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Abstract. A uniform polyhedron has equivalent vertices and regular polygonal faces.
An established set of 77 Wythoff symbols effectively describes the dynamic kaleidoscopic
constructions of uniform polyhedra. The main combinatorial and metrical quantities of
uniform polyhedra and their duals are presented as closed-form expressions derived from
the Wythoff symbols.

1. Introduction

The standard definition of aniform polyhedrons a polyhedron that has regular faces
and a symmetry group that is transitive on the vertices. Such a finite figure consists of
one or more kinds of faces that are regular plane polygons which meet two to a side
(edge) and which are arranged alike around every vertex. With the restriction that no
subset of faces has these properties, we exclude a compound of two or more uniform
polyhedra.

The 77 kinds of uniform polyhedra are separated historically and naturally into the
5 Platonic solids (convex regular polyhedra), the 13 Archimedean solids (convex semi-
regular polyhedra), the 4 star polyhedra of Kepler—Poinsot (hon-convex regular polyhe-
dra), the 53 non-regular star polyhedra, and the 2 infinite families of uniform prisms and
antiprisms.

The complete set of Wythoff symbols is an established system of notation that effec-
tively describes the dynamic kaleidoscopic construction for each uniform polyhedron
[7]. The main combinatorial and metrical quantities of uniform polyhedra are presented
here as closed-form expressions derived from the Wythoff symbols. This direct approach
differs from previous algorithms which involve numeric iterations [14], [21]. A vertexin
Cartesian coordinates is located first by one of two different methods (snub case versus
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non-snub case) after which formulas apply to all uniform polyhedra. The known quanti-
ties of a uniform polyhedron are then used for deriving expressions for the corresponding
dual polyhedron.

The concepts, terminology, and many of the symbol conventions used in this paper
follow primarily [5] and [7]. Important relations known to be in the literature are ref-
erenced as such. To simplify the relationships, all derived metrical quantities are based
on uniform polyhedra of edge-length 2 except where indicated. The formulas, most of
which are new, are presented in ways that adapt well to symbolic computer program-
ming. In this regard, the author has written a program usitaghematica(Wolfram
Research, Inc.) which renders the labeled vertex figure and returns the important set of
exact metrical quantities for the uniform polyhedron given by its Wythoff symbol. Other
availableMathematicaprograms render the complete uniform polyhedron or its dual
[21], [38].

2. A Brief Review of Wythoff’s Kaleidoscopic Constructions and Symbols

Except for one non-Wythoffian case, uniform polyhedra can be generated by Wythoff’s
kaleidoscopic method of construction. In this construction aninitial vertex inside a special
spherical trianglé®QRis mapped to all the other vertices by repeated reflections across
the three planar sides of this triangle. Likewise in such a trihedral kaleidoseq}e,

and all its images must cover the sphere an integral number of times which is referred
to as the densityl of PQR The densityd > 1 is dependent on the choice of angles
w/p,w/q, w/r at P, Q, R, respectively, wher@, q,r are reduced rational numbers
greater than one. Such a spherical triangle is called a Schwarz triangle, conveniently
denoted(p q r). Except for the infinite dihedral family afp 2 2) for p = 2, 3,4, ...

there are only 44 kinds of Schwarz triangles [5], [7], [18]. It has been shown that the
numerators op, q, r are limited to 2, 3, 4, 5 (4 and 5 cannot occur together) and so the
nine choices for rational numbers are 2334, %, 5,3, 2, 2.

Wythoff’s kaleidoscopic constructions fall into one of the four polyhedral symme-
try groups: dihedral, tetrahedral, octahedral, or icosahedral. The latter three symmetry
groups correspond to the largest numerators 3, 4, and 5, respectively.

There are only three Schwarz triangles that lthve 1. They are the so-calleddlbius
triangles(2 3 3), (2 3 4), (2 35), spherical triangles which are the fundamental domains
for the tetrahedral, octahedral, icosahedral symmetry groups, respectively. The sphere
is covered byg Mobius triangles wherg is the order of the full symmetry group, that
is, g = 24, 48, or 120 respectively for tetrahedral, octahedral, or icosahedral symmetry.
It is known [7] that(p g r) consists ofd Mobius triangles of the same symmetry kind
whered = (g/4)(1/p+ 1/9 +1/r —1).

In the course of Wythoff's kaleidoscopic construction we find that edges join vertices
reflected across the sides shared by adjacent Schwarz triangles. However, in the case
of snub polyhedra, vertices are generated by an even number of reflections and edges
correspond to vertex reflections across the sides of two sequentially adjacent Schwarz
triangles [7].

The Wythoff symbol appears simply as a left-to-right sequence of four elements
consisting of the three rational numbersy, r introduced above and one vertical b&r “
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which separates the numbers into subsets. The choicgs €pr and the four possible
placements of[” in the Wythoff cases,

plar, pqlr, parl, [ par

suffice to describe the constructions for all uniform polyhedra except for the one non-
Wythoffian case. The relative placements @fdenote the four ways to select a podt

in spherical trianglép g r) so that it traces the vertices of regular polygonal faces all
having the same edge-length:

plqr C is the vertexP of (p g r).
pqglr C lies onthe ar®Qof (p q r) and on the bisector of the opposite anBle

pqgr| C is the incenter of p q r) which is equidistant from the triangle’s three
sides.
lpqr Cis aspecial pointifip g r) whose images under taking an even number

of reflections trace a snub polyhedron. The locatio afepends on the
solution of the quartic equation (4) in Section 6.

Itshould be stressed that Wythoff constructions can be applied to anyjofatSchwarz
triangle (p q r), leading to isogonal (vertex-transitive) polyhedra. However, only with
the special choices @ listed above will the resulting faces bbegular polygons, and
the polyhedra uniform. Furthermore, onlypf g, r are all integers will the resulting
uniform polyhedra be convex.

Varying the order of the numbers within a subsepof], r does not affect the kind of
uniform polyhedron. Excluding such redundancies, the other permutations of Wythoff
symbols (using " and the set of nine rational numbers) do not always produce new or
valid polyhedra as some are degenerate forms. Consider, for example, that the regular
octahedron 4 2 3 canalso beinterpretedas23or| 22 3. Such equivalencies are made
apparent in the next section where we derive the cycle of faces that surround each vertex.

The final tally of uniform polyhedra has been proven to be only 77 [33]-[35]. They are
listed in Appendix B for quick reference and the complete set is figured in [7], [14], [18],
[38], and [39]. One can find instructive images of all the uniform polyhedra and their
duals on the Internet, some of which are virtual reality models that the user can spin [3].

3. The Vertex Figure and Vertex Cycle of a Uniform Polyhedron

It is desirable to regard the vertices of the “vertex figure” as lying at unit distance from
one vertex of the polyhedron along all edges incident to this vertex. In this respect,
every uniform polyhedron has a characteristic planar vertex figure which is a cyclic
polygon having a signed sidg = 2 cogx/n) corresponding to each regulasgonal
face incident to a vertex of the polyhedron. The circumradius of the vertex figure is
denoted byp.

Auniform polyhedronis frequently described by its vertex cycle symbpal,- - - - -n
where{ni}, {nz}, ..., {ng} are thek faces that surround each vertex. We {rgeo denote
a regularn-gonal face for reduced rational > 1. Appendix B lists the 77 Wythoff
symbols together with the corresponding vertex cycle symbols which tend to be more
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intuitive than the former. The relation between the two kinds of symbols is established
by the following observations:

If n > 2,then{n} is an“ordinary” face and the corresponding positive sigex 0,
of the vertex figure subtends a positive (counterclockwise) central angle.

If n = 2, then the side of the vertex figure corresponding to the digon face reduces
to a point. Hencg2} is eliminated from the cycle of faces whenever it appears
in the conversion of Wythoff symbol to vertex cycle symbol.

If1 < n < 2, then{n} is a “retrograde” face which corresponds to a negative side,
vn < 0, and negative central angle.

Some published vertex cycles give the ordinary notations 2 for faces that are
actually retrograde. It is important to recognize and preserve the two basic kifwls of
that compose the vertex cycle as certain calculations depend on this distinction. If the
retrograde form of ordinaryn} is denoted{n’}, thenn’" = n/(n — 1) and so we have

the complementary relatioryfh + 1/n’ = 1. For example{g} is the retrograde form

of {g}. It is further observed that the ordinary or retrograde fagehas nunin) edges

and has a polygonal density that is the denominator of the ordinary formttére and
throughout, nurtx) denotes the largest numerator in axet {ny, ny, ...} of reduced
rational numbers; .

Figure 1 illustrates retrograde triangle fac{%s} of the uniform polyhedron with
Wythoff symbol% 4| 4 and vertex cycle symb@ -8-4. 8. Figure 2 is the associated
vertex figure which is inscribed in the circle of radipsand which shows retrograde
winding of the side that corresponds {té}. Figure 2 could be interpreted as having
vertex cycle 3 8- ‘é‘ - 8 with retrograde square faces. However, the latter vertex cycle
symbol would need to associate with Wythoff symb@ 84 which essentially leads

Fig. 1. Uniform polyhedron3 4 | 4 with vertex cycle3 - 8- 4. 8.
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Nw

Fig. 2. Vertex figure of3 4| 4.

to the same polyhedron 334 | 4. For such equivalencies Coxeter et al. [7] discard the
Wythoff symbol derived from the larger colunar Schwarz triangle (see Section 5). The
foregoing associations are made clear as we now summarize the conversion of Wythoff
symbol to vertex cycle symbol.

p | q r yields vertex cycleq - r)? which expands t@ -r - q-r-,...,q-r. By
expressing as the reduced fractiam, /d,, we observe that portion - r is repeateah,,
times in the complete vertex cycle that wirdstimes around the polyhedral vertex.

p q|r yields simply vertex cyclg - 2r - q - 2r.

If all denominators (including 1) op, q.r are odd, therp g r | yields the vertex
cycle 2p-2q- 2r except when an angle of the (triangular) vertex figure is obtuse. If this is
the angle oppositey so that(vyp)? + (v2q)? < (var)?, then the cycle i€2p)’ - (29)' - 2r,
wheren’ = n/(n — 1).

If just one ofp, g, r in p g r | has an even denominator, let thisrét follows that
the incenteC of spherical triangl®QRIlies on the bisector & which also corresponds
to a reflection plane in the symmetry group. In the course of tra@pgyand{2q} about
centersP and Q, respectively, the images &f reflected acrosRP andRQtrace a{2r }
twice about centeR. This leads to the curious vertex cycle 2p-2q - 2r - 2q - 2p
consisting of twd2p}’s, two {2q}'s, and &2r } traversed twice. By discarding the double
{2r } we are left with an acceptable one-sided polyhedron whose vertex figure is a crossed
guadrilateral (“butterfly”). In traversing the crossed quadrilateral we notice a reversal in
direction and so the vertex cycle i922q - (2p)’ - (2q)’. For these cases qgf q r |
Coxeter et al. [7] use the hybrid notation

r
Pag
wherev, anduv,s are the distances spanned by the two vacant bases of the crossed
guadrilateral vertex figure. While not a true Wythoff symbol, the hybrid notation is useful
as the same polyhedron is derived frpng s| wherestoo has an even denominator. The
guantities are related by Ptolemy’s theorem:(sgh p) vy vos = (vzq)2 - (vzp)z. Here

and throughout, sgr) = 1 for x > 0 while sgrix) = —1 for x < 0. For convenience,
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the hybrid notations are included in Appendix B instead of the separate Wythoff symbols
pqgrlandpqsl.

Snub notation p q r yields vertex cyclgp-t-q-t-r -t where intercalatingjist = 3
or g A useful algorithm fort ist = 6/(3 — sgnp — 1/+/3)). Here and throughout,
A = 0 or 1 depending on whether the Wythoff symbol signifies dihedral symmetry or not
dihedral symmetry, respectively. Dihedral symmetry exists when 2 occurs twice among
the Wythoff elements, that is, uniform prisrp< | 2 and antiprisms p 2 2. We observe
that when. = 1, an occurrence of eIemeglin | p qrforces the intercalating triangles
in the vertex cycle to be retrogrades g in order to preserve the consistency of signed
measurements used in later formulas. The effect of circumradaighe vertex figure
is further discussed in Section 6.

The pseudo-Wythoff symbdl p g r s identifies the sole non-Wythoffian uniform
polyhedron| 3 3 2 2 which yields vertex cycle 34- 2-4.3.4. 2.4,

A useful exercise in reverse is to determine the Wythoff symbol directly from a given
cycle of the variougn} surrounding a vertex.

4, Enumerative Quantities

Order g of the full symmetry group for Schwarz triang(@ q r) is given byg =
4d/(1/p + 1/9 + 1/r — 1) where densityd for the higher polyhedral symmetries is
discussed in Section 2. This expression also applies to dihedral symmetry where we find
d to be the denominator g in (p 2 2). For programming purposes a useful algorithm
that does not requirgis g = (4)(6*)(n+ A(n — 2)(n —5)) wheren = num(p, g, r) and

A = 0 or 1 as defined in the previous section. A figure that possesses at least one plane
of symmetry is said to be “reflexible.” Thus, a reflexible uniform polyhedron has either
dihedral symmetryn > 2, g = 4n), tetrahedral symmetrgh = 3, g = 24), octahedral
symmetry(n = 4, g = 48), or icosahedral symmetiyy = 5, g = 120). Non-reflexible

snubs casesp g r and| p q r shave rotational symmetries of ordgf2.

Various combinatorial and metrical quantities associated with uniform polyhedra can
be calculated directly from their Wythoff symbols. We begin by enumerating the vertices,
edges, and faces of a uniform polyhedron. Denofigg= number of verticesN; =
number of edges, an, = total number of faces which consistiofaces of fornim},

j faces of form{n}, ... wherei 4+ j + --- = Ny, we then have:
Wythoff symbol No
9
plar 2nump)

g .1 1 g 9
pqlr Zlf—p+a_1andr<8,othervvlse2
par| g

r 9
pqs 5

g
lpqgr >

9
Ipars >
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NoNoz

—

whereNp; is the number of edges at each vertex, which is the number of elements in the
vertex cycle denoted blyin Section 3 [7].

Ny =

_ NoNoz
"2 humin)
is the number of face kin¢ih} where N, is the number of occurrences f@f} in the
vertex cycle [7].
N> = Z nN2

represents the sum gN, over the (hon-repeated) kinds ofthat occur in the vertex
cycle.

5. A Vertex of a Non-Snub Uniform Polyhedron

In this section and the next we present expressions for coordinates of vertices of the
various uniform polyhedra. The main part of this is the determination of one vertex in
relation to the symmetry group of the polyhedron. We begin here with the non-snub
uniform polyhedra.

The location of the initial verteg, y, z) depends on the specific Cartesian orientation
of the spherical Schwarz triangle q r) that contains the vertex. The specific orientation
of (p q r), geometrically denoted &0QR is such thaR lies on theZ-half-axis:Z > 0;
P lies in theXZ-half-plane:X > 0; Q lies in theXYZhalf-spaceY¥ > 0.

The expression

N = /—cosScogS— A) cogS— B) cogS— C)

is encountered in advanced treatments [36] of spherical triahBleé where half the
sum of its angles i$ = (A+ B + C)/2. We instead use a more convenient expression
H = 2N in discussing the uniform polyhedra. Accordingly, quankity is expressed in
terms of the Wythoff elements by any of these symmetrical forms:

T T
1 —COS— —COS—
q r
T T
H2 = |—-cos— 1 — COS—
q p
4 T
—COS— —COS— 1
r p

= 1-co2r —co2” —co2” —2cos” cos cos™
p q r p q r
g T T
_4 _Z _Z _ =
cogS) cos(S p) cos(S q) cos(S . )

(o302

where S=

N
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An interesting known relation for example is
2

N2 = HT = cot(Ry) cot(R;) cot(Ry) cot(Rs)

whereRy is the angular radius of the small circle circumscribed aBPQRandR;, R, R
are the angular radii of the circumcircles for each of the three colunar triangRs3Rf
The three colunar triangles #fQRare Schwarz triangleP’'QR PQR, PQR, where
P/, Q’, R are antipodes oP, Q, R, respectively. More relationships involvirtd ap-
pear in Section 9.
We begin by scaling the oriented spherical triarfgfgRso thatP, Q, R are each unit
distance from the origin. Using standard methods of spherical trigonometry and analytic
geometry, we determine the Cartesian coordinatd3, @, R to be

< H 0 cog7/q) + cogx/r) Cos(rr/p))
sin(r/r) sin(r/p)’ sin(z/r) sin(z/p) ’
Q: ( H H cogw/p) + cogn/q) cos(yr/r))

' sin(zr/q) tan(zr/r)’ sin(r/q)’ sin(z/q) sin(/r) ’
R: (0,0,1).

FromP, Q, Rwe can next determine the normal equations for the three planes (Schwarz
planes) determined by sid&s, RQ, PQ of PQRas follows:

PlaneRP: y=0.

PlaneRQ: (sin 7:-) X — (cos%) y=0. (2)
PlanePQ: (_ COE(]T/Q)__COSM/ P cos(n/r)) X— (cosz) y+< : H ) z=0.
sin(z/r) p sin(z/r)

Depending on the choice of Wythoff case, the vertexy, z) will either be distance

0 or 1 from each of the Schwarz planes assuming edge-length 2.(Xhuysz) is the
simultaneous solution of three distances from the three Schwarz planes. The vertex
coordinategXx, Yy, z) in terms of the specific ordg, g, r and Wythoff case type; are
generalized as follows:

1+ o1c097/r)
= —=—F" y =o1;
sin(z/r)

T s T T . T
((cos— + cos— cos—) X+ (Uz + Cos—) (sm—) Y> /H,
q p r p r

whereo; = 0 for the first Wythoff casep | q r, otherwises; = 1; ando, = 0 for
the second Wythoff casp q | r, otherwises, = 1. The remaining vertices may be
traced by successive reflections across the Schwarz plaf@RfMore specifically,
the reflection of the pointxg, Yo, Zg) across a plane with normal equation form

®3)

z

UiX 4+ Uy +Usz=0: W2+ ud+u2=1

is the image pointxg — uy f, Yo — ux f, g — uz f) where f = 2(u;Xo + Uzyo + UsZp). In
the literature this image is usually expressed as the product of a vector an8 a8trix
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M of reflection. Accordingly, the image of the poitXy, Yo, Zo) is the point ko Yo Zo] M
where

1-2u? —2uju; —2uzuz

M=|-2uu; 1-2ui —2uuz

—2usu; —2ugup 1-—2u}
An interesting problem for each uniform polyhedron is to map a Hamiltonian circuit
of non-repeated vertices among tRg vertices using only the three Schwarz planes of
PQRas reflection planes. Starting with vertes, Yo, Zo), such Hamiltonian circuits are
generated by certain orders of successive kaleidoscopic reflections with the modification
that vertices of snub polyhedra are produced by the even reflections (see Section 2).
Difficulty arises from the fact that the necessary order of reflections across the three
Schwarz planes cannot be regular repetitions.

6. A Vertex of the Snub Uniform Polyhedron| pqgr

The rules for orientingPQRof | p g r are outlined in Section 5. To determine the
coordinates of a snub vertex PQRwe begin with the signed sidag of the vertex
figure as defined in Section 3:

/4 /4 T
a:vp=2cosB; b=vq=2COSa; c:vr=2cos?.

Then fromH?2 as specified in (1) we make use dfl4 = 4 — a? — b? — ¢ — abc

The location of the initial snub poi@ in PQRrequires that its reflections in the side
planes oPQRproduce the vertices of the appropriate equilateral tria@¢B¥ C"” which
corresponds to the snyB} of | p g r. PointC is then a vertex of anothémp q r which
is enantiomorphic to the snub polyhedron with f&&€”C"”. Coxeter et al. [7] obtain
a natural coordinate system by lettirgy, z denote the distances &f from the three
planes and show that the conditions for sfiBjorequirex? —ayz = y? — bzx = 22 — cxy.
Eliminatingz = (x? —y?)/(ay — bx), Coxeter et al. obtain a quartic equation in variables
x andy which we modify here by setting= 1 and changing to ourw:

(1 —b*w* + b@a—bow® + 2(@abc— Hw?+ab—-adw+1—-a’=0. (4

The Cartesian coordinat€s,,, V., Z,) of vertexC are derived from the simultaneous
solution of the three distances, 1, (w? — 1)/(a — bw) from C to the sides oPQR
whose equations are specified in (2). The case of two positive quartic roots is discussed
at the end of this section.

A convenient set of vertex coordinates,, v, z,,) for | p g r scaled to edge-length

1 LT
e, =4s|n?\/m= ZSlnr—,/Xf} +y2

w = 2w +C; w=25in7:—=\/4—c2;

_ (@ —bH(w? +cw+ 1) + 4H?(w? — 1)
v 2H (a — bw) ’

()
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Thus, vertex(kx,, ky,,, kz,): k = 2/e, corresponds to the snub polyhedron of edge-
length 2.

As an alternate approach to determinkngonsider anglé at the polyhedron’s center
which is subtended by a half-edge and circumsphere rgéias defined in Section 8. If
avertex(Xy, Yu, Zw) in PQRIs oriented as described, then specifically for snub uniform
polyhedra we have the relation

b4 T 72
cos¢ = [coR — +siP— [ ——2
¢ \/ r r(xl%+y3)+z§)>

and sop = cos ¢ when the edge-length is 2. Then from (6) we have

1 1
1—p2 sin(r/r)y/1—22 /(X2 +y2 + 22)

oR=

and so the desired vertex(ex,, ky,,, kz,): k = oR//X2 + y2 + 22 which applies to
snub polyhedra of edge-length 2.

A snub polyhedron is reflexible if two of the Wythoff elememtsq, r are identical.
Unfortunately quartic equation (4) fails to produce a viable root whes q for the
first two ordered elements. For example, if the Wythoff sympal g r is such that
p=q=30orp=q = %’ then quartic equation (4) reduces to the insoluble case

w?—2w+1=0,thatisw = 1regardless af. Accordingly, the reflexible snup3 2 2
must be taken as3 2 2 which is obtained by permuting the elements of the Wythoff

symbol. Here different permutations pf g, r produce the same polyhedron but with
different Cartesian orientation and with differext. Thus, one simple way to resolve

a case of two simultaneous positive quartic roots is to permute the cycle of elements
p, g, r and then reapply the quartic equation until one positive root occurs. However, a
more direct method is to select the one positive root which giviesm (X, Yu, Z,) SO

that the algebraic sum of the central angles subtended by the sides of the corresponding
vertex figure is a multiple of 2. This condition is satisfied by

sin (sgn( * )3arcsin< ! >+arcsin< a >+arcsin< b >+arcsin( ¢ )) =0
V3 2p 2p 20 20)) 7

The hypothetical cage? 2 2 produces an equilateral triangle vertex figurg ef 1/4/3

which we interpret to be a pivotal state between vertex figures that encircle the center
once or twice. Thus, we observe that fop q r wheni = 1, conditionp > 1/+/3
relates to snub triangld8} and central angle sumz2while conditionp < 1/+/3 relates

to snub triangle$§} and central angle sum4zr.

7. A Vertex of the Sole Uniform Polyhedron| pqrs

Non-Wythoffian case 3 2 2 2 is closely related to snub case3 3 2 in that both

polyhedra share the same vertices. Thus, we obtain a non-Wythoffian vertex by applying
the previous formulas to the related snub case.
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8. Metrical Quantities of the Orthoschemes

The orthoscheme corresponding to eathof the uniform polyhedron is a “quadrirect-
angular” tetrahedro®,0; O, O3 which has four right triangle face®y 0, O,, Og01 03,
000,03, 0;0,03, and three mutually perpendicular edg@s©;, O; 0., 0,03, where

Oy is a vertex of the polyhedrom®; is the midpoint of an edge); is the center ofn},
and Og is the center of the polyhedron. Angl@,O,0; is simply 7/n, the angle sub-
tended by a half-edge at the centefiof. Subsequent expressions are simplified if we
set half-edgédy O, to 1 and use the following notations:

ofn=000,, the circumradius ofn}.

1 =010z, the perpendicular distance (apothem) to the sid@pfrom the
polygonal center.

oR=0y03, the circumsphere radius.

1R=0;03, the midsphere radius.

2Ry=0,043 the insphere radius fdn}.

¢ =0g0304, the angle aD; subtended by a half-edge.

xn= 0p030,, the angle a3 subtended byr,.
Yn=0,030,, the angle a3 subtended byr,.

dmn = the dihedral angle & 6mn < 7 at the edge shared Hyn} and {n} where the
distinction between an ordinary and a retrograde face is impoantis that dihedral
angle which enclose®; even if Oz is contained by one of the faces. If one face is
retrograde but not the other, then the dihedral angles, , encloses a “locally interior”
portion of the polyhedron.

Beginning with this section, quantities are expressed in terms/nfand¢. More
specifically, we favor using the trigopnometric constantsgseph) and cot¢ because they
frequently provide the most concise expressions. This consistency will expedite the task
of computer programming.

For any vertexx, y, z) of a uniform polyhedron of edge-length 2, we derive these
familiar right triangle relationships of the orthoscheme:

1
oR=/x2+y2+22=/cofk ¢ + 1=csCo = —
—p
(6)
R 1
1R=cot¢ =/oR2-1; p:COSq):l—: 1-—.
oR oR?

A retrograde element’ of the vertex cycle must first be changed to its ordinary com-
plement fornmn for this set of calculations:

1 =cot£; ofn —csct = c0t2£+l; 2R, = . /cot ¢ — cot z;
n n \ n V n

_ Jeof(m/n)+1 _ _ cot(z/n)

“Vcofor1 - T Tootg

. . T
sin xn = sin ¢ csc—
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A retrograde element is not changed to its ordinary form for dihedral angle calcula-
tions [22]:

oSS - — cot(r/m) cot(r/n) — /(co? ¢ — coB(xr/m))(col ¢ — col(xr/n))
mn co ¢ '

arccos<400t(ﬂ/ m > + arccos(Lt(n/ m)‘
cot¢ cot ¢

is an expression which reveals the sum of the two component dihedral angles that occur
between a common plane throu@h and the correspondingrgon facial plane. Thus
Sm.n IS the lesser 0B Or 21 — Bmn.

Note that

.Bm,n -

9. Expressions forg in Terms of the Wythoff Elements

Using the non-snub initial verteg, y, z) specified in (3) and the relation éap =
x2 4+ y?2 4+ 72 — 1 derived from (6), we express cgtin terms of the three elements
p, g.r in the Wythoff symbol. Quantityd from (1) in Section 5 appears as a factor
in the compact relations that follow. Deeper significance of this quantity is seen in the
relationH = sin(sr/ h) where the definition of “Coxeter numben’in [5] is extended to
the general Schwarz triangl@ q r) such that co&z/h) = cog(r/p) + co(/q) +
cog(r/r) + 2cogm/p) cosm/q) cosm/r) in [18].

Rational values foh relate to the symmetry group of the Schwarz triangle as follows:
dihedral(2 2 p): h = max(p, p’); tetrahedralh = 4; octahedralh = 6; icosahedral:
h =6, 10, or1—3°. The corresponding values fét are

1 1 : 11
tetrahedral: H=—; octahedral: H=—; icosahedral: H=—-, —, or E,
V2 2 2’ 2t 2

wherer = (1+ +/5)/2 is the golden ratio.
We first express cap for all non-snub uniform polyhedra as

T T\2 2 T T
cotgp = cscr— |:(01 + cos?> + (1/H%) <cosB (al + cos?)

21/2
+ cos% (1~|— o1 cos?) + o105 Sir? ?) } , @)

whereo; = 0 for the first Wythoff case | q r, otherwises; = 1; ando, = 0 for the
second Wythoff case q | r, otherwises, = 1.
The right side of (7) can be simplified for specific Wythoff cases as follows:

[1 . ,n

Forcasep|qr,
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from which we derive the compact relation

. T . T
sing = CSCB SII’]F.

Forcasepq|r,

1 T T T T
cotp = — [(1+cos—) |1+ cos— + 2coS— coS—
¢ H \/( + r ) ( + r + p q)

from which we derive
sin(rr/ h)

sing = .
V(2 cogm/2r))? — (cosm/p) — cosw/q))?

Forcasep qr|andp qrS

cotgp = 4 COS_- COS_- COS_- = 4 COS_— COS—- COS— CSC-
T H T2p 29 T2r 2p 29 2r h’
wheres may be substituted far.
For the snub casep g r we make use of the vertex figure sides defined in Section 3
by assigning

a=vp=ZCosz, b=vq=ZCOSz, c=vr=2cos£,
p q r
s=a%+b?+c? t=abc and u=a?b?+ b?c? + c?a?
Then cotp = (2 — Y)~Y/2 whereY is a real root of
L-t)Y*+@Bt —uwY3+Bu—2s—shY2+t(3s—t — 8)Y +5°+3t>—4u=0. (8)

A similar fourth-degree “snub equation” has been described by Coxeter et al. [7, equa-
tion 10.3] in the variableX = 1 — tarf ¢. It is simplified to (8) in the variable

Y = 2 — tarf ¢ by making the substitutioiX = Y — 1. From relations (6) in Sec-

tion 8, other important quantities can now be expressed in termy¥§ fér example
p?2=1/3-Y).

In most snub cases the quartic polynomial expression in (8) will factor and the relevant
roots are found in a quadratic or cubic equation as summarized in Appendix A. For the
notable snub subs¢l 3q or| 2 "—3 g the quartic polynomial in (8) will factor, leaving
the relevant roots in the cubic equation

2
Y3—Y2—Y+1—4co§%=Y3—Y2—Y—1—2005§=O. (9)

Section 12 discusses hovis related to the characteristic facial twists of sH@bin
| 23qQ.
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Fig. 3. Face of dual of 4] 4.

10. Duals of Uniform Polyhedra

Many of the previous terms and symbols used for uniform polyhedra are also used for
the duals. A simple description of the dual (reciprocal) of a parent uniform polyhedron
is a polyhedron that has the same numld&r, of edges as the parent but there is an
interchange in the number and placement of faces and vertices. Thfis} ahthe
parent yields a regular-gonal vertexV, of the dual polyhedron whe, lies on the ray

Og_c))z. Moreover, the dual polyhedron hak identical (or enantiomorphically paired)
faces, each k-sided polygon defined by the verticég, Vy,, . .., Vi, which follow the
order noted in the parent vertex cyelg- n, - --- - ng described in Section 3. Duality
implies that the circle which circumscribes the parent vertex figure also inscribes this
dualk-gon. Therefore, the sides of thkegon are simply the tangents constructed at the
vertices of the parent vertex figure.

Figure 3 shows the dual face constructed around the vertex figtgeﬂfqm which
is also shown in Fig. 2 with labeled sides. Duals of non-convex uniform polyhedra have
parts of their faces (often including some vertices) hidden from outside viewing. In Fig. 3
only the shaded portions of the dual face are visible on the surface of the complete dual
polyhedron shown in Fig. 4. The corresponding parent uniform polyhe§1r4)m 4is
shown in Fig. 1 at a different scale and orientation. It turns out that the dual of

[N)
N
NS NIw

has the same outward appearance as Fig. 4 because each of its dual faces is exactly the
shaded portions shown in Fig. 3. More of such apparent dual equivalencies and details
for constructing all the duals can be found in [41].
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Fig. 4. Dualof$ 4] 4.

The following additional symbols are used for the duals:

yn = distanceV,,Os.
&n.n, = dual edge-lengtVy, Vi,.

an = dual face angle a¥,,. There are nurfm) equal dual face angles that emanate
from V.

3R = insphere radius of the dual polyhedron, distance ffsro dual face.
8’ = dihedral angle between two adjacent faces of the dual polyhedron.

p = radius of the circle inscribed in the dual face (= circumradius of the parent
vertex figure).

Metrical quantities here are specifically for the dual whose edges are tangent to the
midsphere (radiugR) of the parent uniform polyhedron of edge-length 2. Calculations
are based on polar reciprocation with respect to this sphere [41]. Accordingly, these
relations are generally known:

!/

)
¥+2p=m  sing=cosp=p;  (mGR) = 1R? = (LR (R);

sR=pUR) = p?(KR).
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The subsequent relations in this section are newly reported beginning with

cot ¢ _
Jco ¢ — col(/n)’
— 1 1 .
- JVtark(/ny) — tar? ¢ * Jtark(r/ny) —tar? ¢

cos% _ cogm/n)
2 CoS¢

Yn =

Note that because fa¢2r } is equatorial,Ry = 0)incasesopq|r: 1/p+1/q =1,
we havep = 7/2r and soy, becomes infinity.

We now briefly discuss some analytic geometry of dual polyhedra.

If (X4, Yu, 2Zu) is a vertex of the parent uniform polyhedron, then the reciprocally
related center of the incircle of the dual facé(sR/oR)Xy, (sR/0R)Yu, 3R/0R)zy) =
(0%Xu, p°Yu, p%z,). The corresponding dual facial plane is represented by the equation
in normal form(x,/0R)X + (Yu/oR)Y + (zu/oR)z — 3R = 0 or in convenient form
(W)X + (Y)Y + ()2 = 1R® = cof ¢.

By using the scaling factor/p? = oR/3R = 1R?/3R? = (R?/1R?, we expand the
current dual whose edges are tangent to the midsphere to the larger dual whose faces are
tangent to the parent’s circumsphere (ragie3.

The equation of the corresponding facial plane of this expanded dual has the normal
form (xy/oR)X+ (Yu/oR) Y+ (zu/0R)z—¢R = 0 or the convenient forrx,)X + (Y)Y +
(z)z = oR2.

The Cartesian coordinates of dual vertidgs Vg, V; are determined from each of
P, Q, Rgiven for the parent uniform polyhedronin Section 5. For exampl& R yp, zp)
is unit distance from the origin and so we have the reciprdgal(ypXp, ¥pYp, YpZp)-

V, is also(kA kB, kC) wherek = y,/+~/ A2 + B2 + C? and A, B, C are coefficients in
the general equatiofix+ By+ Cz+ D = 0 of the parent facial planig}. Itis generally

known from analytic geometry that the equation{pt is determined from any of its
three verticegxy, Yu, Z,) by

X y z
X1 Y1 2
X2 Y2 22
X3 Y3 Z3

= Ax+By+Cz+ D =0.

[

11. Some Simplified Formulas Unique to Regular Polyhedra

Regular polyhedra are uniform polyhedra with one kind of face as evidenced by their
Wythoff constructionsp | 2 q which yield vertex cycleg|P. They are the five convex
Platonic solids and the four non-convex star polyhedra of Kepler—Poinsot, all included
in the first group of Appendix B. A regular polyhedron, with faiggl and regulaig-

gonal vertex figure, is conveniently denoted by the &thymbol {p, q}. Note that



Closed-Form Expressions for Uniform Polyhedra and Their Duals 369

{p, q} corresponds to Wythoff symbaj | p 2 (orqg | 2 p). For these cases we use

X = Xp, w = 'l//p, and8 = 8p,p.
The vertex for{ p, q} of edge-length 2 that corresponds to orierdgdp 2 orq | 2 p
is respectively

(17 05 1R) or (Orpa 05 ZRp)a

where

—1
1RZ2=cof ¢ = (se@%siﬁ%—l) , orpzcscz,

(10)
2Ry = [cot ¢ — cot? %
Interesting known relations [5] fdmp, q} are
CcoS¢ cos” csc™ cos COS¢ COS Y = COS¢ Sin ) cot™ cot™
p q 2 p q

cosy = sin S _ cscn cos™
2 P q

Expressions foNg, N1, and Ny in terms of p andq are well known for the Platonic
solids [5]:

4p 2pq

Ng = , N; = ,
T 4—(p-2@q-2 T4 (p-2@-2

_ 4q
CA—(p-2(-2°

N>

12. Relative Facial Twists and Edge Lengths of the Snub Polyhedron

Ipg2: r=1
The family of snub polyhedra p g 2 wherep > 2,q > 2 is assigned the Sdfli
symbol S{S} In several references [2], [9], [17], [19], [20], [30], [32] we find examples

of the convex snub ponhedra{%} ,S {j} ,S z} encased by the propép, q} or {q, p}

in order to observe the rotation angle of snub fadeg sr s(q} relative to the copla-
nar Platonic face$p} or {q}. The specific associations for the convex cases &8: s
relates tof3, 3}, {3, 4}, or {3, 5}; s{4} relates tq{4, 3}; s{5} relates tg5, 3}. The regular

icosahedron3, 5} can be interpreted as{%} or| 2 3 3 which is encased in the regular

tetrahedror{3, 3}.

In this section we extend the encasing relationship to include non-convex snub cases
and retrograde casgsp gq 2 wherep < 2 andor q < 2. Facial twistd,, is defined
as the smallest angle between a symmetry line locally witlip} &nd a symmetry
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plane member of the full symmetry group that is superposed on the rotational group of
| pq2. Itfollows that 0< 6, < 7/2num(p) and specifically, = 0 for the reflexible
case| p q r whereq = r. Using Wythoff symbols as subscripts we generalize to
cOP ¢qjp2 = (s€(/p) sirf(rr/q) —1)~* from the relations in (10) used for the regular
polyhedrong | p 2. Thend, of | p q 2 is the least angle of the sfitr/ num(p) — |
wherek =0,1,2, ..., nhum(p) — 1 and

. T
sin B (cot @q|p2 COt P|pg2 + sgn2—aq)

X \/(cotZ $q|p2 — COP zp) (cot2 Ppge — COP %))

4
cot—

|l = arccos

For the non-retrograde case q 2 wherep > 2 andg > 2, we note thak = 1 for
example.
If we now assignp = 3, thatis| 3q 2 whereq > 2 orq < 2, a simpler expression

for 03 is
= — —arcsin-, | ——————.
=% "2\ 3¢ gpgz — 1

If p=23asin| 2 q2,then we must adjust @, = 7/3+£.
It has been shown in [17] that for the small famil (‘:'s or| 23qgwhereq > 2, each

extended side of the twiste{B3 intersects a vertex and a side of the encag3hof {3, q}.
The lesser of the two angles that an extended sid¢3pfrsakes with the sides ¢B} is
the same measurement as our deffjfdor p = 3. In terms obs, we find by elementary
geometry that the sides ¢8} are cut in the ratioY = (v/3cotf; — 1)/2. Rotge [30]
demonstrated that® — Y2 —Y — 1+ 2 cosA = 0 whereA s the (interior) vertex angle in
the face &q}. However,A = 7(1—2/q) and sowe hav#®—Y2—Y —1-2 cog2r/q) =
0 which is the same as (9) in variabfe= 2 — tar? ¢ that is associated with the snub
subset 2 3q in Section 9. From cofz = (1+ 2Y)/+/3, we obtain the compact relation
2tarf ¢ + +/3coth; = 5for| 2 3q whereq > 2.

For the retrograde case 3 g we must select the greater complementary twist angle
/3 — 603 so thatY = (+/3/2) cot(r/3 — 63) — 1 satisfies (9).

Identifying edges and insphere radii with Wythoff symbol subscripts, we calculate
the ratio of edge lengths whefig lies in{p} of q | p 2 from

€pa2 _ 2Rpaip2 _ \/COF $aip2 — COE(/ ) 11)

ez 2Rppgn | COB Pjpge — cof(/p)’

The subscripts in (11) could actually be changed to any two Wythoff symbols when
p-gon facial planes are shared by two uniform polyhedra.

In the next section facial twists for the snub cases other thag 2 are solved by a
general analytic geometry approach.
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13. Relative Facial Twists for Any Snub Polyhedron p q r

The Cartesian orientation of snub polyhedrgnq r as described in Section 5 specifically
places &} centrally and orthogonally about the-axis. Thus, the facial twist, is the
least angle of the séks/ num(r) — arctany, /x,)| wherek = 0, 1, 2 and

Yo _ Sin(T/r)
Xo w4+ cogm/r)’

The coordinateg,, andy, of the snub vertex in (5) are calculated by solving quartic
equation (4) in the variable in Section 6. As previously stated, specific caBéé%*—;

and| 3 2 2 are reflexible because two Wythoff elements are identical. Here we find
non-twisted sg} placed symmetrically about the reflection planes unli@ and s{%}
which are twisted. Similarly{ p} of antiprism| p 2 2 is not twisted. All facial twists for

| pgr: A =1aresummarized in Appendix A.

14. The Infinite Families of Uniform Prisms and Antiprisms

Although the formulas in previous sections apply to prisp® | 2: p > 2 yielding
p-4-4), antiprisms|(p22: p > % andp # 2yieldingp - 3- 3. 3), and their duals, a

few convenient simplifications for edge-length 2 are tabulated here. Antiprisms can be
separated into “ordinary antiprismsp (> 2) and “crossed antiprismig <p<?2

which have crossed vertex figures.

Prismp2|2: p>2 Antiprism|p22:p>%andp;ﬁ2
R_ 5 P g 1 o T
oR= /2+col 6 > 5+cot 2_p
b4 1 b4
1R= cotqﬁ:cscB 3 csc2—p
1 1
p=CO0S¢p=

V/ 14sirf(z/p)  1+4sirt(/2p)

1 tan il COS 4 1 (l 4cosn)
— ) 33=5|1— —
V3 2p 3 p

. 27
Dihedral anglessp 4= %; S44=m— 3 COSdp3=—

Dual face angle&p+ 24 =7 where Dual face angles, +3u3 =27 where

1
cosap=1-2sirf T cosag=sir? = cosap =—1+6cog T _4cod ™. cosuz==—cos”
p p p p 2 p
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Appendix A. Essential Equations and Angles for Uniform Snub
Polyhedra|pqgr

Each uniform snub polyhedron has a fourth degree “snub equation” (8) in the variable
Y = 2 — tarf ¢ as described in Section 9. A half-edge subtends apglethe center

O3 of the polyhedron. In most cases the quartic polynomial expression in (8) will factor
and the relevant roots are found in a quadratic or cubic equation as shown below. For
example, cases 3 3 2 and| 2 2 2 relate toY2 — Y — r = 0 where golden ratio

T = (14 +/5)/2 = 1.6180339887 and s¥ = (1 + +/1+ 4r)/2. Decimal results

are truncated, not rounded. Facial twégtis the (smallest) angle that the snub face
s{n} is rotated relative to the encasing fagg of the fully symmetric polyhedron that
encases the snub polyhedron. For the fami® 3 g whereq > 2 we have cof; =
(1+2Y)/v/3 and 2tah¢ + +/3cotd; = 5. Special cases2 3 3 and| 2 3 3 are
equivalent to the Platonic icosahedron 8 3 and the regular star icosahed@)m 23,
respectively.

lpagr Snub equation Y=2-tarf¢ ¢ (degrees) Facial twisk, for s{n} (degrees)
1233, , T 31.717474411 63=22.238756092
33 YAY2-Y-1)=0 L

1233 -~ 58.282525588 632 = 22.238756092

(234 (Y-1) 1.8392867552 21.84538355%3=20.315014336 0,=16.467560400
(Y3=Y2_Y-1)=0

(235 (Y—1) 19431512592 13.41063372093=19.517922567 05=13.106403376
(Y3-Y2-Y—-1)=0

1233 1.3990206456 37.783865694); =24.514783895 65/, =8.8920818930

1233 (Y+1t7h 0.4944394214 50.82040046%; =18.948438216 65/3="10.155303612
(Y3=Y2-_Y +tH=0

1233 —0.8934600671 59.5494331485/, =5.5663456794 65,3 = 16.952614494

1253 YA_Y3_3y? 150 1.8180755760 23.09950788%5=14.519275160 65/, =12.068113640

1253 - 1.4739876869 35.95214032%5=10.766941734 65/3=7.6119024894

1333 12 1.8667603991 20.05309336793=27.640276588 05/2=0
Y+17hH

335 (Y2=Y—1)=0

1333 —0.8667603991 59.4332738683/, =27.640276588 05/2=0

13553 (2Y-3) 17548776662 26.33993390103=10.518676134 05=7.1174491250
(Y3-2Y24+Y-1)=0 05/3=15.401415840

1333 WBY—t¥) Y+ 1 45 03=14.330332524 05,2 =15.772242400
(Y-1)2=0 05/3=15.772242400

Appendix B. The 77 Wythoff Symbols and Corresponding Vertex Cycle
Symbols

Wythoff symbols for the uniform polyhedra are grouped by type and listed in columns
according to the increasing numerical order of numerators and denominators. Vertex
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cycles preserve the symbols used for retrograde faces. See Section 3 for an explanation

373

of Coxeter’s “hybridized” Wythoff symbol used fqr q r | having an even denominator.

2134 (3-4)72 3123 3 3133 @3-3° 5|23 3
2135 (3-52 3|24 & 3153 (5-3)° 512 3 (3)°
2133 3-32 3|25 5 3135 (3-5% 5123 3”
2153 5-9? 3123 (3® 4123 3125 5”
p2|2:p>2 P-4-4(prismg
23|13 366 23|5 3-.10-10 3313 3.6.3-6 53|2 5.4.3.4
3 3 5,5 10 5 10 5 5
23/4 388 3312 3.4.3.4 333 3L3.Y 533 5.6.3.
234 3.8.8 3213 36-3.6 3312 3:4.5.4 523 5.6-2-6
235 3.10-10 3 3|5 3.10-3.10 3 3|5 3.10-3.10 5 3|5 5-10-3-10
2313 3 9% 3315 2¥.3% 3412 $4a4 3513 656
3 3 55,5 5 10 5 10
24|3 4.6-6 34|2 3.4.4.4 3414 3.8.4.8 3313 3.90.3.&
25/3 5.6-6 34|14 3.8.4.8 35/3 2.6.56
25/3 5.2.20 3512 3.4.5.4 355 3.10.5.10
5 5 5 10 10 4 4
2313 366 35/ 3.0.5% 442/3 46.4.6
5 4 10 5 10
234| 4.6-8 235| 4.6-10 253 3-10- ¥ 35316-10- ¥
4, 4 8 5 10 4 8
23%) 4-6.8 23314.6- ¥ 34%16-8-8
5 3 3 3 3 3 3
2 2 4 2 2 5 2 2 5 2
23, 24, 23, 25 25 35, 33,
4 2 2 2 4 4 2
4 6 4 8 8 4 8 4 10 10 4 10 6 10 10 6 10
4.6.3.5 4837 4335 41035 43F.3-5 610575 6-F-5-3
|p22:p>%andp;ﬁ2 P-3-3- 3 (antiprisms)
|234 3.3.3.4.3 1233 3.3.3.3.3 353 3.3.5.3.3.3
5 5 55 5 5
|235 3.3-3.5.3 253 3.5.3-3.3 1322 3.3.3.3.%.3
5 5 5 5 335 3.3.3. 3 5. 3
/233 3-3-3-3-3 253 3:5-3-3-3 222 2°2°2°2°2°2
5 5 5 5 535 5 3 5
|23% 3.3.3.3.3 333 3.3.3.3.3.3 (3332 3.4.3.4.3.4.3.4
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