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Abstract. We describe a randomized algorithm for computing the trapezoidal decompo-
sition of a simple polygon. Its expected running time is linear in the size of the polygon.
By a well-known and simple linear time reduction, this implies a linear time algorithm for
triangulating a simple polygon. Our algorithm is considerably simpler than Chazelle’s [3]
celebrated optimal deterministic algorithm. The new algorithm can be viewed as a com-
bination of Chazelle’s algorithm and of simple nonoptimal randomized algorithms due to
Clarkson et al. [6], [7], [9] and to Seidel [20]. As in Chazelle’s algorithm, it is indispensable
to include a bottom-up preprocessing phase, in addition to the actual top-down construction.
An essential new idea is the use of random sampling on subchains of the initial polygonal
chain, rather than on individual edges as is normally done.

1. Introduction

Polygon triangulation is a classic problem in computational geometry, and one of the
first problems studied in the field [12]. Furthermore, there are several other problems in
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computational geometry dealing with polygons that have efficient solutions that begin
with polygon triangulation as a preprocessing step (e.g., see [14] and [15]). Thus, there
has been considerable interest in finding efficient algorithms for this problem.

1.1. Related Work

Garey et al. [12] were the first to provide a nontrivial algorithm for the polygon trian-
gulation problem. Their algorithm runs in �(n log n) time and is based on an elegant
plane-sweeping paradigm. Asano et al. [2] show that this bound is in fact optimal for
polygons that may contain holes. For simple polygons without holes, the lower bound of
Asano et al. does not hold, however. This fact, and the importance of the polygon trian-
gulation problem, in turn prompted several researchers to work on methods for beating
the �(n log n) time bound for this problem.

Fournier and Montuno [11] and Chazelle and Incerpi [5] showed, even prior to the
Asano et al. lower bound result, that to triangulate a simple polygon in linear time it is
sufficient to produce a trapezoidal decomposition (trapezoidation) of a simple polygon.
A trapezoidation is formed by shooting a vertical (visibility) ray through each vertex of
the polygon, stopping each ray as soon as it hits another segment on the polygon. See
Fig. 1. Since this early work showing the importance of trapezoidation for triangulation,
every published triangulation algorithm has concentrated on improving the running time
of producing a trapezoidation of a simple polygon. For example, Tarjan and Van Wyk
[21] and Kirkpatrick et al. [16] showed that the trapezoidation step can be performed
in �(n log log n) time, resulting in a similar running time for the polygon triangulation
problem. Using randomization, Clarkson et al. [9], [6], [7] and Seidel [20] gave simple
randomized algorithms that run in �(n log∗ n) expected time. Finally, in a much cel-
ebrated and anticipated result, Chazelle [3] showed that one could, in fact, triangulate
a polygon in linear time. Unfortunately, the trapezoidation method utilized by this op-
timal deterministic algorithm is quite complex. Indeed, this conceptual complexity has

Fig. 1. Trapezoidation and triangulation of a simple polygon. The visibility rays in the interior of the polygon
(longer dashes) are used to derive a triangulation. A diagonal from each reflex vertex to the opposite vertex in the
corresponding trapezoid (solid diagonals) decomposes the polygon into monotone polygons. Each monotone
polygon can then be easily triangulated in linear time (dashed diagonals).
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led many researchers, including Chazelle [3] himself, to ask whether there is a simple
randomized algorithm for triangulating a polygon in linear time. To our knowledge, no
linear time randomized algorithm has been presented previously.

1.2. Our Results

We describe a randomized algorithm for computing the trapezoidation of a simple poly-
gon. The expected running time of our algorithm is linear in the size of the polygon. As
already mentioned, from the trapezoidation, a triangulation of the polygon can be ob-
tained in linear time using well-known methods [5], [11]. Thus, our algorithm provides
a randomized algorithm for polygon triangulation that runs in linear expected time. In
addition, our algorithm is considerably simpler than Chazelle’s optimal deterministic
algorithm; hence, it effectively responds to the open problem posed by Chazelle as to
the existence of a simple randomized triangulation algorithm that runs in linear expected
time.

The general approach of our algorithm for computing a trapezoidation of a simple
polygon P follows that of the nonoptimal randomized algorithms of Clarkson et al.
[6], [7] and Seidel [20]. That is, we compute the trapezoidation of a successively finer
sample from P , using an algorithm for arbitrary edges (thus with superlinear running
time), in O(log∗ n) rounds. The fact that the edges come from a simple polygonal chain
is used to perform the computation of the conflict lists of the trapezoidation of the sample
efficiently. This is done in each round, by walking along the original polygonal chain in
the trapezoidation. Unfortunately, an approach that maintains the lists of edge conflicts
for the trapezoidation of the sample is doomed to spend at least linear time per round.
To avoid this, we decompose the original polygonal chain into subchains, sample from
the resulting set of subchains and, taking advantage of the coherence between edges in
the polygonal chain, maintain lists of subchain conflicts for the resulting subproblems,
rather than edge conflicts.

A technical difficulty in this approach is the definition of the subproblems defined by
a set of subchains. For the approach to work, one needs a decomposition with a size that
is proportional to the number of subchains involved, and with faces (subproblems) of
bounded complexity. The latter requirement originates in the need to be able to derive
appropriate bounds for the sizes of the conflict lists, and in the need to have a decomposi-
tion that can be traversed efficiently as one walks along the polygonal chain. This concept
also appears in Chazelle’s algorithm; following him, we call this bounded-complexity
property conformality. Fortunately, our problem is simpler; we describe a simple proce-
dure that computes a conformal decomposition in time linear in the number of edges in
the set of subchains. This is actually sublinear in the size of the input chain because it is
performed for a small sample. In order to traverse the decomposition efficiently, we need
a data structure for each subchain that answers intersection queries between a vertical
edge, called a portal, and the subchain. Thus, as in Chazelle’s algorithm, we need a
preprocessing phase that constructs these data structures prior to the actual construction
phase. These phases proceed bottom-up and top-down, respectively. Randomization also
plays an important role in the preprocessing phase. Chazelle has “argued” that such a
combination of bottom-up and top-down approaches is indispensable [3].
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A final technicality is the proof of appropriate sampling bounds for the sizes of
the chain-conflict lists of our conformal decomposition: such bounds are known under
locality or monotonicity properties that our decomposition does not satisfy [1], [8], [10],
[17], [19]. Fortunately, we can prove appropriate bounds using the fact that, although
the faces in the decomposition do not satisfy a locality property, they are chosen from a
relatively small “pool” of candidates that satisfy a locality property.

This paper is organized as follows. First, for comparison purposes, we present a
detailed outline of a nonoptimal randomized algorithm (Section 2). We then describe
our procedure to compute a conformal decomposition for a set of chains (Section 3) and
our linear time algorithm (Section 4). Finally, we obtain appropriate sampling bounds
(Section 5) for bounding the running time of our algorithm (Section 6). We conclude
with some remarks and state some open problems (Section 7).

2. A Nonoptimal Algorithm

For the purpose of comparison with our algorithm, and as a gentle introduction, we
outline a nonoptimal randomized algorithm which is an adaptation from those in [6], [7],
and [20]. Let �0 be a simple polygonal chain, let S be the corresponding set of polygon
edges, and let n = |S|. We make the nondegeneracy assumption that no two vertices have
the same horizontal coordinate; this can be simulated symbolically through lexicographic
ordering. For R ⊆ S, let T (R) denote the usual (vertical) trapezoidal decomposition or
trapezoidation of the plane induced by R, obtained by introducing vertical visibility rays
from the endpoints of edges in R. This planar subdivision has O(|R|) trapezoids (faces)
and each trapezoid has at most two edges (on the top and bottom) and four vertical rays
(on the left and right) on its boundary. For � ∈ T (R), let S|� denote the conflict list of
�, that is, the set of those edges in S that intersect (the interior of) �, and let n� = |S|�|.
We adopt the following sampling model: for p with 0 ≤ p ≤ 1, a p-sample R from S is
obtained by taking each s ∈ S into R with probability p independently.

2.1. Algorithm Outline

The algorithm constructs the trapezoidation of a successively finer random sample in
O(log∗ n) rounds. Specifically, we define a global probability pi = 1/log(i) n for round
i in the computation, and let Ri be a pi -sample from S chosen in this round (so each
s ∈ S is taken with probability pi independently). Furthermore, let R+i =

⋃
j≤i Rj . Note

that R+i is a p+i -sample from S where p+i ≤
∑

j≤i pj = �(pi ). In the i th round, given
T (R+i−1) and its conflicts with respect to S (that is, S|� for � ∈ T (R+i−1)) the algorithm
constructs T (R+i ) and its conflicts with respect to S as summarized in Fig. 2.

Step 1.a, for a � ∈ T (R+i−1), involves a simple scan of the conflict list S|� and hence
takes time O(n�).1 Step 1.b computes T�, which is T (Ri |� ∪ {e1, e2}) restricted to �,
where e1 and e2 are the (nonvertical) edges bounding �. This takes time O(r� log r�),

1 Alternatively, one can maintain for each s ∈ S the list of trapezoids it intersects, and then the scan is not
necessary.
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Non-Optimal-Trapezoidation (i th round)

Input: T (R+i−1) and its conflicts with S
Output: T (R+i ) and its conflicts with S

1. For each � ∈ T (R+i−1)

a. Determine Ri |�

b. T� ←
{
T (Ri |� ∪ {e1, e2}) restricted to �,
where e1, e2 are the edges that bound �

2. Merge all the T�, � ∈ T (R+i−1), into T (R+i )

3. Compute S|� for all � ∈ T (R+i ), by “walking” along �0 in T (R+i )

Fig. 2. Nonoptimal trapezoidation procedure.

where r� = |Ri |�|, using an algorithm for computing a trapezoidation with this complex-
ity. In particular, we choose to use a simple randomized incremental algorithm described
in [20], which we refer to as Basic-Trapezoidation (this is a simplification of the
algorithms of Clarkson and Shor [8] and Mulmuley [18] to the case of nonintersect-
ing segments). This algorithm produces a representation of the resulting trapezoidation
which allows each trapezoid to determine in constant time the adjacent polygon edges on
the top and bottom (if any) and the adjacent trapezoids to the left and right (up to four).
Another byproduct of this algorithm is a point location data structure for the resulting
trapezoidation which allows one to locate the trapezoid that contains a query point in
time that is logarithmic in the size of the decomposition. Step 2 involves “stitching”
together pieces of trapezoids in T (R+i ) that are “chopped” by vertical rays in T (R+i−1).
In other words, vertical rays that are no longer necessary are removed. See Fig. 3. It
takes total time linear in the sizes of the T�’s, and, hence, the time required is dominated
by that of Step 1. Since each trapezoid in T (R+i ) has at most four neighbors through
vertical rays, then, assuming that an appropriate data structure is used, Step 3 can be
performed in time proportional to the size of �0, which is n, plus the total number of
segment-trapezoid conflicts found.

Fig. 3. Nonoptimal trapezoidation example. The three thin edges are added to the trapezoidation determined
by the two thick edges: (a) before the new edges are inserted, (b) local trapezoidations after Step 1, and
(c) trapezoidation after merging in Step 2.
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2.2. Sampling Bound and Analysis

The algorithm can be analyzed with the use of the following sampling bound. Let R be
a p-sample from S. Then, for any function f such that f (x) = O(ex/2),

E

[ ∑
�∈T (R)

f (pn�)

]
= O(pn) = O(r), (1)

where r = pn is the expected size of R. See [8], [19], or Section 5. Using f (x) = x
in (1), the expected total size of the conflict lists is O(n). This implies a bound of O(n)

for the expected time required by all steps in a round, except Step 1.b. Denoting the
expectation with respect to the first i samples by E≤i , the total expected time required
by Step 1.b is

E≤i


 ∑

�∈T (Sρ(i))

O(r� log r�)


 = E≤i−1


 ∑

�∈T (Sρ(i))

O ((pi n�) log(pi n�))




=
(

pi

pi−1

)
log

(
pi

pi−1

)
· O(pi−1n)

= 1

log(i) n
log

(
log(i−1) n

log(i) n

)
· O(n) = O(n),

where we have used both f (x) = x log x and f (x) = x in (1). Note that in the first line,
the expectation on the left includes the random choice of Ri ; this has disappeared on the
right after replacing r� log r� with its expectation over the random choice of Ri given
the outcome R+i−1 of the first i − 1 random choices. Finally, since the number of rounds
is O(log∗ n), the total expected time required by the algorithm is O(n log∗ n).

3. Conformal Decomposition

Our algorithm applies sampling to subchains of the original polygonal chain, rather than
individual edges. In order to deal with such samples effectively, we need a method for
defining subproblems of constant descriptive complexity. Consider a set L of ñ chains
with a corresponding set S of n edges. Let K ⊆ L be a subset of chains of L and let
R ⊆ S be the corresponding set of edges. For convenience, we write T (K ) to denote
the trapezoidation T (R). We also use here the algorithm Basic-Trapezoidation
to compute T (K ) and so, as already discussed, we have available an efficient planar
subdivision representation of T (K ) (which allows the efficient traversal of T (K ) needed
below). For our application, we need a planar subdivision with O(|K |) faces, each of
which is conformal [3], that is, bounded by portions of at most O(1) chains in K and
at most O(1) vertical rays determined by their vertices. We obtain this subdivision
retraction by selecting certain rays of T (K ). The candidate rays for this selection are
those ray-pairs (one ray upward and one ray downward) incident to a reflex vertex, that
is, a vertex without incident polygonal edges either on its left or on its right side.



A Randomized Algorithm for Triangulating a Simple Polygon in Linear Time 251

conformal(K ,T (K ))

Input: A set of chains K and the trapezoidation T (K ) of its edges.
Output: Conformal decomposition T̃ (K ), and its adjacency graph.

1. Select the extreme ray-pairs of each chain. Let T be the planar subdivision
(which is simply connected) induced by the chains in K and these selected
ray-pairs. (See Fig. 5(a).)

2. For each face f of T and a candidate ray-pair ρ in f , select ρ if each of the
three faces in which ρ splits f has a ray selected in Step 1 on its boundary.

3. Construct T̃ (K ), the decomposition induced by all the selected ray-pairs, and
its adjacency graph. (See Fig. 5(b).)

Fig. 4. Conformal decomposition procedure.

The procedure is summarized in Fig. 4. It selects rays in two steps. In Step 1 the
procedure selects all the extreme ray-pairs, that is, those originating from the leftmost
and rightmost vertices of each chain. We claim that the faces of the resulting subdivision T
(induced by chains in K and these selected ray-pairs) are simply connected (see Fig. 5(a)).
This is because if one such face f had a hole, then the ray-pairs from the leftmost and
rightmost extreme vertices of chains inside the hole would contradict the existence of the
hole. In Step 2 the procedure selects other candidate ray-pairs in a “nonlocal” manner,
so as to obtain a subdivision whose faces are conformal (see Fig. 5(b)). For each face
f of T , Step 2 selects a candidate ray-pair ρ in f if each of the three faces in which ρ

splits f has a ray selected in Step 1 on its boundary. The selection is performed through
simple traversals of T (K ) that use time linear in its size. For completeness, we elaborate
further on this next.

For a face f , let τ f be the dual (adjacency) tree of the portion of T (K ) in f . Con-
sider τ f rooted at an arbitrary node-trapezoid. The rooting naturally determines for each
node-trapezoid a corresponding “region below” it that includes the trapezoid itself, and a

Fig. 5. Conformal decomposition example: (a) subdivision after Step 1 and (b) subdivision after Step 2 (new
edges are dotted).
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Fig. 6. Some example chain-trapezoids. A chain-trapezoid is determined by up to four distinct chains, but
can be determined by a single one as in the third example. Also, because ray-pairs from endpoints are not
necessarily selected, the situation in the fourth example can occur.

“region above” it (that excludes the trapezoid). In other words, the vertical ray between a
trapezoid and its parent separates the two regions. Perform a depth first tree traversal that
marks a node-trapezoid blue if its region below has a ray selected in Step 1 on its bound-
ary: after visiting the children of the trapezoid, the trapezoid is marked blue if either of its
children was marked blue or if it has a selected ray on its boundary. Another tree traversal
marks a node-trapezoid red (without erasing the blue marks) if the region above has a se-
lected ray on its boundary: mark a node-trapezoid red if either its parent is marked red or
one of its siblings is marked blue; the root is marked red if it has a selected ray on its bound-
ary. With these blue and red marks, for each candidate ray-pair ρ, the unique trapezoid
�ρ that has both rays of ρ on its boundary can determine whether ρ must be selected: ρ is
selected if its marks and those of its children indicate that the three faces in which the ray-
pair splits f has a ray selected in Step 1 on its boundary (we omit the listing of the cases).

Clearly, the complete procedure runs in O(|R|) time. Moreover, the total number of
selected ray-pairs is O(|K |): it is clear that T has O(|K |) selected ray-pairs; furthermore,
since we select only ray-pairs for which each of the corresponding three regions has a ray
selected in Step 1 on its boundary, at most O(|K |) additional rays are selected in Step 2.
Note that in the resulting subdivision, each face is bounded by at most two chains and
at most two ray-pairs or single rays (the portion of a chain bounding one of these faces
does not need to be monotone; one of the bounding chains itself can also determine one
or both bounding ray-pairs). See Fig. 6.

Let T̃ (K ) be the collection of all the conformal faces. Therefore, we have the
following:

Lemma 3.1. Let K be a set of chains and let R ⊆ S be the corresponding set of edges,
and suppose that we are given a planar subdivision representation of the trapezoidation
T (R) of the edges in R. Then the procedure conformal constructs in O(|R|) time a
conformal subdivision T̃ (K ) containing O(|K |) faces.

We refer to the selected (single) rays as portals, to the conformal faces as chain-
trapezoids (as they are defined by chains rather than by edges), and to the conformal
decomposition T̃ (K ) as the chain-trapezoidal decomposition or chain-trapezoidation.

4. The Linear Time Algorithm

Our trapezoidation algorithm can be viewed as a refinement of the nonoptimal algorithm
of Section 2, in which sampling is applied to subchains of the original chain �0 rather
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than to edges. More precisely, the chain �0 is divided into a set L of subchains of length
λ, and then a p-sample K ⊆ L is obtained by taking each � ∈ L into K with probability
p independently. For each chain-trapezoid �̃ in the chain-trapezoidation T̃ (K ), let L |�̃
denote the set of subchains in L that intersect (the interior of) �̃. Let n = |L|, ñ�̃ = |L |�̃|.
In analogy with (1), one would conjecture a bound

E


 ∑

�̃∈T̃ (K )

f (pñ�̃)


 = O(pñ). (2)

In particular, the expected total chain-conflict size would be O(ñ) = O(n/λ) and it
could be made appropriately sublinear by choosing λ sufficiently large. Though we
cannot prove such a bound, in Section 5 we prove a weaker one that is sufficient for our
purposes (there is an extra log λ factor on the left-hand side). This is a first step toward
obtaining a linear time algorithm.

At the same time, our algorithm can also be viewed as a simplification of Chazelle’s
algorithm. Like Chazelle’s algorithm, our construction follows a pattern in which first a
bottom-up phase develops a successively more global but coarse approximation to the
trapezoidation, and then a top-down phase successively refines this coarse approxima-
tion into the final trapezoidation. Both consider a subdivision of the input chain into
successively finer subchains. This sequence of chain refinements is referred to as a re-
finement tree. However, while for Chazelle’s algorithm the approximation is the analog
of our chain-trapezoidation (a granular and conformal submap, in his terms, and similar
to our chain-trapezoidations) for all the subchains in each level starting with the coarser
level, for our algorithm the approximation is the chain-trapezoidation for a small random
sample of the subchains at each level. The resulting hierarchy of samples is called a gra-
dation tree, or just gradation. Using only a random sample implies less work to do, and
it can then be performed with simpler methods. In this section, we first define precisely
the sequence of chain refinements and the corresponding gradation tree of samples, then
we give an outline of the two phases of the algorithm, and finally describe the top-down
construction phase and the bottom-up preprocessing phase.

4.1. Chain Refinements and Gradation of Samples

The sampling in our algorithm is performed on a sequence of chain refinements, or
refinement tree, with O(log∗ n) levels defined as follows (Chazelle’s algorithm uses
O(log n) levels). Let �0 be the initial simple polygonal chain of size n. We decompose �0

into collections Li of subchains of length λi , i = 0, . . . , k, starting with L0 = {�0} and
λ0 = n, and with Li , i > 1, obtained by decomposing each chain � ∈ Li−1 into a set L�

i
of subchains each of size λi = log2 λi−1, and ending with k = O(log∗ n) so that λk =
O(1).2 Thus, the subchains in the i th level of the refinement tree are Li =

⋃
�∈Li−1

L�
i

(Fig. 7). We denote the total number of subchains in Li by ñi = |Li | = n/λi .

2 Note that if, in analogy with log∗ n, we define log2(i) n by iterating the log2 operation, and then log2∗ n,
one obtains that log2∗ n = O(log∗ n).
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Fig. 7. Gradation of subchains.

Instead of attempting to compute T̃ (Li ) directly (the analog of what Chazelle’s algo-
rithm does), our algorithm further simplifies the problem by taking a random sample Ki

of subchains from Li of a size such that one can afford to compute the trapezoidation of
Ki using a suboptimal algorithm [8], [12], [18]. Specifically, for each i ≥ 1, we choose a
global probability pi = 1/log3 λi−1, and let Ki be a pi -sample from Li . In the i th round,
it is more convenient to deal with the set of subchains K +

i that consists of the subchains
in Ki and the subchains in Li contained in all the previous samples Kj , j < i . That is,

K +
i = Ki ∪ {� | � ∈ Li and � ⊂ �′ where �′ ∈ Kj , j < i}.

Note that the number of the latter subchains is∑
j<i

ñ j · pj · λj

λi
= ñi ·

∑
j<i

pj = ñi · o(pi ).

That is, the size of K +
i is dominated by the size of Ki . As a result, from the analysis in

Section 5, it will follow that adding the subchains of previous samples does not affect
substantially the randomness of the sample Ki . The resulting hierarchy of samples is
called a gradation tree, or just gradation.

4.2. Overview of the Algorithm

As mentioned previously, our polygon trapezoidation algorithm consists of two phases.
The main phase proceeds top-down constructing the decompositions T̃ (K +

i ) iteratively.
For each chain trapezoid �̃ ∈ T̃ (K +

i ), the algorithm maintains its chain-conflict list
Li |�̃ ⊆ Li , that is, the set of subchains in Li that intersect (the interior of) �̃. Maintaining
chain-conflict lists, rather than edge-conflict lists, is essential to the efficiency of our
algorithm. At the beginning of the i th round, we have T̃ (K +

i−1) and the chain-conflict
lists Li−1|�̃ for each �̃ ∈ T̃ (K +

i−1), then the algorithm adds Ki to T̃ (K +
i−1) to obtain

T̃ (K +
i ), and computes the new chain-conflict lists by following the chain �0 without

actually scanning every edge. In a preprocessing phase, the algorithm constructs for each
chain � ∈ Li , i = 1, . . . , k, a data structure D(�) that supports portal-chain intersection
queries: given a portal ρ, determine whether the chain � intersects ρ. These queries are
needed for the efficient computation of chain-conflict lists during the construction phase.
These data structures also support ray-shooting queries (given a point x , determine the
lowest point in � hit by a vertical ray upward from x) which can then be used for testing
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whether a query point is contained in a chain-trapezoid (perform ray-shooting queries
on the two bounding chains and determine if the result corresponds to hitting them from
inside the chain-trapezoid).

The construction (and also the query processing) of D(�) uses recursively the data
structures D(�′) for all children �′ of � in the refinement tree. We will see that as a
result the construction reduces to computing, for each i from k down to 0 and each
chain � ∈ Li−1, the chain-trapezoidation of the random sample K �

i of its subchains,
together with its conflict lists with L�

i . So the computation of the D(�)’s corresponds to
the bottom-up phase discussed above. In contrast, the actual construction proceeds in a
top-down manner: for i = 0 up to i = k, it computes the chain-trapezoidation of the
random sample Ki , together with its conflict lists with respect to Li .

4.3. Top-Down Construction Phase

We now precisely describe how our algorithm performs the top-down construction phase.
In the i th round, given the decomposition T̃ (K +

i ) and its conflict lists with respect to
Li−1, the algorithm adds the subchains in K +

i to T̃ (K +
i−1) as summarized in Fig. 8.

Step 1.a determines the conflict list Ki |�̃ by checking for each � ∈ Li−1|�̃ and �′ ∈
L�

i ∩ Ki , whether �′ intersects �̃: if so either �′ intersects one of the portals of �̃, or its
endpoints are inside �̃. Both queries are solved by the same data structuresD constructed
during the preprocessing phase. However, note that the point location query is on chains
in Li−1 and, consequently, it is more expensive (we could afford to construct a faster
standard point location data structure for �̃, but it is not necessary). Let r̃i,�̃ = |Ki |�̃|.
Step 1.b computes the trapezoidation T (Ki |�̃ ∪ {�1, �2}) restricted to �̃, where �1 and

�2 are the two chains bounding �̃. This uses a simple algorithm with running time
O(ri,�̃ log ri,�̃) [8], [12], [18], where ri,�̃ = O((r̃i,�̃ + 1)λi ) is the number of edges
involved in all these chains (the plus 1 accounts for �1 and �2). Step 2, with a simple

Top-Down (i th round)

Input: T̃ (K +i−1) and its conflicts with Li−1

Output: T̃ (K +i ) and its conflicts with Li

1. For each �̃ ∈ T̃ (K +i−1)

a. Determine Ki |�̃

b. T�̃ ←
{
T (Ki |�̃ ∪ {�1, �2}) restricted to �̃,
where �1, �2 are the chains that bound �̃

2. Merge all the T�̃, �̃ ∈ T̃ (K +i−1), into T (K +i )

3. Obtain T̃ (K +i ) using conformal(K +i ,T (K +i ))

4. Compute Li |�̃ for all �̃ ∈ T̃ (K +i ), by “hopping” along Li in T̃ (K +i )

Fig. 8. Top-down phase procedure.
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traversal of all the T�̃’s, “stitches” together trapezoids ofT (K +
i ) “chopped” by the portals

of T̃ (K +
i−1); this takes time linear in the total size of the T�̃. The procedure conformal

in Step 3 was described in Section 3; it takes time linear in the size of T (K +
i ) and returns

the (conformal) chain-trapezoidation T̃ (K +
i ) (including its adjacency graph). In Step 4

the conflict lists Li |�̃ for �̃ ∈ T̃ (K +
i ) are found chain by chain, using the adjacency

graph of T̃ (K +
i ) and the data structures D(�) to “hop” along Li in T̃ (K +

i ), as described
next.

Hopping. If a chain is already in K +
i , then it is part of the boundary for some chain-

trapezoids and it can automatically be recorded as part of their conflict lists. So, consider
some � ∈ Li\K +

i and suppose that we know a chain trapezoid �̃0 ∈ T̃ (K +
i ) that

contains the first endpoint e of �. Note that the chain-trapezoids in T̃i that conflict with �

are connected. Thus, we perform a breadth-first-search traversal of the adjacency graph
of T̃ (K +

i ), starting with �̃0. When a chain-trapezoid �̃ ∈ T̃ (K +
i ) is visited, it is labeled

as a conflict and each of the portals that separates �̃ from an unvisited chain-trapezoid
�̃′ ∈ T̃ (K +

i ) is tested for conflict with � using D(�). If � conflicts with the portal, the
traversal visits �̃′. Note that � can zigzag arbitrarily within the set of chain-trapezoids
that it intersects. See Fig. 9.

This procedure performs O(1) portal-chain conflict queries per conflict actually
found. The location of the first endpoint e is given by the location of the second endpoint
of the preceding chain �′ (known already if �′ ∈ K +

i ). The location of �’s second end-
point e′ can be determined by performing a point location query for each chain-trapezoid
found to be in conflict with �. This is necessary since the conflicts were computed not
by a linear scan of �, but rather by hopping between portals.

Fig. 9. Computing the chain-conflicts for a chain. Note that only one conflict per portal is found, and that
the order the conflicts are discovered (indicated by numbers) does not necessarily reflect their occurrences on
the chain. The portals not queried are shown as finer dashed vertical segments.
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Running Time. In Section 6, using the sampling bounds obtained in the next section,
we show that given the data structures D(�) with query time O(log3+ε λi ), for � ∈ Li ,
the top-down construction phase is completed in expected time O(n).

4.4. Bottom-Up Preprocessing Phase

In the preprocessing phase the algorithm constructs data structures for portal-chain con-
flict queries to be used to hop along the chains in the top-down phase. Recall the sequence
of chain refinements Li , i = 0, . . . , k, defined above and that for � ∈ Li−1, L�

i is the set
of subchains of � in Li . Let K �

i = L�
i ∩ Ki . Note that since Ki is a pi -sample from Li ,

then K �
i is a pi -sample from L�

i .3

For each � in Li−1, i = 1, . . . , k, we construct a data structure D(�) that consists of:

(i) T̃ (K �
i ) and a corresponding point location structure with query time O(log λi−1);

(ii) for each �̃ ∈ T̃ (K �
i ), the chain-conflict list L�

i |�̃.

For the construction of T̃ (K �
i ), we use Basic-Trapezoidation, which also pro-

duces the required point location data structure.
A portal-chain conflict query for an arbitrary portal ρ and chain � ∈ Li−1 first uses

D(�)’s point location data structure T̃ (K �
i ) to locate the endpoints of ρ. If ρ’s endpoints

are contained in different chain-trapezoids in T̃ (K �
i ), then ρ must intersect �, and a

conflict is reported. Otherwise, ρ is entirely contained in some �̃ ∈ T̃ (K �
i ), and the

query continues recursively in the data structures D(�′), for each and every subchain �′

that bounds �̃ or is in �̃’s conflict list L�

i |�̃, which includes the subchains that bound �̃

(see Fig. 11). This query procedure is summarized in Fig. 10. The query procedure for
ray-shooting, which determines the lowest intersection point, is similar and we omit it.

The computation of conflict lists for T̃ (K �
i ) during the construction of D(�) also

uses hopping and, hence, conflict? recursively. The bottom-up preprocessing phase
is summarized in Fig. 12.

conflict?(ρ, �, i − 1)

Input: A portal ρ and a chain � in Li−1.
Output: Yes if ρ intersects �, else No

1. Determine �̃, �̃′ ∈ T̃ �
i which contain the endpoints of ρ

2. If �̃ and �̃′ are different then return Yes

3. For each �′ that bounds �̃ or in L�

i |�̃ do

if conflict?(ρ, �′, i) = Yes then return Yes

4. Return No

Fig. 10. Portal-chain query procedure.

3 This phase could use a sampling independent of that in the construction phase, but this is not necessary.
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Fig. 11. Two cases in the portal-chain conflict query: the portal endpoints are in different or in the same
chain-trapezoid.

Running Time. In Section 6, using the sampling bounds obtained in the next section,
we show that the construction of the data structures D(�) is completed in expected O(n)

time. Moreover, we show that, even though we recurse on each subchain in a conflict list,
the expected query time for a chain � ∈ Li is O(log3+ε λi ), where ε > 0 is an arbitrary
small fraction. Thus, we can summarize our results in the following theorem.

Theorem 4.1. Our randomized two-phase algorithm constructs the trapezoidation of
a simple polygon of size n in expected O(n) time.

5. Sampling Bounds

To analyze the running time of our algorithm, we need bounds on the sizes of the subprob-
lems resulting by taking a random sample from a set of chains and then constructing its
chain-trapezoidation. Let K be a p-sample from L , and recall that for a chain-trapezoid
�̃ ∈ T̃ (K ), L |�̃ denotes the list of conflicts of �̃ in L , and that ñ�̃ = |L |�̃|. Unfortu-
nately, we cannot prove the bound in (2). Such a bound can be proved in the framework
of configuration spaces, when certain locality [8], [19] or monotonicity [10], [1] prop-
erties hold for the decomposition induced by the sample (see [17] for a survey), but

Bottom-Up (i th round)

Input: T̃ (K �
j ) and its conflicts with L�

j for each � ∈ L j−1, j > i

Output: T̃ (K �
i ) and its conflicts with L�

i for each � ∈ Li−1

For each � ∈ Li−1 do

1. Compute T (K �
i ) and a corresponding point location structure

2. Compute T̃ (K �
i ) using conformal(K �

i ,T (K �
i ))

3. Compute Li |�̃ for all �̃ ∈ T̃ (K �
i ) by “hopping” along L�

i in T̃ (K �
i )

Fig. 12. Bottom-up phase procedure.
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neither of these properties holds for our chain-trapezoidation. Fortunately, we can prove
a weaker bound that is only a factor O( f (log λ)) larger, and that suffices to verify that
our algorithm has expected linear running time. The proof of the bound uses a standard
trick [8], [4]: one obtains a nontrivial bound for a p-sample in terms of a trivial bound
for a (p/2)-sample. First, we need a fact about the chain-trapezoidation that limits the
amount of nonlocality in the definition of the chain-trapezoidation.

Recall that a chain-trapezoid is bounded by at most two chains and at most two ray-
pairs, each one originating from another chain (but possibly a bounding chain). We say
that these at most four chains determine the chain-trapezoid. Let T̃ ∗(L) be the set of all
chain-trapezoids determined by L , that is, those chain-trapezoids determined by a subset
of at most four chains in L (but note that some other chains in L can conflict with such
chain-trapezoids). Let T̃ c(K ) be the set of all candidate chain-trapezoids determined by
K and with empty conflict lists with respect to K . Note that T̃ c(K ) is bigger than T̃ (K )

as there are candidate chain-trapezoids determined by K that were not chosen in our
construction of T̃ (K ). For �̃ ∈ T̃ ∗(L), let δ(�̃) ⊆ L denote the set of those up to four
chains that determine �̃. For �̃ ∈ T̃ ∗(L), we have the following locality property:

�̃ ∈ T̃ c(K ) iff δ(�̃) ⊆ K and L |�̃ ∩ K = ∅. (3)

Though our chain-trapezoidation lacks locality, or even monotonicity, the following
lemma states that we choose it out of a relatively small “pool” of candidates that satisfy
the locality property.

Lemma 5.1. Let K be a set of chains each of length at most λ. Then |T̃ c(K )| =
O(|K |λ2).

Proof. In T (K ), let a region be the union of the trapezoids corresponding to a
connected subgraph of the adjacency graph of T (K ). For each �̃ ∈ T̃ (K ) consider
the maximum region R�̃ of T (K ) that contains �̃ and is bounded by the same one or
two chains that bound �̃. Note that R�̃ may not be conformal. Any candidate chain-
trapezoid is a subregion of R�̃ for some �̃. Since clearly the number of subregions of
any R�̃ is O(λ2), and the size of T̃ (K ) is O(|K |), then it follows that the size of T̃ c(K )

is O(|K |λ2).

We use this result now to prove bounds for the chain-conflict list sizes in the chain-
trapezoidal decomposition of a random sample of chains.

Lemma 5.2. Let L be a set of ñ chains of length λ, and let n = λñ be the total number
of edges. Let K ⊆ L be a p-sample, let r̃ = pñ be its expected size, and let T̃ (K ) be
its chain-trapezoidal decomposition. For �̃ ∈ T̃ (K ), we write ñ�̃ = |L |�̃|. Let f be a
positive nondecreasing function such that f (O(x)) = O( f (x)). Then

E


 ∑

�̃∈T̃ (K )

f (pñ�̃)


 = O(pñ · f (log λ)). (4)
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Proof. Let K ′ ⊆ L be a (p/2)-sample. Recall that T̃ c(K ) is the set of candidate chain-
trapezoids for K , and that for these chain-trapezoids the locality property in (3) holds.
Thus,

Prob{�̃ ∈ T̃ c(K )} = pδ(�̃)(1− p)ñ�̃

= 2δ(�) ·
(

1− p

1− p/2

)ñ�̃

· (p/2)δ(�̃)(1− p/2)ñ�̃

≤ 16 · e−pñ�̃/2 · Prob{�̃ ∈ T̃ c(K ′)}, (5)

using δ(�̃) ≤ 4 and (1− p)/(1− p/2) ≤ 1− p/2 ≤ e−p/2. Using (5) and Lemma 5.1,
we obtain

E


 ∑

�̃∈T̃ c(K )

f (pñ�̃)


 = ∑

�̃∈T̃ ∗(L)

f (pñ�̃) · Prob{�̃ ∈ T̃ c(K )}

= O


 ∑

�̃∈T̃ ∗(L)

Prob{�̃ ∈ T̃ c(K ′)}



= O(E[|T̃ c(K ′)|])
= O(r̃λ2), (6)

using Lemma 5.1. Let τ > 0 be a parameter. Then, using again (5),

E


 ∑

�̃∈T̃ c(K )

ñ
�̃

2(log τ)/p

f (pñ�̃)


 = ∑

�̃∈T̃ ∗(L)

ñ
�̃

>2(log τ)/p

f (pñ�̃) · Prob{�̃ ∈ T̃ c(K )}

≤ 16 ·
∑

�̃∈T̃ ∗(L)

ñ
�̃

>2(log τ)/p

f (pñ�̃) · e−pñ�̃/2 · Prob{�̃ ∈ T̃ c(K ′)}

≤ 16

τ
·
∑

�̃∈T̃ ∗(L)

f (pñ�̃) · Prob{�̃ ∈ T̃ c(K ′)}

= 16

τ
· E

 ∑

�̃∈T̃ c(K ′)

f (pñ�̃)




= O(1)

τ
· E[|T̃ c(K ′′)|] = O

(
r̃ · λ

2

τ

)
,

where K ′′ is a (p/4)-sample and we have used the bound in (6). Finally, using τ = λ2,

E

[ ∑
�̃∈T̃ (K )

f (pñ�̃)

]
= E


 ∑

�̃∈T̃ (K )

ñ
�̃

>2(log τ)/p

f (pñ�̃)


+ E


 ∑

�̃∈T̃ (K )

ñ
�̃
≤2(log τ)/p

f (pñ�̃)



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≤ E


 ∑

�̃∈T̃ c (K )

ñ
�̃

>2(log τ)/p

f (pñ�̃)


+ f (2 log τ) · E[|T̃ (K )|]

= O

(
r̃ · λ

2

τ

)
+ O( f (2 log τ) · r̃) = O( f (log λ) · r̃).

We have not tried to determine the weakest (less stringent) conditions for the function
f under which the lemma holds.

For the analysis of the query time of the ray-shooting data structure, we also need a
bound for the expectation of the conflict list size of the chain-trapezoid that contains a
fixed point x . This is established in the following lemma.

Lemma 5.3. Let K ⊆ L be a p-sample, and for a fixed point x , let �̃x be the chain-
trapezoid in T̃ (K ) that contains x . Then

E
[|L |�̃x

|] = O

(
1

p
· log λ

)
= O

(
ñ

r̃
· log λ

)
.

Proof. The proof is analogous to the one for the previous lemma and we only present an
outline. First, note that the number of candidate chain-trapezoids in T̃ c(K ) that contain
x is O(λ2), and so∑

�̃∈T̃ ∗(L)

x∈�̃

Prob{�̃ ∈ T̃ c(K )} = E[|{�̃ ∈ T̃ c(K ): x ∈ �̃}|] = O(λ2).

Then, using (5) and following derivations similar to those in the previous lemma, we
obtain the sequence of bounds:

E


 ∑

�̃∈T̃ c(K )

x∈�̃

pñ�̃


 = O(λ2), E




∑
�̃∈T̃ c(K )

ñ
�̃

>2(log τ)p

x∈�̃

pñ�̃


 = O

(
λ2

τ

)
,

E[pñ�̃x
] = O(log λ).

6. Running Time Analysis

First, we note that the sampling bound of Lemma 5.2 holds for K +
i even though it contains,

in addition to the true random pi -sample Ki , all the subchains of previous samples Kj ,
j < i . This is because, as noted in Section 4, the size is dominated by Ki and so, from
the proof of the lemma, the right-hand side of (4) is not affected.

In the analysis below, two specific sums appear that can be bounded using (4):

E


 ∑

�̃∈T̃ (K )

ñ�̃


 = O(ñ · log λ), (7)
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and for α, β > 0,

E


 ∑

�̃∈T̃ (K )

(αñ�̃ + β) log((αñ�̃)+ β)




= O

(
pñ ·

(
α log λ

p
+ β

)
· log

(
α log λ

p
+ β

))
. (8)

6.1. Preprocessing Phase

First we verify the query time. The expected query time Q(λi ) is the sum of the time
needed for a point location query, plus the expected time needed for all the recursive
queries. Thus, we have

Q(λi−1) = O(log λi−1)+ O

(
1

pi
log λi

)
· Q(λi )

= O(log λi−1)+ O((log λi−1)
3 log λi ) · Q(λi )

= O(log3+ε λi−1),

where ε is any positive fraction. We have used Lemma 5.3 to bound the expected number
of chain-conflicts as O((1/pi ) log λi ). Note that it is valid to use the bound for a fixed
point, as the random choices in the i th and later rounds are independent of the random
choices in earlier rounds. Next, we estimate the expected construction time for � ∈ Li .
From the previous description, using (7), the expected time is

O

(
(piλi−1) log(piλi−1)+

(
λi−1

λi
log λi

)
· Q(λi )

)

= O

(
λi−1

log3λi−1
log

(
λi−1

log3λi−1

)
+ λi−1

log2λi−1
· log(log2λi−1) · log3+ε(log2λi−1)

)

= O

(
λi−1

log λi−1

)
,

where the first term accounts for the construction of T̃ (K �
i ), and the second term accounts

for O(1) portal-chain intersection queries per chain-conflict. Adding over all � ∈ Li−1,
the construction time in the (i − 1)st level is O(n/log λi−1), and adding over all i , the
total construction time is O(n).

6.2. Construction Phase

Consider the i th round, and let �̃ ∈ T̃ (K +
i ). For the purpose of analysis, we write

ñi,�̃ = |Li |�̃| and r̃i,�̃ = |Ki |�̃|. Recall that ñi = |Li | = n/λi . Note that the expected
value of r̃i,�̃ is bounded by pi · ñi−1,�̃ · (λi−1/λi ). In Step 1.a, for each � ∈ Li−1|�̃,

checking whether �′ ∈ L�
i ∩ Ki intersects �̃ takes expected time O(log3+ε λi−1), using
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the data structure D for the chains bounding �̃. Thus, using (7), the total expected time
for this step is at most proportional to

E≤i−1


 ∑

�̃∈T̃ (K+i−1)

pi · ñi−1,�̃ ·
λi−1

λi
· log3+ε λi−1




= O

(
pi · (ñi−1 log λi−1) · λi−1

λi
· log3+ε λi−1

)
= O

(
n

log1−ε λi−1

)
.

(Here, the term log3+ε λi−1 could be reduced to log λi−1 + log3+ε λi , if we construct a
point location data structure for each �̃ ∈ T̃ (K +

i−1).) In Step 1.b, T�̃ is computed using
an algorithm with running time O(ri,�̃ log ri,�̃) where ri,�̃ = O((r̃i,�̃ + 1)λi ). Using
(8), the total expected time is at most proportional to

E≤i


 ∑

�̃∈T̃ (K+i−1)

ri,�̃ log ri,�̃




= E≤i−1


 ∑

�̃∈T̃ (K+i−1)

(
pi · λi−1 · ñi−1,�̃ + λi

) · log
(

pi · λi−1 · ñi−1,�̃ + λi
)

= O

(
pi−1 · ñi−1 ·

(
piλi−1 log λi−1

pi−1
+ λi

)
· log

(
piλi−1 log λi−1

pi−1
+ λi

))

= O

(
n ·
(

pi log λi−1 + pi−1
λi

λi−1

)
· log λi−1

)
= O

(
n

log λi−1

)
.

The conformal decomposition in Step 3 is constructed as described in Section 3 and
requires expected time at most proportional to

E≤i [|T (K +
i )|] = O(pi · ñi · λi ) = O

(
n

log3 λi−1

)
.

In Step 4 the conflict lists for regions �̃ ∈ T̃ (K +
i ) with subchains in Li are found using

the data structures D, O(1) queries per conflict determined, so the expected time is

O(ñi · log λi · Q(λi ))=O

(
n

λi
· log λi ·log3+ε λi

)
=O

(
n · log4+ε λi

λi

)
=O

(
n

log λi−1

)
.

The sum of all these contributions over all the rounds is O(n).

7. Concluding Remarks

We have presented a randomized algorithm for computing the trapezoidation of a simple
polygon, and hence a triangulation, that runs in expected time that is linear in the number
of edges. The algorithm is considerably simpler than Chazelle’s algorithm. On the other
hand, it is comparatively more complicated than the nonoptimal randomized algorithms
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and, since for any practical value of n, log∗ n is a small constant, our algorithm is not
likely to be of practical value. An incremental version of our algorithm (like Seidel’s) is
possible. In such a version, the edges are added one by one to the previous trapezoidation
according to a random permutation which is somewhat modified according to the chain
sampling. In this way some gain in simplicity is achieved. Also, we point out that, unlike
Seidel’s algorithm, the number of rounds does not have to be O(log∗ n).

We conclude by mentioning some questions that remain open. Is the conjectured
tighter sampling bound for our conformal decomposition true? Is it possible, as con-
jectured by Chazelle, to combine our polygon trapezoidation algorithm with a segment
intersection algorithm to obtain an algorithm that can report the k intersections of a chain
of n segments in time O(n+k)? Can our linear time algorithm be parallelized? (Goodrich
[13] has given a fast and work optimal implementation of Chazelle’s algorithm in a par-
allel computation model.) Can the approach of sampling on subchains lead to efficient
algorithms for other problems on simple polygons? Finally, do simpler deterministic or
randomized algorithms for the polygon triangulation problem exist?
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