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Abstract. Analyzing the worst-case complexity of the k-level in a planar arrangement of
n curves is a fundamental problem in combinatorial geometry. We give the first subquadratic
upper bound (roughly O(nk1−1/(9·2s−3))) for curves that are graphs of polynomial functions
of an arbitrary fixed degree s. Previously, nontrivial results were known only for the case
s = 1 and s = 2. We also improve the earlier bound for pseudo-parabolas (curves that
pairwise intersect at most twice) to O(nk7/9 log2/3 k). The proofs are simple and rely on a
theorem of Tamaki and Tokuyama on cutting pseudo-parabolas into pseudo-segments, as
well as a new observation for cutting pseudo-segments into pieces that can be extended to
pseudo-lines. We mention applications to parametric and kinetic minimum spanning trees.

1. Introduction

Suppose we have n elements on the real line, each moving continuously according to
some polynomial function of degree s. How many times can the kth smallest element
change over time?

We can state this natural question more precisely in geometric terms by viewing the
x-coordinate as time: given an arrangement of n curves in the plane formed by graphs
of degree-s polynomial functions, how many vertices can the k-level (see Fig. 1)

{q ∈ R
2 | q is on exactly one curve and above exactly k − 1 other curves}

have in the worst case? More generally, we can ask the same question for an arbitrary
family of s-intersecting curves (or curve segments), where each curve (curve segment)
is continuous, intersects each vertical line once (at most once), and intersects another
curve (curve segment) at most s times.

∗ A preliminary version of this paper appeared in Proceedings of the 41st IEEE Symposium on the Foun-
dations of Computer Science [18]. This research was supported by an NSERC Research Grant.
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Fig. 1. The 3-level in an arrangement of five 3-intersecting curves.

The motivation comes from several directions. First, our problem is among the sim-
plest in the combinatorial analysis of so-called “kinetic data structures,” an area that has
received much recent attention, dealing with the maintenance of structures of objects in
motion [11], [31]; in particular, there is a direct relevance to the study of kinetic and para-
metric minimum spanning trees [26], [32], [36] (see below). Generally, arrangements of
curves and surfaces have for a long time been a central topic in computational geometry
[6], [23], [24], [33], [45], and levels in arrangements have been used in the design of
algorithms for range searching [4], [19], geometric optimization with k violations [28],
[39], and partitioning of point sets [15], [38] (see the surveys [6], [8], and [33] and the
books [23], [40], [41], and [45] for more details).

History. The k-level has a reputation of being one of the more difficult substructures
of arrangements to analyze, even in the simplest case of lines (s = 1) in the plane,
where in the dual, it is known more famously under the name of the k-set problem
(given an n-point set P in the plane, bound the number of subsets of size k that can be
formed by intersecting P with a halfplane). In the early 1970s, Erdős et al. [27] and
Lovász [37] started the investigation by establishing a nontrivial O(n

√
k) upper bound

and an �(n log k) lower bound, but an improvement did not come until 1989, when
Pach et al. [42] managed to reduce the upper bound by a small log∗ k factor. In 1997
a breakthrough O(nk1/3) upper bound was obtained by Dey [21] with a short elegant
proof; Dey’s result remains the current record.

Like the classical proof, Dey’s proof generalizes to any arrangement of 1-intersecting
curves, commonly called pseudo-lines [23], [30], as shown by Tamaki and Tokuyama [47].
Both proofs can also be adapted for an arrangement of line segments, the latter yielding an
O(nk1/3α(n/k)) bound, as shown by Agarwal et al. [1], where α(·) denotes the inverse
Ackermann function. (Note that the worst-case complexity of the 1-level, i.e., lower
envelope, of n line segments is �(nα(n)) [45].) Whether the same bound holds for an
arbitrary arrangement of pseudo-segments (1-intersecting curve segments) appears to be
open, because, as noted by Agarwal et al., the known techniques apply only to a special
class of pseudo-segments which we call extendible pseudo-segments (see Section 2).

Analyzing the k-level complexity for more general families of curves appears even
more challenging, as the preceding techniques simply fail. The first nontrivial result for
quadratic functions (s = 2) was obtained only in 1995 by Tamaki and Tokuyama [48].
They proved a theorem on how to cut an arrangement of pseudo-parabolas (2-intersecting
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curves) into an arrangement of pseudo-segments. When combined with the classical re-
sult for pseudo-lines, this theorem allows them to derive a subquadratic O(n23/12) bound
on the k-level of pseudo-parabolas. With Dey’s improvement and the “k-sensitizing”
techniques by Agarwal et al. [1], the bound can be directly reduced to O(nk8/9).

Unfortunately, one cannot derive nontrivial k-level bounds for general s-intersecting
curves for s = 3 or higher with this particular approach, because, as Tamaki and
Tokuyama [48] observed, the worst-case bound for cutting an arrangement of 3-inter-
secting curves into a pseudo-segment arrangement is quadratic. Perhaps because of this,
there has been no successful attempt since on further generalization (despite the need in
some of the above-mentioned applications).

Regarding worst-case lower bounds for the k-level of s-intersecting curves, no better

results are known other than Klawe, Paterson, and Pippenger’s bound of n2�(
√

log k) for
pseudo-lines (s = 1) from the 1980s [23]. Toth [49] recently proved a lower bound of
the same form for lines.

New Results. The first result of this paper is an O(nk1/3α(n/k) log2/3 k) bound for the
k-level of an arbitrary arrangement of n pseudo-segments. Our approach is to cut such
an arrangement into an arrangement of extendible pseudo-segments, for which we can
apply the known bound; the method of cutting is quite simple and is based on a segment
tree. Along the way, we describe a simple characterization, of independent interest, for
when a family of pseudo-segments is extendible.

Our new-found observations on pseudo-segments also allow us to improve Tamaki
and Tokuyama’s bound for the k-level of pseudo-parabolas further to O(nk7/9 log2/3 k).

Our main contribution, though, is the first subquadratic combinatorial result on the
k-level of degree-s polynomial functions for any fixed constant s. The initial version of
our proof yields an O(λs(n/k)k2−2/3s

log1−1/3s−1
k) bound [18]; an improved version of

the proof yields O(λs(n/k)k2−1/(9·2s−3) log2/3 k). Here, λs(·) is an almost linear bound
on the complexity of the lower envelope [45]. The approach is also by cutting the ar-
rangement, but despite the aforementioned problem with this approach, we circumvent it
curiously by exploiting the analytical properties of the curves rather than the combinato-
rial properties alone—a sharp departure from earlier proofs (s = 1 or 2) where all results
for degree-s polynomials (linear or quadratic functions) adapt to arbitrary s-intersecting
curves (pseudo-lines or pseudo-parabolas). Our basic idea is surprisingly simple: cut the
arrangement of the derivatives of the functions recursively; at each step, we apply Tamaki
and Tokuyama’s cut theorem for pseudo-parabolas, together with random sampling.

Despite the weak exponent 2−1/(9·2s−3) in our k-level bound, our work is important
because it opens up many nontrivial combinatorial questions about arrangements of
curves in the plane that previously we were not ready to raise. Traditionally, most studies
in arrangements of curves assume only an s-intersecting condition, but our work indicates
interestingly that polynomial curves and general s-intersecting curves can have quite
different combinatorial characteristics.

Applications. Our approach gives new results in a number of related problems as well.
For instance, we obtain new bounds for the complexity of k nonoverlapping pseudo-
concave chains in an arrangement of curves. By known reductions [26], [32], this leads
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to a subquadratic upper bound (in the number of edges) on the number of changes to a
parametric minimum spanning tree (or, more generally, a parametric matroid optimiza-
tion) if the edge weights vary polynomially in time. We also derive the first subcubic
bound on the number of changes to a Euclidean minimum spanning tree of n linearly
moving points in any fixed dimension [36]. Very recently, the techniques of this paper
have also found applications in other fundamental problems of combinatorial geome-
try, concerning point-curve incidences [10] and the complexity of many faces in curve
arrangements [2].

Other Related Work. The algorithmic problem of constructing the k-level of lines and
curves has been examined by many researchers; for recent work, see [17] and [34]. The
k-level problem in three dimensions has also received considerable attention in the linear
case (arrangements of planes or triangles); see [1], [9], [12], [22], [25], [35], and [46]. A
nontrivial combinatorial bound for hyperplanes in higher dimensions was known [50].
However, there has so far been no successful generalization to families of nonlinear
surfaces.

In contrast, tight worst-case bounds on the 1-level, 2-level, . . . , k-level combined
are easier to obtain. An O(nk) bound for lines was well known [7], [29]. Clarkson and
Shor [20] gave a proof by random sampling that extends to higher dimensions. As shown
by Sharir [44], this proof also yields an O(nkα(n/k)) bound for pseudo-segments, and
an O(λs(n/k)k2) bound for general s-intersecting curves.

2. Extendible Pseudo-Segments

Agarwal et al. [1] observed that the classical proof for the k-level of lines can be modified
to yield an O(n3/2) bound for the k-level of n line segments. They remarked that the same
result can be obtained for a family of pseudo-segments (1-intersecting curve segments),
provided that the following additional criterion holds: we can find a curve (the “exten-
sion”) through each of the given curve segments such that the resulting family of curves
is a pseudo-line family. We call such a family of pseudo-segments extendible. Not every
family of pseudo-segments is extendible; see Fig. 2(a) for a minimal counterexample.

With the discovery of Dey’s improved bound for k-levels and a certain lemma of
Tamaki and Tokuyama [48] on pseudo-lines, we now have an O(n4/3) bound for the
k-level of any arrangement of n extendible pseudo-segments. This is the starting point

Fig. 2. (a) A nonextendible arrangement of pseudo-segments. (b) Proof of Lemma 3.1. (c) Proof of
Lemma 3.2.
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for all our k-level results. However, for forthcoming applications, we need to make this
bound sensitive to the number of intersections, as stated in the theorem below. We give a
simple proof inspired by one of Tamaki and Tokuyama [48], using divide-and-conquer by
slabs. (Alternatively, we can use divide-and-conquer by random sampling; for example,
see the proofs of Theorems 5.1 and 8.1.)

Theorem 2.1. The k-level in an arrangement of N extendible pseudo-segments with
X intersecting pairs has O(N + N 2/3 X1/3) vertices.

Proof. Partition the plane into �N/e� vertical slabs so that each slab has at most e
endpoints. Let Xi be the number of intersections at slab i . Let Ti be the subset of pseudo-
segments that have an endpoint inside slab i . Let Si be the subset of pseudo-segments
not in Ti that contribute to the k-level inside the slab.

Clearly, Ti = O(e). We also have |Si | = O(
√

Xi + e) by the following argument:
a segment in Si has at least | j − k| − e intersections in slab i if it is the j th lowest at
the left wall of the slab; consequently, at least |Si | − 2A segments have at least A − e
intersections; setting A = |Si |/4 implies that Xi = �((|Si |/4 − e)2).

Since the k-level in the original arrangement coincides with a level of Si ∪ Ti when
restricted to slab i , the known result for extendible pseudo-segments gives the following
upper bound on the entire k-level (by Hölder’s inequality):

O

(�N/e�∑
i=1

|Si ∪ Ti |4/3

)
= O

(�N/e�∑
i=1

(X2/3
i + e4/3)

)
= O((N/e)1/3 X2/3 + Ne1/3).

The theorem follows by setting e = �X/N�.

Remark. The original proof by Tamaki and Tokuyama [48] implies a weaker bound
of O(N + N 1/3 X2/3) but does not require extendibility. It uses the known result for
pseudo-lines rather than pseudo-segments, but this requires partitioning the plane by
vertical lines at every endpoint (in other words, we have to set e = 1).

Tamaki and Tokuyama’s proof thus implicitly gives an O(n5/3) bound for the k-level
in an arrangement of n arbitrary pseudo-segments (plug in N = n and X = O(n2)). We
give a better result in the next section.

3. Pseudo-Segments

To obtain a good bound on the k-level of general pseudo-segments, we cut the arrange-
ment in such a way that the result from the previous section can be applied. Cutting the
arrangement (an idea from Tamaki and Tokuyama’s paper [48]) simply means selecting a
set of cut points and breaking each segment into subsegments by removing an infinitesi-
mal neighborhood around each incident cut point. The k-level remains unchanged, except
for the addition of infinitesimal edges.

We first characterize when a family S of pseudo-segments is extendible. Define a
directed graph G(S) as follows: the vertices are pseudo-segments in S, and there is an
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edge between s1 and s2 whenever two pseudo-segments s1 and s2 intersect; the edge
is oriented as (s1, s2) if to the left of the intersection, s1 is below s2. (For example, in
Fig. 2(a) the edge set of G(S) is {(s1, s2), (s2, s3), (s3, s1)}.)

Lemma 3.1. A family S of pseudo-segments is extendible if and only if G(S) is acyclic.

Proof. The “only if” part is obvious, because for each edge (s1, s2) ∈ G(S), the exten-
sion of s1 is below the extension of s2 at x = −∞.

To prove the “if” part, let ≺ be a topological order of G(S) (i.e., a total order on S
such that (s1, s2) ∈ G(S) implies s1 ≺ s2). Take any segment s ∈ S. We will extend it
at either endpoint while maintaining the pseudo-segment property and ensuring that ≺
remains a topological order of G(S).

Certainly, we can extend s to the right as long as there is no new crossing. A problem
occurs only when the right endpoint approaches the intersection of a pair of segments s1

and s2, as shown in Fig. 2(b), with the right endpoint of s above s1 and below s2. Then
s1 ≺ s2, so one or both of the following two cases must hold:

Case 1: s1 ≺ s. Then s1 and s cannot intersect. So we can extend s to cross s1, and S is
still a pseudo-segment family. This causes the addition of the edge (s1, s) to G(S), but
≺ is still a topological order.

Case 2: s ≺ s2. Then s and s2 cannot intersect. We extend s to cross s2 instead. The
invariants again are maintained, this time with the addition of the edge (s, s2) to G(S).

Now we can continue the process until the right endpoint approaches x = ∞ (the
process is finite since each iteration adds a new intersection). Similarly, we can extend
the left endpoint to x = −∞. Repeating the process for each of the segments in turn
results in a family of pseudo-lines.

We can now give a simple sufficient condition for when pseudo-segments are ex-
tendible. Some terminology first: the x-interval of a pseudo-segment refers to the range
of its x-values; two intervals cross if their interiors intersect and one is not contained in
the other.

Lemma 3.2. If S is a family of pseudo-segments such that no two x-intervals cross,
then G(S) is acyclic.

Proof. Suppose G(S) has a cycle. Let 〈s1, . . . , s
, s1〉 be a shortest cycle then (
 ≥ 3).
Without loss of generality, say s2 has the shortest x-interval. Then the x-intervals of s1

and s3 must contain the x-interval of s2, so the left endpoint of s2 is above s1 but below
s3, and the right endpoint of s2 is below s1 but above s3 (for example, see Fig. 2(c)).
However, this implies that (s1, s3) ∈ G(S), so 〈s1, s3, . . . , s
, s1〉 would be a shorter
cycle: contradiction.

Our key result regarding pseudo-segments can now be proved by a standard segment-
tree idea [43].
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Theorem 3.3. Any arrangement of n pseudo-segments can be cut into an arrangement
of O(n log n) extendible pseudo-segments.

Proof. Given n intervals, the standard tree construction gives us a collection of canon-
ical subintervals, no two of which cross, such that each interval can be partitioned
into O(log n) canonical subintervals. Apply this observation to the x-intervals of the
pseudo-segments, break the pseudo-segments at the corresponding x-values, and invoke
Lemmas 3.2 and 3.1.

Now, a k-level bound of O(n4/3 log2/3 n) can be obtained by applying Theorem 2.1
to the output of Theorem 3.3, with N = O(n log n) and X = O(n2). Agarwal et al. [1]
described general techniques for making k-level bounds sensitive to k. In this instance,
we then have:

Corollary 3.4. The k-level in an arrangement of n pseudo-segments has
O(nk1/3α(n/k) log2/3 k) vertices.

4. Pseudo-Parabolas

Tamaki and Tokuyama [48] obtained a nontrivial bound for the k-level of pseudo-
parabolas (2-intersecting curves) by proving the following key theorem: any arrangement
of n pseudo-parabolas can be cut into an arrangement of O(n5/3) pseudo-segments. (See
Section 7 on how.) Their method, combined with Dey’s pseudo-line bound, then yields
an O(n17/9) bound for the k-level (by the Remark after Theorem 2.1, with N = O(n5/3)

and X = O(n2)).
By combining Tamaki and Tokuyama’s theorem with Theorem 3.3 instead, any

arrangement of n pseudo-parabolas can be cut into an arrangement of O(n5/3 log n)

extendible pseudo-segments. Consequently, we can apply Theorem 2.1 with N = O
(n5/3 log n) and X = O(n2) to get an improved O(n16/9 log2/3 n) bound for the k-level.
When made k-sensitive with the techniques of Agarwal et al. [1] mentioned earlier, the
bound becomes the following:

Corollary 4.1. The k-level in an arrangement of n pseudo-parabolas has
O(nk7/9 log2/3 k) vertices.

5. Extendible Pseudo-Parabolic Segments

A family of extendible s-intersecting segments refers to a family of s-intersecting curve
segments where we can find a curve through each of the given curve segments such that
the resulting family of curves is s-intersecting. Trivially, Tamaki and Tokuyama’s the-
orem applies to cutting an arrangement of extendible 2-intersecting (pseudo-parabolic)
segments, by cutting their extensions, so roughly the same k-level bound as Corollary 4.1
holds.
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For the purpose explained in the next section, however, we need the following
intersection-sensitive version of Tamaki and Tokuyama’s cut theorem. We prove this
by divide-and-conquer via a well-known random-sampling technique (specifically, the
proper term for the required construction is an intersection-sensitive (1/r)-cutting, as
described in [14]).

Theorem 5.1. Any arrangement of N extendible pseudo-parabolic segments with X
intersecting pairs can be cut into an arrangement of O(N +N 1/3 X2/3) pseudo-segments,
or O((N + N 1/3 X2/3) log N ) extendible pseudo-segments.

Proof. We employ a probabilistic method. Choose a random sample R of r segments
and let VD(R) be the vertical decomposition of the arrangement of R—a partitioning
of the plane into trapezoids (for the precise definition, consult [40]). For each trapezoid
� ∈ VD(R), let S� denote all the segments that intersect �, clip these segments with �,
and apply Tamaki and Tokuyama’s theorem to (the extensions of) S� to break them into
pseudo-segments. As a result, we obtain an arrangement of O(M) pseudo-segments,
where

M =
∑

�∈VD(R)

|S�|5/3.

By Theorem 3.3, we can refine it into an arrangement of O(M log N ) extendible pseudo-
segments.

Now, from the theory developed by Clarkson and Shor [20], [40], the expected value
of M is given by the expression O(η(r) · (N/r)5/3), where η(r) is the expected size
of VD(R). Since the arrangement of R has O(r) endpoints and an expected number of
O(X (r/N )2) intersections, we have η(r) = O(r + X (r/N )2). Hence,

E[M] = O((r + X (r/N )2) · (N/r)5/3),

and the theorem follows by setting r = �N 2/X� (assuming X ≥ N ).

Discussion of general pseudo-parabolic segments can be found in Section 7.

6. Polynomial Curves

Logically, the next step is to consider arbitrary s-intersecting curves for s ≥ 3, but
generalization of the preceding techniques is hindered by the following disappointing
observation made by Tamaki and Tokuyama [48]: although it is possible to cut any s-
intersecting curves into subquadratically many (s − 1)-intersecting curve segments for
any even constant s, the same is not true for odd values of s. It is easy to construct,
for example, a family of n 3-intersecting curves that requires �(n2) cuts: just take an
arrangement of n lines and modify the neighborhood of each intersection point so that
we see three intersections instead.

However, if one attempts to draw the above worst-case example, one would discover
that a large number of “oscillations” must occur in its curves—a suggestion that perhaps
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Fig. 3. If f and g intersect s + 1 times, then f ′ and g′ intersect at least s times.

the example cannot be realized by low-degree polynomials like cubics. Indeed, this is the
case. The following observation (with s = 2) tells us, for instance, that we can cut cubic
functions into pseudo-parabolic segments, simply by cutting their derivatives (which are
quadratic!) into pseudo-segments by Tamaki and Tokuyama’s theorem.

In what follows, we make no distinction between functions and their graphs. Thus,
the derivative of a curve segment refers to the (graph of the) derivative of the underlying
function. For a family S of curve segments, S′ denotes the family of the derivatives of the
segments, and for a union U of curve segments, U ′ denotes the union of the derivatives
of the segments.

Observation 6.1. If S′ forms a family of (s − 1)-intersecting curve segments, then S
forms a family of s-intersecting curve segments. Furthermore, if the former family is
extendible, so is the latter.

Proof. To prove the first part, suppose two curve segments f, g ∈ S intersect s + 1 or
more times, say at x-coordinates x1, . . . , xs+1 from left to right. Since f (xi ) = g(xi )

and f (xi+1) = g(xi+1), there exists some ai ∈ (xi , xi+1) such that f ′(ai ) = g′(ai ) by
Rolle’s theorem (i.e., the mean value theorem) for each i = 1, . . . , s. (See Fig. 3.) Thus,
f ′ and g′ intersect at least s times: contradiction.

For the second part, say f ′ is extended to a total function denoted by f̂ ′. We extend each
function f ∈ S, defined on interval [a, b], to the total function f̂ (x) := f (a)+∫ x

a f̂ ′(t) dt

(which clearly agrees with f on [a, b]). Since {( f̂ )′ = f̂ ′ | f ∈ S} is (s−1)-intersecting,
the first part of the lemma implies that { f̂ | f ∈ S} is s-intersecting.

By repeated applications of Observation 6.1 and Theorem 5.1, we obtain the first
subquadratic bound for cutting degree-s polynomial curves into (extendible) pseudo-
segments:

Theorem 6.2. Any arrangement of n curves that are graphs of polynomial
functions of constant maximum degree s can be cut into an arrangement of
O(n2−1/3s−1

log(3/2)(1−1/3s−1) n) extendible pseudo-segments.

Proof. Suppose we can cut any arrangement of any n degree-(s − 1) polynomial
functions into O(n2−α log(3/2)(1−β) n) extendible (1-intersecting) pseudo-segments. Ap-
ply this procedure to the derivatives of the given degree-s polynomial functions. Cut
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the graphs of the given functions at the corresponding x-values. Observation 6.1 tells
us that the resulting arrangement is an arrangement of extendible pseudo-parabolic
(2-intersecting) segments. Applying Theorem 5.1 with N = O(n2−α log(3/2)(1−β) n)

and X = O(n2), we can further cut this arrangement into an arrangement of
O(n2−α/3 log(3/2)(1−β/3) n) extendible pseudo-segments. The theorem thus follows by
induction (the base case s = 1 is trivial).

Applying Theorem 2.1 to the output of Theorem 6.2 with

N = O(n2−1/3s−1
log(3/2)(1−1/3s−1) n) and X = O(n2),

we get a subquadratic O(n2−2/3s
log1−1/3s−1

n) bound for the k-level. Again this bound
can be refined by Agarwal et al.’s k-sensitizing techniques. Roughly the same bound
holds for polynomial curve segments.

Corollary 6.3. The k-level in an arrangement of n curves that are graphs of polynomial
functions of a constant maximum degree s has O(λs(n/k)k2−2/3s

log1−1/3s−1
k) vertices.

For an arrangement of curve segments, the k-level has O(λs+2(n/k)k2−2/3s
log1−1/3s−1

k)

vertices.

Although polynomials are the most natural instances, the above proof clearly works
for any curve families whose (s − 1)th derivatives obey the pseudo-line property.

7. An Improvement

Recently, Agarwal et al. [5] have improved Tamaki and Tokuyama’s theorem [48] in
various special cases; in particular, they have proved that every family of n parabolas
can be cut into O(n3/2(log n)O(α2(n))) pseudo-segments. Their result immediately implies
an improvement to our Theorem 6.2. The improvement though is small, because only the
base case is affected in our proof (recall that our iterative step invokes a cut theorem for
general pseudo-parabolas). In this section we describe a different approach that improves
the iterative step.

The approach requires understanding how Tamaki and Tokuyama’s proof works (read-
ers are referred to their paper [48] for fuller details):

• A pair ( f, g) of curves (or curve segments) that intersect twice, with f above g at
x = −∞, is said to form a lens, denoted lens( f, g) and defined as the boundary of
the region bounded by f and g; e.g., see the bold part of Fig. 3 (bottom). The first
observation is that cutting pseudo-parabolas into pseudo-segments is basically the
same as stabbing all lenses.

• A set of objects is nonoverlapping if each pair of objects intersects only at a discrete
set of points. Using combinatorial hitting-set/set-cover bounds (with random sam-
pling), Tamaki and Tokuyama showed that the minimal number of points to stab
the lenses is basically of the same order as the maximal number of nonoverlapping
lenses.

• This latter number is then bounded by elementary means: Given a nonoverlapping
collection L of lenses, we can view L as a bipartite graph G(L), with the curves
(or curve segments) as vertices, and pairs that form lenses in L as edges. As it
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Fig. 4. (a) A Kc,3 subgraph is possible for pseudo-parabolic segments. (b) Proof of Lemma 7.1: a Kc,3

subgraph is impossible if F is a pseudo-parabola family.

turns out, for pseudo-parabolas, G(L) cannot contain Kc,3 as a subgraph for some
constant c. It then follows easily (e.g., see [16]) that the number of edges in G(L)

is O(n5/3).

Agarwal et al.’s improvement requires some more involved techniques to bound the
maximal number of nonoverlapping lenses. Here, we follow Tamaki and Tokuyama’s
more elementary approach.

To warm up, we first consider the problem of generalizing Tamaki and Tokuyama’s
theorem to cut pseudo-parabolic segments. Notice that their proof does not work directly,
as Kc,3 can occur in G(L) for (nonextendible) pseudo-parabolic segments (see Fig. 4(a)).
Furthermore, unlike pseudo-segments, there does not appear to be a natural way to make
pseudo-parabolic segments extendible. Fortunately, the segment-tree idea from Section 3
still proves useful here and reduces the problem to a “bipartite” one: cutting lenses formed
between pseudo-parabolas and pseudo-parabolic segments. This weaker problem can in
fact be handled by Tamaki and Tokuyama’s proof technique:

Lemma 7.1. Let F be a family of n pseudo-parabolas and let G be a family of n s-
intersecting curve segments for a fixed s, such that each member of F intersects each
member of G at most twice. Then F and G can be cut into O(n5/3) subsegments such
that each subsegment of F intersects each subsegment of G at most once.

Proof. By Tamaki and Tokuyama’s technique, it suffices to demonstrate that if L is a
nonoverlapping collection of lenses formed by pairs in F × G (and, similarly, G × F),
then G(L) does not contain Kc,3 (similarly, K3,c) as a subgraph for some constant c. In
other words, given f1, . . . , fc ∈ F and g1, g2, g3 ∈ G such that each ( fi , gj ) forms a
lens and no two such lenses overlap, we have to derive a contradiction.

First observe that these lenses must all be formed with edges of the upper enve-
lope E of {g1, g2, g3}, because if some gk lies above some point on lens( fi , gj ), then
lens( fi , gk) would overlap with lens( fi , gj ).

Since E has at most a constant number of edges, for a sufficiently large c, we are
guaranteed to find two curves, say f1 and f2, that form lenses with the same set of
(three) edges of E . However, as Fig. 4(b) indicates, this scenario cannot happen, because
f1 and f2 would intersect three times (at least)—once between (in terms of x-values)
lens( f1, gj ) and lens( f2, gj ), for each j ∈ {1, 2, 3}.

Remark. The argument above for the K3,c exclusion is slightly different from Tamaki
and Tokuyama’s, and, in some ways, better. For example, our proof generalizes to an
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O(n2−1/(s+1)) bound for cutting s-intersecting curves into (s − 1)-intersecting curve
segments for any even s (by a Ks+1,c exclusion); this improves Theorem 6.2 of [48].

Theorem 7.2. Every arrangement of N pseudo-parabolic segments can be cut into an
arrangement of O(N 5/3) pseudo-segments. If X is the number of intersecting pairs, then
the bound improves to O(N + N 1/3 X2/3).

Proof. We use divide-and-conquer in the style of the segment tree [43]. Suppose the
N segments are contained in a slab σ , with h endpoints strictly inside σ . Divide the
slab by a vertical line 
 into two subslabs σ1 and σ2, each with ≤ h/2 endpoints
strictly inside. Cut the segments at 
. Take each subslab σi (i ∈ {1, 2}). Classify a
segment in σi as short if at least one of its endpoints is strictly inside σi , long oth-
erwise. Cut the ≤ h/2 short segments recursively. For the long segments, which be-
have like pseudo-parabolas, we can make O(N 5/3) additional cuts, by Lemma 7.1,
to ensure that each subsegment of the long segments intersects each subsegment of
the long/short segments at most once. The total number of cuts satisfies the
recurrence

T (N , h) = 2T (h/2, h/2) + O(N 5/3),

which solves to T (N , h) = O(N 5/3). The intersection-sensitive bound now follows
exactly as in the proof of Theorem 5.1.

Next, we consider the problem of cutting a family S of 3-intersecting curve segments
into 2-intersecting curve segments. Under the assumption that S′ is pseudo-parabolic,
we can get an O(n5/3) bound by cutting S′ into pseudo-segments, as we have already
observed in Section 6. Surprisingly, we can improve this bound to O(n3/2) under the
same assumption, by directly modifying the proofs of Lemma 7.1 and Theorem 7.2 to
exploit the relationship between the S′ and S families. As it turns out, in this setting, we
can actually show a K2,c exclusion!

In the subsequent proof, a pair ( f, g) of curves (or curve segments) that intersect three
times, with f below g at x = −∞, is said to form a double-lens, double-lens( f, g),
defined as the boundary of the two regions bounded by f and g; e.g., see the bold part
of Fig. 3 (top).

Lemma 7.3. Suppose F ′ forms a family of n pseudo-parabolas and G ′ forms a fam-
ily of n s-intersecting curve segments for a fixed s, such that each member of F ′ in-
tersects each member of G ′ at most twice. Then F and G can be cut into O(n3/2)

subsegments such that each subsegment of F intersects each subsegment of G at most
twice.

Proof. By Observation 6.1, each member of F intersects each member of G at most
three times, so the goal is to stab all double-lenses formed by pairs in (F×G)∪(G×F). By
Tamaki and Tokuyama’s technique, it suffices to demonstrate that if L is a nonoverlapping
collection of double-lenses formed by pairs in F × G (resp. G × F), then G(L) does
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Fig. 5. Proof of Lemma 7.3: (a) Case 1 is impossible; (b) Case 2 is impossible (somewhere between 
− and

+, f1 has a smaller slope than f2).

not contain Kc,2 (resp. K2,c) as a subgraph for some constant c. In other words, given
f1, . . . , fc ∈ F and g1, g2 ∈ G such that each ( fi , gj ) forms a double-lens and no two
such double-lenses overlap, we have to derive a contradiction.

Observe that if ( f, g) forms a double-lens, then ( f ′, g′) forms a lens with lens( f ′, g′)
⊆ [double-lens( f, g)]′ (see Fig. 3). Each ( f ′

i , g′
j ) thus forms a lens and no two such

lenses overlap. It makes sense to apply arguments from our earlier proof of Lemma 7.1
to analyze the derivative families F ′ and G ′. In particular, for a sufficiently large c, we
can infer the existence of two curves, say f ′

1 and f ′
2, that form lenses with the same set

of (two) edges of the upper envelope of {g′
1, g′

2}. Up to symmetry, the lenses formed by
f ′
1 and f ′

2 can be arranged in only two different ways, from left to right:

• Case 1: lens( f ′
1, g′

1), lens( f ′
2, g′

1), lens( f ′
1, g′

2), lens( f ′
2, g′

2).
As Fig. 5(a) indicates, this case cannot happen, because f ′

1 and f ′
2 would intersect

three times (at least)—between lens( f ′
1, g′

1) and lens( f ′
2, g′

1), between lens( f ′
2, g′

1)

and lens( f ′
1, g′

2), and between lens( f ′
1, g′

2) and lens( f ′
2, g′

2).
• Case 2: lens( f ′

1, g′
1), lens( f ′

2, g′
1), lens( f ′

2, g′
2), lens( f ′

1, g′
2).

As Fig. 5(b) (top) indicates, f ′
1 must be above f ′

2 between lens( f ′
2, g′

1) and
lens( f ′

2, g′
2).

This case also cannot happen, but to see this, we need to return to the original
families F and G. We know that double-lens( f1, g1) is left of double-lens( f2, g1),
which is left of double-lens( f2, g2), which is left of double-lens( f1, g2), as shown
in Fig. 5(b) (bottom). Now, in order to avoid a fourth intersection between f1 and
g1, f1 must be above f2 immediately to the right of double-lens( f2, g1); on the
other hand, to avoid a fourth intersection between f1 and g2, f1 must be below f2

immediately to the left of double-lens( f2, g2). So, in between double-lens( f2, g1)

and double-lens( f2, g2), f1 and f2 must intersect, and at the first inter-
section, f ′

1 would be smaller than f ′
2. However, this contradicts the previous

paragraph.
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Theorem 7.4. If S′ forms a family of N pseudo-parabolic segments, then S can be cut
into O(N 3/2) pseudo-parabolic segments. If X is the number of intersecting pairs, then
the bound improves to O(N + N 1/2 X1/2).

Proof. By Lemma 7.3, as in the proof of Theorem 7.2. The intersection-sensitive bound
also follows as in the proof of Theorem 5.1.

With Theorem 7.4, an improvement to Theorem 6.2 now follows simply:

Theorem 7.5. Any arrangement of curves that are graphs of n polynomials of max-
imum degree s ≥ 2 can be cut into an arrangement of O(n2−1/2s−2

) pseudo-parabolic
segments, or O(n2−1/(3·2s−2)) pseudo-segments, or O(n2−1/(3·2s−2) log n) extendible
pseudo-segments.

Proof. The first part can be proved by induction: suppose we can cut the arrangement of
any n degree-(s−1) polynomials into O(n2−α) pseudo-parabolic segments. Then given n
degree-s polynomials S, we can first cut S′ into O(n2−α) pseudo-parabolic segments and
then apply Theorem 7.4 (with N = O(n2−α) and X = O(n2)) to cut S into O(n2−α/2)

pseudo-parabolic segments.
The second part follows by applying Theorem 7.2 (with N = O(n2−1/2s−2

) and
X = O(n2)) to cut the resulting pseudo-parabolic segments into pseudo-segments. The
last part follows by applying Theorem 3.3 to cut these pseudo-segments into extendible
pseudo-segments.

Now, applying Theorem 2.1 with N = O(n2−1/(3·2s−2) log n) and X = O(n2) yields
the improvement to Corollary 6.3:

Corollary 7.6. The k-level in an arrangement of n curves that are graphs of polynomial
functions of a constant maximum degree s has O(λs(n/k)k2−1/(9·2s−3) log2/3 k) vertices.
For an arrangement of curve segments, the k-level has O(λs+2(n/k)k2−1/(9·2s−3) log2/3 k)

vertices.

8. Other Applications

Given an arrangement of curves (or curve segments), a chain is a connected subset
of the union that intersects each vertical line at most once. A point v is a vertex of
the chain if, around v, two different curves (curve segments) appear on the chain; say
the one appearing to the left of v is s1 and the one appearing to the right of v is s2.
If immediately to the left of v, s1 is below s2, then v is said to be a pseudo-concave
vertex of the chain. If all of its vertices are pseudo-concave, then the chain is pseudo-
concave.

Agarwal et al. [1] observed that the complexity of the k-level can be bounded by the
complexity of a nonoverlapping collection of (pseudo-)concave chains. In fact, Dey’s
breakthrough [21] was in part inspired by this point of view; his proof yields a tight
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O(nk1/3 + n2/3k2/3) bound for k nonoverlapping concave chains in an arrangement of
lines (or pseudo-lines, with the lemma by Tamaki and Tokuyama [47]). We will show
that our level bounds can be carried over to this more general problem as well for the
curve families we have considered. First, we need to make Dey’s bound intersection-
sensitive with the following analogue of Theorem 2.1. This time, the proof requires the
random-sampling approach. In the following, a chain is proper if its leftmost point is an
endpoint.

Theorem 8.1. A nonoverlapping collection of proper pseudo-concave chains in an
arrangement of N extendible pseudo-segments with X intersecting pairs has O(N +
N 2/3 X1/3) vertices.

Proof. Take a random sample R of r segments. Inside each trapezoid � ∈ VD(R), we
have a nonoverlapping collection of proper pseudo-concave chains in the arrangement of
S� clipped to �. This collection can also be viewed as O(|S�|) pseudo-concave chains
in the arrangement of the extensions of S�, and, by Dey’s bound, has O(|S�|4/3) vertices.
The total number of vertices in the chains is therefore O(M), where

M =
∑

�∈VD(R)

|S�|4/3.

By Clarkson and Shor’s analysis [20], [40],

E[M] = O((r + X (r/N )2) · (N/r)4/3).

The proof is completed by setting r = �N 2/X� (if X ≥ N ).

When we cut an arrangement, the cut chains remain nonoverlapping and pseudo-
concave. To make chains proper, we can cut the arrangement at each of their k leftmost
points (extendibility is maintained). So, for a pseudo-parabola arrangement, we can apply
Tamaki and Tokuyama’s theorem with Theorem 3.3, substituting N = O(n5/3 log n +k)

and X = O(n2) in Theorem 8.1. For an arrangement of polynomial curves, we can apply
Theorem 7.5, substituting N = O(n2−1/(3·2s−2) log n + k) and X = O(n2).

Corollary 8.2. A nonoverlapping collection of k pseudo-concave chains in an arrange-
ment of n pseudo-parabolas has O(n16/9 log2/3 n + n2/3k2/3) vertices.

Corollary 8.3. A nonoverlapping collection of k pseudo-concave chains in an arrange-
ment of n curves that are graphs of polynomial functions of a constant maximum degree
s has O(n2−1/(9·2s−3) log2/3 n + n2/3k2/3) vertices.

Previously, Tamaki and Tokuyama [48] gave a weaker O(n11/6) bound for a single
pseudo-concave chain (k = 1) in a pseudo-parabola arrangement. For multiple chains,
they had a complicated proof of a bound of O(n43/22+n23/12k1/12), which is subquadratic
only when k = o(n). For a single pseudo-concave chain, they observed a lower bound of
�(n4/3) for parabolas, and, interestingly, a lower bound of �(n2/log n) for 3-intersecting
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Fig. 6. A pseudo-concave chain of quadratic size in an arrangement of 3-intersecting curves.

curves (actually, see Fig. 6 for an �(n2) example); hence, no generalization of Corol-
lary 8.3 to arbitrary s-intersecting curves is possible!

Standard reductions [26], [32], [36] reveal a connection of the multiple pseudo-
concave chain problem to an important graph problem, studied by Gusfield and others:
bounding the number of changes to the minimum spanning tree in a graph with parametric
edge weights, or, more generally, the minimum-weight basis in a parametric matroid. For
the case of linearly varying weights, Dey’s bound [21] gives O(mn1/3) (which matches
a lower bound by Eppstein [26] for the matroid generalization of the problem); here, m
is the number of edges and n is the number of vertices. For the case of polynomially
varying weights, we immediately have the first nontrivial bound from Corollary 8.3:

Corollary 8.4. A parametric minimum spanning tree with m edges changes at most
O(m2−1/(9·2s−3) log2/3 m) times, if the edge weights are polynomial functions of constant
maximum degree s in time.

The geometric version of the above problem, i.e., minimum spanning trees of mov-
ing points in a fixed-dimensional space, has also generated much interest. Applying
Corollary 8.4 with observations made by Katoh et al. [36], we get the first subcubic
result:

Corollary 8.5. The L p-minimum spanning tree of n moving points in R
d changes at

most O(λps+2(n)n2−1/(9·2ps−3) log2/3 n) times, if p and d are constant positive integers
and the coordinates of the points are polynomial functions of constant maximum degree s
in time.

The most noteworthy case of the above is perhaps the Euclidean minimum spanning
tree of linearly moving points (p = 2, s = 1), where Corollary 8.5 gives a bound of
O(n25/92α(n) log2/3 n)—the first improvement over Katoh et al.’s O(n32α(n)) bound [36].
(Tamaki and Tokuyama [48] were unable to obtain such an improvement because their
result on multiple chains for pseudo-parabolas was too weak.) By Agarwal et al.’s re-
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cently improved cut theorem for parabolas [5], the bound can be further reduced to
O(n8/3(log n)O(α2(n))).

For algorithms on the parametric/kinetic minimum spanning tree problem in both its
graph and geometric settings, see [3] and [13].

Very recently, our Theorem 3.3 was used by Agarwal et al. [2] to bound the combina-
torial complexity of multiple faces in arrangements of pseudo-segments and of circles.
Our Theorem 6.2/7.5 was also used by Aronov and Sharir [10] to derive improved
bounds on the number of incidences between points and graphs of polynomials.

9. Open Problems

We close with some interesting questions.

1. Can we improve our O(n log n) bound for cutting pseudo-segments into extendible
pseudo-segments, or is there a superlinear lower bound?

2. Can we improve Tamaki and Tokuyama’s O(n5/3) bound for cutting general
pseudo-parabolas into pseudo-segments? Tamaki and Tokuyama observed an
�(n4/3) lower bound [48] which holds for parabolas.

3. Can we improve the O(n3/2) bound in Theorem 7.4? If so, further improvements
to our results for polynomials would follow. We know of no nontrivial lower bound
here. Can we prove an o(n3/2) bound for cutting graphs of degree-s polynomials
into (s − 1)-intersecting curve segments for some s ≥ 3?

4. What is the best bound for cutting graphs of degree-s polynomials into pseudo-
segments for a given fixed s? Does the exponent have to converge to 2 exponen-
tially, as in our current result? Does it have to depend on s at all?

5. Finally, can we obtain nontrivial bounds on the k-level for a more general class
of curves beyond graphs of polynomials? Fixed-degree algebraic curves are of
particular interest. Our proof works only if after taking a constant number of
derivatives, we get a pseudo-line or pseudo-parabolic arrangement; for instance,
we do not see how to generalize our result to rational functions or parametrically
defined polynomial curves. With the failure of the cutting approach, the question
for arbitrary s-intersecting curve families remains as perplexing as before. Can we
prove a lower bound better than Toth’s [49] for curves?
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7. N. Alon and E. Győri. The number of small semispaces of a finite set of points in the plane. J. Combin.
Theory Ser. A, 41:154–157, 1986.

8. A. Andrzejak and E. Welzl. k-Sets and j-facets: a tour of discrete geometry. Manuscript, 1997.
9. B. Aronov, B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and R. Wenger. Points and triangles in

the plane and halving planes in space. Discrete Comput. Geom., 6:435–442, 1991.
10. B. Aronov and M. Sharir. Cutting circles into pseudo-segments and improved bounds for incidences.

Discrete Comput. Geom., 28:475–490, 2002.
11. M. Atallah. Some dynamic computational geometry problems. Comput. Math. Appl., 11:1171–1181, 1985.
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