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Abstract. We construct 2n − 2 smooth quadrics in R
n whose equations have the same

degree 2 homogeneous parts such that these quadrics have 3 · 2n−1 isolated common real
tangent lines. Special cases of the construction give examples of 2n−2 spheres with affinely
dependent centres such that all but one of the radii are equal, and of 2n − 2 quadrics which
are translated images of each other.

Sottile and Theobald proved in Theorem 10 of [3] that given 2n−2 quadric hypersurfaces
in P

n
C

whose intersection with a fixed hyperplane is a given smooth quadric, the number
of isolated common tangent lines of these quadrics is at most 3 · 2n−1. This generalizes
the previous result in three dimensions by Theobald [4, Theorem 4], which is motivated
by algorithmic problems in computer graphics.

If we consider quadrics in affine space and take the fixed hyperplane to be the hyper-
plane at infinity, then the condition on the intersection with the hyperplane means that
the homogeneous degree 2 parts of the equations must be the same, so, for example, any
collection of spheres satisfies this condition.

It was also shown in Theorem 2 of [3] that there exist configurations of 2n − 2 unit
spheres in R

n which have 3 · 2n−1 isolated common real tangent lines. In this note we
answer two of the questions left open in [3].

Theorem 1.

(a) Let n ≥ 3. Given non-zero real numbers λ3, . . . , λn , there exist 2n − 2 smooth
real quadrics in R

n such that the homogeneous degree 2 part of their equations
is x2

1 + x2
2 +λ3x2

3 +· · ·+λn x2
n , and such that they have 3 · 2n−1 isolated common

real tangent lines.
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(b) There exist 2n − 2 spheres with affinely dependent centres such that they have
3 · 2n−1 isolated common real tangent lines. It is possible to make 2n − 1 of the
radii equal.

(c) If λj > 0 for 3 ≤ j ≤ n − 1 and λn < 0, then it is possible to achieve that the
quadrics are translated copies of each other.

Remarks. A non-degenerate quadratic form can be diagonalized in a suitable orthormal
coordinate system. After scaling, it can be brought into the form

∑n
i=1 ±x2

i . After a
possible change of sign and reordering the variables, the equation will be of the form
considered in part (a) of the theorem, so the construction is general enough to cope with
all topological types of non-degenerate quadrics.

The question whether it is possible to have 2n−2 unit spheres with affinely dependent
centres which have 3 · 2n−1 isolated real common tangent lines is still open. With our
construction only 2n − 1 of the radii can be equal. In the three-dimensional case it is
known that for unit spheres with affinely dependent centres the bound is 8 [2]. Sottile and
Theobald [3] have not been able to construct 2n −2 unit spheres with affinely dependent
centres with more than 2n isolated common real tangent lines, so one can conjecture that
in this case the bound is 2n , rather than 3 · 2n−1.

Proof. (a) We shall be working over R, all variables are understood to be real, unless
stated otherwise.

For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ R
n define b(x, y) = ∑n

i=1 λi xi yi ,
and q(x) = b(x, x) = ∑n

i=1 λi x2
i , where λ1 = λ2 = 1.

Let c1 = (0, 1, 0, . . . , 0), c2 = (
√

3/2, − 1
2 , 0, . . . , 0), c3 = (−√

3/2, − 1
2 , 0, . . . , 0),

c4 = (0, 0, . . . , 0), and c2 j−1 = (0, . . . , 0, aj , 0, . . . , 0), c2 j = (0, . . . , 0, −aj , 0, . . . , 0)

with ±aj in the j th position for 3 ≤ j ≤ n − 1. The value of the aj ∈ R\{0},
3 ≤ j ≤ n − 1, will be determined later.

The 2n − 2 quadrics will be Qj = {x ∈ R
n | q(x − cj ) = Rj }, 1 ≤ j ≤ 2n − 2,

where the Rj ∈ R, 1 ≤ j ≤ 2n − 2, are also to be determined later.
Let G ⊂ O(n) be the subgroup generated by the symmetry group of the regular

triangle c1c2c3 and the reflections xi → −xi , for 3 ≤ i ≤ n. G fixes c1, c2, . . . , c2n−2 as
a set and |G| = 3 · 2n−1.

The key idea is that if R1 = R2 = R3 and R2 j−1 = R2 j for 3 ≤ j ≤ n − 1, then the
collection of quadrics is invariant under G and if we find a common tangent line 	 which
is not fixed by any element of G, then its images under G give exactly 3 · 2n−1 common
tangent lines to the 2n − 2 quadrics.

Instead of choosing the quadrics first and then trying to find a common tangent line,
we follow the easier route of choosing 	 first and then choosing the quadrics.

As in [3], we represent 	 by a direction vector v = (v1, v2, . . . , vn) and a point
p = (p1, p2, . . . , pn) ∈ 	. If q(v) �= 0, then we can make p unique by requiring that
b(p, v) = 0.

The line 	 is tangent to the quadric given by the equation q(x − c) = R if and only if
R is the critical value of the quadratic function q(x − c) restricted to 	. The points of 	

can be written in the form p + tv for some t ∈ R, and the quadratic function restricted
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to 	 is

q(p + tv − c) = q(p − c) + 2tb(v, p − c) + t2q(v).

If q(v) �= 0, the critical value is

M(c, 	) = q(p − c) − (b(v, p − c))2

q(v)
= q(p − c) − (b(v, c))2

q(v)
, (1)

since b(p, v) = 0. 	 is tangent to the quadric q(x − c) = R if and only if M(c, 	) = R.
If q(v) = 0, then the quadratic function restricted to 	 has degree at most 1, and it has a
critical value if and only if b(v, p − c) = 0, when it is a constant function.

From now on we assume q(v) �= 0. We now look at the conditions that 	 is tangent to
both Q2 j−1 and Q2 j , and R2 j−1 = R2 j for 3 ≤ j ≤ n − 1. We have b(c2 j−1, v) = ajvj ,
while b(c2 j , v) = −ajvj , so M(c2 j−1, 	) = M(c2 j , 	) implies q(p−c2 j−1) = q(p−c2 j ).
Hence λj aj pj = 0, and since λj �= 0 and aj �= 0, we must have pj = 0.

Similarly the conditions that 	 is tangent to Q1, Q2 and Q3, R1 = R2 = R3

and b(p, v) = 0 determine p1, p2 and pn uniquely as p1 = v1v2/2q(v), p2 =
(v2

1 − v2
2)/4q(v) and pn = v2(v

2
2 − 3v2

1)/4λnvnq(v), assuming that vn �= 0.
The conclusion is that given any direction vector v with q(v) �= 0 and vn �= 0,

there exists a unique line 	 with this direction vector such that M(c1, 	) = M(c2, 	) =
M(c3, 	) and M(c2 j−1, 	) = M(c2 j , 	) for 3 ≤ j ≤ n − 1. Let Ri = M(ci , 	) for
1 ≤ i ≤ 2n − 2, then 	 is tangent to each quadric Qi , 1 ≤ i ≤ 2n − 2. This set of
quadrics is invariant under G, therefore if 	 is not fixed by any element of G, which is
true for general v, then its images under G give exactly 3 · 2n−1 common tangent lines.
(The precise condition for v not to be invariant under any element of G is vj �= 0 for
1 ≤ j ≤ n, and (v2

1 − 3v2
2)(3v2

1 − v2
2) �= 0.)

We now prove that there are no other common tangent lines to these quadrics, not even
complex ones, which will show that they are not part of a higher-dimensional family.
We assume that there is a line 	′ with direction vector v′ = (v′

1, v
′
2, . . . , v

′
n) ∈ C

n which
is tangent to the same 2n − 2 quadrics.

We first consider the possibility that q(v′) = 0. Let p′ ∈ 	′. We must have b(v′, p′ −
ci ) = 0 for all i , 1 ≤ i ≤ 2n − 2. It is easy to see that this implies v′

1 = v′
2 = · · · =

v′
n−1 = 0, and then q(v′) = 0 forces v′

n = 0, a contradiction.
Hence q(v′) �= 0, and without loss of generality we may assume that q(v) = q(v′).
Let H be the group generated by G and the map v → −v. G and H act naturally on

C[x1, x2, . . . , xn]. For x = (x1, x2, . . . , xn), let I1(x) = x2
1 + x2

2 , I2(x) = x2
2(x2

2 −3x2
1)

2

and Ij (x) = x2
j for 3 ≤ j ≤ n. These elements are clearly invariant under H and

we claim that they generate the ring of invariants of C[x1, x2, . . . , xn] under the action
of H .

H is generated by reflections, so by Chevalley [1, Theorems A, B], the ring of invari-
ants can be generated by n elements, and the product of the degrees of any minimal set
of generators is the order of the group H , which is 3 · 2n . There is no invariant in degree
1, and we have n − 1 linearly independent invariants in degree 2, Ij (x), 1 ≤ j ≤ n,
j �= 2. Therefore any minimal set of generators for the ring of invariants must consist
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of n − 1 generators in degree 2 and one generator in degree 6. This generator in degree
6 can be any invariant element not in the subring generated by the degree 2 invariants.
I2(x) is clearly not in the subring generated by Ij (x), 1 ≤ j ≤ n, j �= 2, therefore I1(x),
I2(x), . . . , In(x) generate the ring of invariants as claimed.

We shall prove that Ik(v) = Ik(v
′) for all k, 1 ≤ k ≤ n, which will imply that v and v′

are in the same H -orbit, therefore v′ or −v′ is in the same G-orbit as v. As the direction
vector determines the common tangent line uniquely, 	′ must be the image of 	 under an
element of G.

We have the identities

R1 − R4 = 1 − v2
1 + v2

2

2q(v)
(2)

and

R1 − R2 j = 1 − λj a
2
j − v2

1 + v2
2 − 2λ2

j v
2
j a2

j

2q(v)
(3)

for 3 ≤ j ≤ n − 1, which can be verified by direct calculation. The same identities hold
if we replace v by v′, therefore we can deduce that I1(v) = I1(v

′) and Ij (v) = Ij (v
′) for

3 ≤ j ≤ n − 1. These together with q(v) = q(v′) imply that In(v) = In(v
′), too.

We can also express R1 in terms of the invariants. By (1),

R1 = q(p − c1) − (b(v, c1))
2

q(v)
.

By using the formulae for p1, p2, pn (pj = 0 if 3 ≤ j ≤ n − 1), and expressing q(v)

in terms of the invariants as q(v) = I1(v) + λ3 I3(v) + · · · + λn In(v), after some simple
algebraic manipulations we can write R1 in terms of the invariants as

R1 = I2(v) + λn In(v)(3I1(v) + (4λ3 I3(v) + · · · + λn In(v)))2

16λn In(v)(I1(v) + λ3 I3(v) + · · · + λn In(v))2
. (4)

The same identity holds with v′ instead of v, and since Ij (v) = Ij (v
′) for j �= 2, we can

deduce that I2(v) = I2(v
′), too.

As we noted before, the equality of the invariants implies that 	′ is the image of 	

under an element of G, so there are no other common tangent lines.
The identities (2), (3) and (4) also show that none of the Ri is identically 0, so for

general choice of v and aj , 3 ≤ j ≤ n, we will obtain smooth quadrics.
(b) To obtain spheres, we just need to set λj = 1 for 3 ≤ j ≤ n. The centres are

affinely dependent as they are in the hyperplane xn = 0.
We now try to make the radii equal. In the case of spheres, Ri is the square of the

radius of the i th sphere. By (3), the solution of the equation R1 = R2 j (3 ≤ j ≤ n − 1)
in general is

aj = ±
√

2q(v) − (v2
1 + v2

2)

2λj (q(v) − λjv
2
j )

.

In the case of spheres the denominator does not vanish and the solutions for the aj are
clearly real. Therefore given any sufficiently general direction vector v, we can choose
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the aj such that all the spheres, except for the one centred at the origin, have the same
radius. The identity (2) shows that we cannot make all the radii equal.

(c) We now consider the possibility of making all the Ri equal, so that the quadrics are
translated images of each other. By combining (2) and (3), we obtain λj a2

j (q(v)−λjv
2
j ) =

0, so λjv
2
j = q(v) for 3 ≤ j ≤ n. By (2), 2q(v) = v2

1 + v2
2 > 0, so we must have λj > 0

for 3 ≤ j ≤ n. We have

q(v) =
n∑

i=1

λiv
2
i = (n − 1)q(v) + λnv

2
n,

hence λnv
2
n = (2 − n)q(v) < 0, so λn < 0.

Given λ3, . . . , λn−1 > 0 and λn < 0, the construction is the following. Choose real

numbers v1 and v2 such that v1v2(v
2
1 − 3v2

2)(3v2
1 − v2

2) �= 0. Set vj =
√

(v2
1 + v2

2)/2λj

for 3 ≤ j ≤ n − 1, and vn =
√

((2 − n)(v2
1 + v2

2))/2λn . v3, . . . , vn are all positive
real numbers. aj for 3 ≤ j ≤ n can be an arbitrary non-zero real number. With these
parameters, the Ri , 1 ≤ i ≤ 2n − 2, are equal, so the quadrics constructed are translated
copies of each other.

By substituting the above values for vj , 3 ≤ j ≤ n, into (4), R1 can be expressed in
terms of v1 and v2 as

R1 = v2
2(v

2
2 − 3v2

1)
2

2(2 − n)(v2
1 + v2

2)
3

+ 1

4
.

This expression is not identically 0, so for general choice of v1 and v2 the quadrics will be
smooth. The maximum of R1 is 1

4 , and the minimum is (n −4)/(4(n −2)). If n = 3, then
R1 can take both positive and negative values, so this construction can give hyperboloids
of both one sheet and two sheets. If n ≥ 4, then the minimum is non-negative, and we
obtain quadrics of one topological type only.
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