ≤ za ≤ cos a ≤ cos b ≤
zb < 1. Then

cos γ ≤ max




1
2 − z2

a

1− z2
a

,

1
2 − zazb√

(1− z2
a)(1− z2

b)


.

Moreover if za < cos a, then the above inequality is also strict.

Proof. Consider the problem to minimize γ subject to the given constraints on a, b,
and c. By assumption b ≤ a < π/2, so (11a) implies that for any γ , a and b can
be simultaneously increased resulting in an increase in c. Thus we may assume that
cos a = za . Using (6) and ordinary trigonometric identities we conclude that

cos2 γ ≤ ( 1
2 − za cos b)2

(1− z2
a)(1− cos2 b)

. (18)

The numerator of the right-hand side of (18) is convex in cos b, while the denominator
is positive and concave in cos b. Therefore the ratio is a quasiconvex function of cos b,
implying that the maximum must occur at one of the bounds zb or za . This proves the
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weak inequality of the lemma. The strict inequality is an immediate consequence of
(11a); if cos a > za , then a and b can both be increased, resulting in a strict increase in
c, allowing a strict decrease in γ .

Note that for za = 1
7 , zb = 1

2 Lemma 5 implies that if π/3 ≤ b ≤ a < cos−1( 1
7 ) and

c ≥ π/3, then γ > π/6. This fact is an important element of Leech’s proof [11].

Lemma 6. Suppose that C+ = {xi }14
i=1 is a z-code, 0.5 < z ≤ 0.66, where C = {xi }13

i=1
is a 1

2 -code. Let

z5 =
√

sin2(π/5)− 1
4

sin(π/5)
≈ 0.5257.

Then the distance distribution for C+ satisfies the constraints:

1.
∑

0.2<s≤z λ(s) ≤ 5,
2.
∑

0.5<s≤z λ(s) ≤ 5
7 ,

3.
∑

z5<s≤z λ(s) ≤ 4
7 , if z > z5.

Proof. For part 1 we apply Lemma 5 with za = 0.2, zb = 0.66, and obtain γ > π/3.
It follows that for each xi , i = 1, . . . , 14, there can be at most five xj having 0.2 <
xT

i xj ≤ 0.66. Part 2 follows from this same observation, and the fact that C is a 1
2 -code.

For part 3 we use za = z5, zb = 0.66 and obtain γ > 2π/5, so there can be at most four
xi , i = 1, . . . , 13, with z5 < xT

i x14 ≤ 0.66.

Theorem 7. Suppose that C = {xi }13
i=1 is a 1

2 -code. Then cos R ≥ 0.6595 for any
Delaunay triangle in an SDT associated with C.

Proof. We consider problem (LP) from Section 2 with 0.5 < z ≤ 0.66, K = 10, and
the additional constraints on λ(·) from Lemma 6. Forming the dual problem, discretizing
the constraints, and adjusting the solution value as described in Lemma 1, we obtain a
bound2 strictly less than 14 for 0.5 < z ≤ 0.6595. It follows from the Delaunay property
that R ≤ cos−1(0.6595) for any Delaunay triangle associated with C, since otherwise
we could construct an augmented code C+, |C+| = 14 whose distance distribution was
feasible for all the constraints of (LP).

Let (Pγ,z) denote problem (Pγ ), from the previous section, but with the constraint on
R replaced by

cos R(a, b | γ ) ≥ z.

Lemmas 3 and 4 can easily be generalized to the case of z > 1
2 , as described below.

2 Full details of the solutions of the linear programming problems are available from the author. A bound
strictly less than 14 is actually obtained for z up to approximately 0.65976.
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Lemma 8. Suppose that 1
2 ≤ z ≤

√
2
3 . Let γ+ = 2 cos−1

√
z2/3(1− z2). Then (Pγ,z)

is infeasible for γ > γ+. For γ 0 ≤ γ ≤ γ+ the solution of (Pγ,z) is a = b = π/3.

Proof. The proof follows that of Lemma 3, except that cos R(π/3, π/3 | γ ) ≥ z for
γ ≤ γ+. For γ < π/2 it is not obvious that R(a, b | γ ) is monotone in a and b. However,
it is easy to show that a = b = π/3 minimizes c(a, b | γ ) while also minimizing
E(a, b | γ ). For γ ≤ π/2 this implies that a = b = π/3 simultaneously minimizes
the numerator of the right-hand side of (10) while maximizing the denominator, again
implying that (Pγ,z) is infeasible for γ > γ+.

Lemma 9. Suppose that 1
2 ≤ z ≤

√
2
3 . Let γ− = cos−1

√
1− 4

3 z2. Then (Pγ,z) is

infeasible for γ < γ−. For γ− ≤ γ ≤ γ 0 the solution of (Pγ,z) has b = c = π/3.

Proof. The proof is identical to that of Lemma 4, except that b = c = π/3 results in
cos R ≥ z for γ ≥ γ−.

In Fig. 3 the two vertical lines correspond to the values γ+ and γ− from Lemmas 8 and
9, respectively, using z = 0.6595. It is obvious from the figure that use of z = 0.6595,
as opposed to the original z = 0.5, considerably reduces the range of possible values of
the included angle γ . This reduction has a substantial effect on the lower bound for the
area of a spherical Delaunay star at a point xi having ni 
= 5 triangles. From the figure it
is also apparent that the area bounds for γ = γ+ and γ = γ− coincide. In fact it is easy

to show that this is the case for any 1
2 ≤ z ≤

√
2
3 .

Consider now an SDT associated with a 1
2 -code C = {xi }13

i=1. Using Lemma 8 and
(15), the minimal area of a spherical Delaunay triangle in this SDT, with included angle
γ 0 ≤ γ ≤ γ+, is bounded from below by

f +(γ ) = γ + 2 cos−1

√
1− cos γ

5+ 3 cos γ
− π.

From Lemma 9 and (16), the minimal area of a spherical Delaunay triangle in the SDT,
with included angle γ− ≤ γ ≤ γ 0, is bounded from below by

f −(γ ) = 2γ + cos−1 1− 5 cos2 γ

1+ 3 cos2 γ
− π.

Since f +(·) and f −(·) are both concave on their domains of definition, the minimum
possible area for a spherical Delaunay star at xi containing ni triangles corresponds to
all but one of the triangles in the star having included angle γ equal to either γ 0, γ+,
or γ−, with the last chosen to make the sum of the angles equal to 2π . Enumerating the
very small number of possibilities, continuing to use z = 0.6595, we obtain the bounds
in Table 1. (Note that 4 ≤ ni ≤ 7 follows from γ+ < 2π/3, γ− > π/4.) In the table
we also report the number of triangles with included angles equal to γ 0, γ+, and γ−

that achieve the minimum total area, and the minimal average area (total area divided by
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Table 1. Bounds for areas of Delaunay stars.

Triangles γ 0 γ+ γ− Area Average

4 2 1 0 2.44178 0.61044
5 4 0 0 2.79648 0.55929
6 2 0 3 3.66747 0.61124
7 0 0 6 4.66593 0.66656

number of triangles). The area and average area are rounded down to give valid lower
bounds.

Theorem 10. Let C = {xi }Mi=1 be a 1
2 -code in S2. Then M ≤ 12.

Proof. Assume that M = 13. Recall that the minimum possible area for a spherical
Delaunay triangle in an SDT associated with C is 3γ 0 − π > 0.55128. If there is a j
with nj = 7, then using the bound from Table 1 the total area of the triangles in the SDT
would be at least 4.66593+ 15(0.55128) = 12.93513 > 4π . Therefore there can be no
j with nj = 7. Next suppose that there is a j with nj = 4. Then there must be at least
two points xi with ni = 6. Summing over the Delaunay stars, the total area is bounded
from below by

2.44178+ 2(3.66747)+ 50(0.55929)

3
≈ 12.58 > 4π,

so there can be no j with nj = 4. It must then be the case that nj = 6 for one j , and
ni = 5 for all i 
= j . For convenience suppose that j = 1, and {xi }7i=2 are the six other
nodes in the star at x1. The area of the star at x1 is bounded from below by 3.66747. For
i = 2, . . . , 7 the Delaunay star at xi contains two spherical triangles in common with the
star at x1, and three other triangles. Summing the areas of these six stars we get twice the
area of the star at x1, plus the areas of 18 spherical triangles. Finally, for i = 8, . . . , 13
the area of the star at xi is bounded from below by 2.79648. Summing over all the stars,
the total area is bounded from below by

3(3.66747)+ 18(0.55128)+ 6(2.79648)

3
≈ 12.56811 > 4π,

and therefore M = 13 is impossible.

Although the area bounds in Table 1 are sufficient to complete the proof of Theorem 10,
it is worth noting that the bound for the area of a star with ni = 6 from Table 1 clearly
cannot be attained. This bound corresponds to three spherical triangles with γ = γ−,
b = π/3, a ≈ 1.6862, two with γ = γ 0, a = b = π/3, and one with γ slightly less
that γ 0, b = π/3, and a slightly greater than π/3. It is obvious that it is impossible to
assemble six such spherical triangles into a spherical star. It is also interesting to note
that the last case considered in the proof, nj = 6 for one j , and ni = 5 for all i 
= j ,
could alternatively be excluded using a graph-theoretic argument. The dual of this SDT
would be a cubic, planar graph that divides S2 into one hexagon and 12 pentagons. It is
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easy to show that no such graph can exist. Leech’s proof also uses arguments based on
area to eliminate all but one case, which corresponds to an unrealizable planar graph.
However, the area arguments here are completely different, as is the graph in the final
case.
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