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Abstract. We describe arandomized algorithm for computing the trapezoidal decompo-
sition of a simple polygon. Its expected running time is linear in the size of the polygon.
By awell-known and simple linear time reduction, thisimplies alinear time algorithm for
triangulating a simple polygon. Our algorithm is considerably simpler than Chazelle's [3]
celebrated optimal deterministic algorithm. The new agorithm can be viewed as a com-
bination of Chazelle's algorithm and of simple nonoptimal randomized agorithms due to
Clarksonetal. [6], [7],[9] and to Seidel [20]. Asin Chazelle'salgorithm, it isindispensable
toinclude abottom-up preprocessing phase, in addition to the actual top-down construction.
An essential new ideais the use of random sampling on subchains of the initial polygonal

chain, rather than on individual edges asis normally done.

1. Introduction

Polygon triangulation is a classic problem in computational geometry, and one of the
first problems studied in the field [12]. Furthermore, there are several other problemsin

* Thefirst author’sresearchwas supportedin part by NSF CAREER Award CCR-9624315, NSF Grants|1S-
9619850, ACI-9872126, EIA-9975018, EIA-9805823, and EIA-9810937, DOE ASCI ASAP Grant B347886,
and by Texas Higher Education Coordinating Board Grant ARP-036327-017. Thiswork by the second author

was supported by ARO MURI Grant DAAH04-96-1-0013 and NSF Grant CCR-9732300.



246 N. M. Amato, M. T. Goodrich, and E. A. Ramos

computational geometry dealing with polygons that have efficient solutions that begin
with polygon triangulation as a preprocessing step (e.g., see [14] and [15]). Thus, there
has been considerable interest in finding efficient algorithms for this problem.

1.1. Related Work

Garey et a. [12] were the first to provide a nontrivial algorithm for the polygon trian-
gulation problem. Their algorithm runsin ®(nlogn) time and is based on an elegant
plane-sweeping paradigm. Asano et al. [2] show that this bound is in fact optimal for
polygonsthat may contain holes. For simple polygonswithout holes, the lower bound of
Asano et al. does not hold, however. This fact, and the importance of the polygon trian-
gulation problem, in turn prompted several researchers to work on methods for beating
the ®(nlogn) time bound for this problem.

Fournier and Montuno [11] and Chazelle and Incerpi [5] showed, even prior to the
Asano et al. lower bound result, that to triangulate a simple polygon in linear time it is
sufficient to produce atrapezoidal decomposition (trapezoidation) of asimple polygon.
A trapezoidation is formed by shooting avertical (visibility) ray through each vertex of
the polygon, stopping each ray as soon as it hits another segment on the polygon. See
Fig. 1. Since this early work showing the importance of trapezoidation for triangulation,
every published triangulation algorithm has concentrated on improving the running time
of producing a trapezoidation of a simple polygon. For example, Tarjan and Van Wyk
[21] and Kirkpatrick et a. [16] showed that the trapezoidation step can be performed
in ®(nloglogn) time, resulting in asimilar running time for the polygon triangulation
problem. Using randomization, Clarkson et a. [9], [6], [7] and Seidel [20] gave simple
randomized algorithms that run in ®(nlog* n) expected time. Finaly, in a much cel-
ebrated and anticipated result, Chazelle [3] showed that one could, in fact, triangulate
apolygon in linear time. Unfortunately, the trapezoidation method utilized by this op-
timal deterministic algorithm is quite complex. Indeed, this conceptual complexity has

Fig.1. Trapezoidation and triangulation of asimple polygon. Thevisibility raysin theinterior of the polygon
(longer dashes) areused to deriveatriangulation. A diagonal from each reflex vertex to the oppositevertexinthe
corresponding trapezoid (solid diagonals) decomposes the polygon into monotone polygons. Each monotone
polygon can then be easily triangulated in linear time (dashed diagonals).
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led many researchers, including Chazelle [3] himself, to ask whether there is a simple
randomized algorithm for triangulating a polygon in linear time. To our knowledge, no
linear time randomized al gorithm has been presented previously.

1.2. Our Results

We describe arandomized algorithm for computing the trapezoidation of a simple poly-
gon. The expected running time of our algorithm is linear in the size of the polygon. As
already mentioned, from the trapezoidation, a triangulation of the polygon can be ob-
tained in linear time using well-known methods [5], [11]. Thus, our agorithm provides
a randomized algorithm for polygon triangulation that runs in linear expected time. In
addition, our algorithm is considerably simpler than Chazelle's optimal deterministic
algorithm; hence, it effectively responds to the open problem posed by Chazelle as to
the existence of a simple randomized triangulation algorithm that runsin linear expected
time.

The general approach of our algorithm for computing a trapezoidation of a simple
polygon P follows that of the nonoptimal randomized algorithms of Clarkson et a.
[6], [7] and Seidel [20]. That is, we compute the trapezoidation of a successively finer
sample from P, using an algorithm for arbitrary edges (thus with superlinear running
time), in O(log* n) rounds. The fact that the edges come from asimple polygonal chain
isused to perform the computation of the conflict lists of the trapezoidation of the sample
efficiently. Thisisdonein each round, by walking along the original polygonal chainin
the trapezoidation. Unfortunately, an approach that maintains the lists of edge conflicts
for the trapezoidation of the sample is doomed to spend at least linear time per round.
To avoid this, we decompose the original polygonal chain into subchains, sample from
the resulting set of subchains and, taking advantage of the coherence between edgesin
the polygonal chain, maintain lists of subchain conflicts for the resulting subproblems,
rather than edge conflicts.

A technical difficulty in thisapproach isthe definition of the subproblems defined by
aset of subchains. For the approach to work, one needs a decomposition with a size that
is proportional to the number of subchains involved, and with faces (subproblems) of
bounded complexity. The latter requirement originates in the need to be able to derive
appropriate boundsfor the sizes of the conflict lists, and in the need to have adecomposi-
tionthat can betraversed efficiently as onewalksalong the polygonal chain. Thisconcept
aso appears in Chazelle's algorithm; following him, we call this bounded-complexity
property conformality. Fortunately, our problem is simpler; we describe asimple proce-
dure that computes a conformal decomposition in time linear in the number of edgesin
the set of subchains. Thisis actually sublinear in the size of the input chain becauseitis
performed for asmall sample. In order to traverse the decomposition efficiently, we need
a data structure for each subchain that answers intersection queries between a vertical
edge, called a portal, and the subchain. Thus, as in Chazelle's algorithm, we need a
preprocessing phase that constructs these data structures prior to the actual construction
phase. These phases proceed bottom-up and top-down, respectively. Randomization also
plays an important role in the preprocessing phase. Chazelle has “argued” that such a
combination of bottom-up and top-down approaches is indispensable [3].
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A fina technicality is the proof of appropriate sampling bounds for the sizes of
the chain-conflict lists of our conformal decomposition: such bounds are known under
locality or monotonicity properties that our decomposition does not satisfy [1], [8], [10],
[17], [19]. Fortunately, we can prove appropriate bounds using the fact that, although
the faces in the decomposition do not satisfy alocality property, they are chosen from a
relatively small “pool” of candidates that satisfy alocality property.

This paper is organized as follows. First, for comparison purposes, we present a
detailed outline of a nonoptimal randomized algorithm (Section 2). We then describe
our procedure to compute aconformal decomposition for a set of chains (Section 3) and
our linear time algorithm (Section 4). Finally, we obtain appropriate sampling bounds
(Section 5) for bounding the running time of our algorithm (Section 6). We conclude
with some remarks and state some open problems (Section 7).

2. A Nonoptimal Algorithm

For the purpose of comparison with our algorithm, and as a gentle introduction, we
outline anonoptimal randomized al gorithm which isan adaptation fromthosein [6], [ 7],
and [20]. Let £y be asimple polygonal chain, let S be the corresponding set of polygon
edges, andlet n = |S|. We make the nondegeneracy assumption that no two verticeshave
thesamehorizontal coordinate; thiscan besimulated symbolically through lexicographic
ordering. For R C S, let 7 (R) denote the usua (vertical) trapezoidal decomposition or
trapezoidation of the planeinduced by R, obtained by introducing vertical visibility rays
from the endpoints of edgesin R. Thisplanar subdivision has O(|R|) trapezoids (faces)
and each trapezoid has at most two edges (on the top and bottom) and four vertical rays
(on the left and right) on its boundary. For A € 7(R), let S, denote the conflict list of
A, that is, the set of those edgesin Sthat intersect (theinterior of) A, andletny = [Sal.
We adopt the following sampling model: for pwith0 < p < 1, a p-sample R from Sis
obtained by taking each s € Sinto R with probability p independently.

2.1. Algorithm Outline

The agorithm constructs the trapezoidation of a successively finer random sample in
O(log* n) rounds. Specifically, we define aglobal probability pi = 1/log® n for round
i in the computation, and let R; be a pj-sample from S chosen in this round (so each
s € Sistaken with probability p; independently). Furthermore, let R = UjSi R;. Note
that R" is a p;-sample from S where p < iji pj = O(pi). Intheith round, given
7T (R"_,) andits conflicts with respect to S (that is, S for A € T(R_,)) the algorithm
constructs 7 (R") and its conflicts with respect to S as summarized in Fig. 2.

Step 1.a, foraA € T(R'_;), involvesasimple scan of the conflict list §, and hence
takes time O(n,).t Step 1.b computes T,, which is T(R|a U {ey, &)}) restricted to A,
where e; and e, are the (nonvertical) edges bounding A. Thistakestime O(r logra),

1 Alternatively, one can maintain for each s € Sthelist of trapezoidsit intersects, and then the scan is not
necessary.
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Non- Qpt i mal - Tr apezoi dat i on (ith round)

Input: 7 (R" ;) and its conflicts with S
Output: 7 (R') and its conflicts with S

1. ForeachA € T(R"))
a Determine R |

b T. < 17 (RiaU{€y, &) resricted to A,
oA where e, & are the edges that bound A

2. Mergeal the Ty, A € T(R",), into 7(R)
3. Compute S, foral A € 7(RY), by “walking” along ¢, in 7 (R")

Fig. 2. Nonoptimal trapezoidation procedure.

wherer » = |R|al|, usingan algorithm for computing atrapezoidation with this complex-
ity. In particular, we choose to use asimple randomized incremental al gorithm described
in [20], which we refer to asBasi c- Tr apezoi dat i on (thisisasimplification of the
algorithms of Clarkson and Shor [8] and Mulmuley [18] to the case of nonintersect-
ing segments). This algorithm produces a representation of the resulting trapezoidation
which allows each trapezoid to determinein constant time the adjacent polygon edgeson
the top and bottom (if any) and the adjacent trapezoids to the left and right (up to four).
Another byproduct of this algorithm is a point location data structure for the resulting
trapezoidation which allows one to locate the trapezoid that contains a query point in
time that is logarithmic in the size of the decomposition. Step 2 involves “ stitching”
together pieces of trapezoidsin 7 (R") that are “chopped” by vertical raysin 7 (R_,).
In other words, vertical rays that are no longer necessary are removed. See Fig. 3. It
takestotal timelinear inthe sizesof the T»’s, and, hence, thetimerequired is dominated
by that of Step 1. Since each trapezoid in 7 (R") has a most four neighbors through
vertical rays, then, assuming that an appropriate data structure is used, Step 3 can be
performed in time proportional to the size of £y, which is n, plus the total number of
segment-trapezoid conflicts found.

(a)

Fig. 3. Nonoptimal trapezoidation example. The three thin edges are added to the trapezoidation determined
by the two thick edges: (a) before the new edges are inserted, (b) local trapezoidations after Step 1, and
(c) trapezoidation after merging in Step 2.
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2.2.  Sampling Bound and Analysis

The algorithm can be analyzed with the use of the following sampling bound. Let R be
a p-sample from S. Then, for any function f such that f (x) = O(e*/?),

E[ > f(pm)} = O(pn) = O(), 6]

AeT (R)

wherer = pn is the expected size of R. See [8], [19], or Section 5. Using f (X) = X
in (1), the expected total size of the conflict listsis O(n). Thisimplies abound of O(n)
for the expected time required by all steps in a round, except Step 1.b. Denoting the
expectation with respect to the first i samples by E;, the total expected time required
by Step 1.bis

E<i|: Z O("A|09rA):|

A€T (Sy)

it [ > 0W(pna) Iog(pinw}

A€T (Sy))

Pi Pi
— )1 — ) - O(pi-
(pil> Og<pi1) (-1

(-1
_ 1 199" "M 5(n) = o).
log" n log® n

where we have used both f (x) = xlogx and f (x) = x in(1). Notethat in thefirst line,
the expectation on the left includes the random choice of R;; this has disappeared on the
right after replacing r A logr » with its expectation over the random choice of R, given
the outcome R"_; of thefirsti — 1 random choices. Finally, since the number of rounds
is O(log* n), the total expected time required by the algorithmis O(nlog* n).

3. Conformal Decomposition

Our agorithm applies sampling to subchains of the original polygonal chain, rather than
individual edges. In order to deal with such samples effectively, we need a method for
defining subproblems of constant descriptive complexity. Consider a set L of i chains
with a corresponding set S of n edges. Let K C L be a subset of chains of L and let
R C S be the corresponding set of edges. For convenience, we write 7 (K) to denote
the trapezoidation 7 (R). We also use here the algorithm Basi c- Tr apezoi dat i on
to compute 7 (K) and so, as already discussed, we have available an efficient planar
subdivision representation of 7 (K) (which allowsthe efficient traversal of 7 (K) needed
below). For our application, we need a planar subdivision with O(|K|) faces, each of
which is conformal [3], that is, bounded by portions of at most O(1) chainsin K and
at most O(1) vertica rays determined by their vertices. We obtain this subdivision
retraction by selecting certain rays of 7 (K). The candidate rays for this selection are
those ray-pairs (one ray upward and one ray downward) incident to areflex vertex, that
is, avertex without incident polygonal edges either on itsleft or on itsright side.
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conf ormal (K, 7(K))

Input: A set of chains K and the trapezoidation 7'(K) of its edges.

Output: Conformal decomposition 7 (K), and its adjacency graph.

1. Select the extreme ray-pairs of each chain. Let T be the planar subdivision
(which is simply connected) induced by the chainsin K and these selected
ray-pairs. (See Fig. 5(a).)

2. For each face f of T and a candidate ray-pair p in f, select p if each of the
three facesin which p splits f hasaray selected in Step 1 on its boundary.

3. Construct 7 (K ), the decomposition induced by all the selected ray-pairs, and
its adjacency graph. (See Fig. 5(b).)

Fig. 4. Conformal decomposition procedure.

The procedure is summarized in Fig. 4. It selects rays in two steps. In Step 1 the
procedure selects all the extreme ray-pairs, that is, those originating from the leftmost
and rightmost verticesof each chain. Weclaim that thefacesof theresulting subdivision T
(induced by chainsin K and these sel ected ray-pairs) are simply connected (seeFig. 5(a)).
Thisis because if one such face f had a hole, then the ray-pairs from the leftmost and
rightmost extreme vertices of chainsinside the hole would contradict the existence of the
hole. In Step 2 the procedure selects other candidate ray-pairsin a“nonlocal” manner,
S0 as to obtain a subdivision whose faces are conformal (see Fig. 5(b)). For each face
f of T, Step 2 selects a candidate ray-pair p in f if each of the three facesin which p
splits f hasaray selected in Step 1 on its boundary. The selection is performed through
simpletraversalsof 7 (K) that usetimelinear initssize. For compl eteness, we elaborate
further on this next.

For aface f, let 7 be the dual (adjacency) tree of the portion of 7 (K) in f. Con-
sider t; rooted at an arbitrary node-trapezoid. The rooting naturally determinesfor each
node-trapezoid a corresponding “region below” it that includesthetrapezoiditself, and a

(a) | | (b)

Fig.5. Conformal decomposition example: (a) subdivision after Step 1 and (b) subdivision after Step 2 (new
edges are dotted).
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Fig. 6. Some example chain-trapezoids. A chain-trapezoid is determined by up to four distinct chains, but
can be determined by a single one as in the third example. Also, because ray-pairs from endpoints are not
necessarily selected, the situation in the fourth example can occur.

“region above” it (that excludesthetrapezoid). In other words, the vertical ray between a
trapezoid and its parent separatesthe two regions. Perform adepth first tree traversal that
marks anode-trapezoid blueif itsregion below hasaray selected in Step 1 on its bound-
ary: after visiting the children of thetrapezoid, thetrapezoid ismarked blueif either of its
children was marked blueor if it hasasel ected ray onitsboundary. Another treetraversal
marks anode-trapezoid red (without erasing the blue marks) if the region above hasase-
lected ray on its boundary: mark anode-trapezoid red if either its parent ismarked red or
oneof itssiblingsismarked blue; therootismarked redif it hasasel ected ray onitsbound-
ary. With these blue and red marks, for each candidate ray-pair p, the unique trapezoid
A, that hasboth raysof p onitsboundary can determinewhether p must be selected: p is
selected if itsmarksand those of itschildren indicate that thethreefacesin which theray-
pair splits f hasaray selectedin Step 1 onitsboundary (we omit thelisting of the cases).

Clearly, the complete procedure runsin O(|R|) time. Moreover, the total number of
selected ray-pairsis O(|K |):itisclearthat T has O(|K |) selected ray-pairs; furthermore,
sincewe select only ray-pairsfor which each of the corresponding threeregionshasaray
selected in Step 1 on its boundary, at most O(|K |) additional rays are selected in Step 2.
Note that in the resulting subdivision, each face is bounded by at most two chains and
at most two ray-pairs or single rays (the portion of a chain bounding one of these faces
does not need to be monotone; one of the bounding chainsitself can also determine one
or both bounding ray-pairs). See Fig. 6.

Let 7(K) be the collection of al the conformal faces. Therefore, we have the
following:

Lemma3.1l. LetK beasetof chainsandlet R € Shethe corresponding set of edges,
and suppose that we are given a planar subdivision representation of the trapezoidation
7 (R) of the edges in R. Then the procedure conf or mal constructsin O(|R|) time a
conformal subdivision 7 (K) containing O(|K |) faces.

We refer to the selected (single) rays as portals, to the conformal faces as chain-
trapezoids (as they are defined by chains rather than by edges), and to the conformal
decomposition 7 (K) asthe chain-trapezoidal decomposition or chain-trapezoidation.

4. ThelLinear TimeAlgorithm

Our trapezoidation algorithm can be viewed as arefinement of the nonoptimal algorithm
of Section 2, in which sampling is applied to subchains of the original chain £ rather
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than to edges. More precisely, the chain £y isdivided into aset L of subchains of length
A, and thena p-sample K C L isobtained by taking each £ € L into K with probability
p independently. For each chain-trapezoid A in the chain-trapezoidation 7 (K), let L 3
denotetheset of subchainsin L that intersect (theinterior of) A. Letn = |L|, Az = [L ;|-
In analogy with (1), one would conjecture a bound

E|: Z f(pﬁé)} = O(ph). 2

AeT (K)

In particular, the expected total chain-conflict size would be O(fi) = O(n/A) and it
could be made appropriately sublinear by choosing A sufficiently large. Though we
cannot prove such abound, in Section 5 we prove aweaker one that is sufficient for our
purposes (there is an extralog A factor on the left-hand side). Thisis afirst step toward
obtaining alinear time agorithm.

At the same time, our algorithm can aso be viewed as a simplification of Chazelle's
algorithm. Like Chazelle's algorithm, our construction follows a pattern in which first a
bottom-up phase develops a successively more global but coarse approximation to the
trapezoidation, and then a top-down phase successively refines this coarse approxima-
tion into the final trapezoidation. Both consider a subdivision of the input chain into
successively finer subchains. This sequence of chain refinementsisreferred to asare
finement tree. However, while for Chazelle's algorithm the approximation is the analog
of our chain-trapezoidation (agranular and conformal submap, in histerms, and similar
to our chain-trapezoidations) for all the subchainsin each level starting with the coarser
level, for our algorithm the approximation isthe chain-trapezoidation for asmall random
sample of the subchains at each level. The resulting hierarchy of samplesiscalled agra-
dation tree, or just gradation. Using only arandom sample implies less work to do, and
it can then be performed with simpler methods. In this section, we first define precisely
the sequence of chain refinements and the corresponding gradation tree of samples, then
we give an outline of the two phases of the algorithm, and finally describe the top-down
construction phase and the bottom-up preprocessing phase.

4.1. Chain Refinements and Gradation of Samples

The sampling in our agorithm is performed on a sequence of chain refinements, or
refinement tree, with O(log* n) levels defined as follows (Chazelle's algorithm uses
O(logn) levels). Let ¢ betheinitial simplepolygonal chain of sizen. We decompose ¢
into collections L; of subchains of length A;,i =0, ..., k, starting with Lo = {£o} and
Ao = n,andwith L, i > 1, obtained by decomposing each chain ¢ € L;_; into aset Lf
of subchains each of size A; = log? A;_1, and ending with k = O(log* n) so that A, =
O(1).2 Thus, the subchains in theith level of the refinement treeare L = (J,, , L}
(Fig. 7). We denote the total number of subchainsin L by iy = |Lij| = n/A;.

2 Notethat if, in analogy with log* n, we define logZ") n by iterating the log? operation, and then log?* n,
one obtains that log?* n = O(log* n).
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Fig. 7. Gradation of subchains.

L3 f

Instead of attempting to compute 7 (L;) directly (the analog of what Chazelle's algo-
rithm does), our algorithm further simplifies the problem by taking arandom sample K;
of subchainsfrom L; of asize such that one can afford to compute the trapezoi dation of
K; using asuboptimal algorithm[8], [12], [18]. Specifically, for eachi > 1, we choosea
global probability p; = 1/log® 2;_1, and let K; bea p;-samplefrom L; . Intheith round,
it ismore convenient to deal with the set of subchains K;* that consists of the subchains
in K; and the subchainsin L; contained in all the previous samples K, j < i. That s,

Ki=Ku{f|feljandt C ¢/ wherel € K, j <i}.

Note that the number of the latter subchainsis

- Aj ~
an'pj'A_::ni'ij:ni'o(pi)~

j<i j<i

That is, the size of K;" is dominated by the size of K;. As aresult, from the analysisin
Section 5, it will follow that adding the subchains of previous samples does not affect
substantially the randomness of the sample K;. The resulting hierarchy of samplesis
called agradation tree, or just gradation.

4.2. Overview of the Algorithm

As mentioned previously, our polygon trapezoidation algorithm consists of two phases.
The main phase proceeds top-down constructing the decompositions 7 ( K;") iteratively.
For each chain trapezoid A € 7(K;"), the algorithm maintains its chain-conflict list
L; xS Li,thatis, theset of subchainsin L; that intersect (theinterior of) A. Maintaining
chain-conflict lists, rather than edge-conflict lists, is essentia to the efficiency of our
algorithm. At the beginning of the ith round, we have 7 (K{_,) and the chain-conflict
lists L,y for each A e 7(K;",), then the algorithm adds K; to 7 (K" ;) to obtain
T (K{"), and computes the new chain-conflict lists by following the chain £¢ without
actually scanning every edge. In apreprocessing phase, the algorithm constructsfor each
chan¢ e Lj,i =1,...,k, adatastructure D(£) that supports portal-chain intersection
gueries. given aporta p, determine whether the chain ¢ intersects p. These queries are
needed for the efficient computation of chain-conflict lists during the construction phase.
These data structures also support ray-shooting queries (given a point x, determine the
lowest point in ¢ hit by avertical ray upward from x) which can then be used for testing
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whether a query point is contained in a chain-trapezoid (perform ray-shooting queries
on the two bounding chains and determineif the result corresponds to hitting them from
inside the chain-trapezoid).

The construction (and also the query processing) of D(¢) uses recursively the data
structures D(¢’) for al children ¢’ of ¢ in the refinement tree. We will see that as a
result the construction reduces to computing, for each i from k down to 0 and each
chain ¢ € L;_;, the chain-trapezoidation of the random sample Ki‘f of its subchains,
together with its conflict listswith L{. So the computation of the D(¢)’s corresponds to
the bottom-up phase discussed above. In contrast, the actual construction proceedsin a
top-down manner: fori = Ouptoi = Kk, it computes the chain-trapezoidation of the
random sample K;, together with its conflict lists with respect to L;.

4.3. Top-Down Construction Phase

We now precisely describe how our al gorithm performsthe top-down construction phase.
In the i th round, given the decomposition 7° (K{") and its conflict lists with respect to
Li_1, theagorithm adds the subchainsin K;* to T(Ki*_l) assummarized in Fig. 8.
Step 1.a determines the conflict list K; z by checking foreach ¢ € L; _;; and ¢’ €
Lf N K;, whether ¢’ intersects A: if so either ¢’ intersects one of the portals of A, orits
endpointsareinside A. Both queriesare solved by the same datastructures D constructed
during the preprocessing phase. However, note that the point location query ison chains
in Lj_; and, consequently, it is more expensive (we could afford to construct a faster
standard point location data structure for A, but it is not necessary). Let iz = IKjal
Step 1.b computes the trapezoidation 7 (K; z U {¢1, £2}) restricted to A, where ¢; and
¢, are the two chains bounding A. This uses a simple agorithm with running time
O(r; z logr; z) [8], [12], [18], wherer; ; = O((F; z + DAi) is the number of edges
involved in al these chains (the plus 1 accounts for ¢, and ¢,). Step 2, with a simple

Top- Down (i th round)

Input: 7 (K;" ;) and its conflicts with L; 4
Output: 7(K;") and its conflicts with L;

1. Foreach A e T(K;",)
a. Determine K; z
b T; < {T(Km U {£1, £2}) restricted to A,

where ¢4, ¢, are the chains that bound A
2. Mergeall the T;, A € 7(K,",), into 7 (K/")
3. Obtain 7(K;") using conf or mal (K", 7(K;"))
4. Compute L, 5 foral A € 7(K;"), by “hopping” along L; in 7 (K;")

Fig. 8. Top-down phase procedure.
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traversal of all the Tx's, " stitches’ together trapezoidsof 7 (K;") “chopped” by theportals
of 7 (K ,); thistakestimelinear in the total size of the T . The procedure conf or nmal
in Step 3 was described in Section 3; it takestimelinear inthe size of 7 (K;") and returns
the (conformal) chain-trapezoidation 7 (K;") (including its adjacency graph). In Step 4
the conflict lists L; z for A e T(K) are found chain by chain, using the adjacency
graph of 7 (K;") and the data structures D(¢) to “hop” dong L; in 7 (K;"), as described
next.

Hopping. If achainisalready in K/, then it is part of the boundary for some chain-
trapezoidsand it can automatically be recorded as part of their conflict lists. So, consider
some ¢ € Li\K;" and suppose that we know a chain trapezoid Ag € T(Ki*) that
containsthe first endpoint e of £. Note that the chain-trapezoidsin T; that conflict with ¢
are connected. Thus, we perform a breadth-first-search traversal of the adjacency graph
of 7 (K", starting with Ao. When achain-trapezoid A e 7 (K;") isvisited, it islabeled
as a conflict and each of the portals that separates A from an unvisited chain-trapezoid
A e T(Ki*) is tested for conflict with ¢ using D(¢). If ¢ conflicts with the portal, the
traversal visits A’. Note that ¢ can zigzag arbitrarily within the set of chain-trapezoids
that it intersects. See Fig. 9.

This procedure performs O(1) portal-chain conflict queries per conflict actually
found. Thelocation of thefirst endpoint e isgiven by thelocation of the second endpoint
of the preceding chain ¢’ (known aready if ¢’ € K;"). The location of £'s second end-
point € can be determined by performing apoint location query for each chain-trapezoid
found to be in conflict with ¢. Thisis necessary since the conflicts were computed not
by alinear scan of ¢, but rather by hopping between portals.

Fig. 9. Computing the chain-conflicts for a chain. Note that only one conflict per portal is found, and that
the order the conflicts are discovered (indicated by numbers) does not necessarily reflect their occurrences on
the chain. The portals not queried are shown as finer dashed vertical segments.



A Randomized Algorithm for Triangulating a Simple Polygon in Linear Time 257

Running Time.  In Section 6, using the sampling bounds obtained in the next section,
we show that given the data structures D(¢) with query time O(log®*é 1), for ¢ € L;,
the top-down construction phase is completed in expected time O(n).

4.4. Bottom-Up Preprocessing Phase

In the preprocessing phase the algorithm constructs data structures for portal-chain con-
flict queriesto be used to hop along the chainsin thetop-down phase. Recall the sequence
of chainrefinementsLi,i =0, ..., k, defined above and that for £ € L;_1, Lf isthe set
of subchainsof ¢ in L. Let Kf = L{ N K;. Note that since K| isa pj-sample from L;,
then K/ isa p;-sample from L{ .3

Foreach¢inLi_1,i =1,...,Kk, weconstruct adata structure D(¢) that consists of

(i) 7( K{) and acorresponding point location structurewith query time O(log Ai _1);
(i) for each A e T(K!), the chain-conflict list LflA.

For the construction of T(Ki‘), weuse Basi c- Tr apezoi dat i on, which also pro-
duces the required point location data structure.

A portal-chain conflict query for an arbitrary portal p and chain ¢ € L;_; first uses
D(¢)’s point location data structure T( Ki‘f) to locate the endpoints of p. If p’sendpoints
are contained in different chain-trapezoids in 7° (K{), then p must intersect ¢, and a
conflict is reported. Otherwise, p is entirely contained in some A € 7 (K, and the
guery continues recursively in the data structures D(¢’), for each and every subchain ¢’
that bounds A or isin A’sconflict list LflA, which includes the subchains that bound A
(see Fig. 11). This query procedure is summarized in Fig. 10. The query procedure for
ray-shooting, which determines the lowest intersection point, is similar and we omit it.

The computation of conflict lists for T (Kf) during the construction of D(¢) aso
uses hopping and, hence, conf | i ct ? recursively. The bottom-up preprocessing phase
issummarized in Fig. 12.

conflict?(p,¢,i—1)

Input: A portal p andachain¢inL;_;.

Output: Yes if p intersects ¢, else No
1. Determine A, A’ e T,* which contain the endpoints of p
2. If A and A’ are different then return Yes

3. For each ¢’ that bounds A or in Lf‘A do
if conflict?(p,?,i)=Yes thenreturn Yes

4. Return No

Fig. 10. Portal-chain query procedure.

3 This phase could use a sampling independent of that in the construction phase, but thisis not necessary.
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|
:

;
;

A

Fig. 11. Two cases in the portal-chain conflict query: the portal endpoints are in different or in the same
chain-trapezoid.

Running Time. In Section 6, using the sampling bounds obtained in the next section,
we show that the construction of the data structures D(£) is completed in expected O(n)
time. Moreover, we show that, even though we recurse on each subchaininaconflict list,
the expected query time for achain ¢ € L; is O(log®>*® 1;), where ¢ > Oisan arbitrary
small fraction. Thus, we can summarize our resultsin the following theorem.

Theorem 4.1.  Our randomized two-phase algorithm constructs the trapezoidation of
a simple polygon of size n in expected O(n) time.

5. Sampling Bounds

To analyzetherunning timeof our a gorithm, we need bounds on the sizes of the subprob-
lems resulting by taking a random sample from a set of chains and then constructing its
chain-trapezoidation. Let K be a p-sample from L, and recall that for a chain-trapezoid
A € T(K), L3 denotes the list of conflictsof A in L, and that fig = |L z|. Unfortu-
nately, we cannot prove the bound in (2). Such abound can be proved in the framework
of configuration spaces, when certain locality [8], [19] or monotonicity [10], [1] prop-
erties hold for the decomposition induced by the sample (see [17] for a survey), but

Bot t om Up (i th round)
Input: i(Kf) and its conflicts with Lj‘ foreachf e Lj_q,j>i
Output: 7 (K/) and its conflictswith L{ foreach ¢ € L;_;
Foreach¢ € Lj_, do
1. Compute 7 (K/") and a corresponding point location structure
2. Compute 7 (K{) using conf or mal (K¢, 7(K{))
3. Compute L, 5 foral A e 7(K{) by “hopping” along L{ in 7 (K{)

Fig. 12. Bottom-up phase procedure.
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neither of these properties holds for our chain-trapezoidation. Fortunately, we can prove
aweaker bound that is only afactor O(f (logA)) larger, and that suffices to verify that
our algorithm has expected linear running time. The proof of the bound uses a standard
trick [8], [4]: one obtains a nontrivial bound for a p-sample in terms of atrivial bound
for a (p/2)-sample. First, we need a fact about the chain-trapezoidation that limits the
amount of nonlocality in the definition of the chain-trapezoidation.

Recall that a chain-trapezoid is bounded by at most two chains and at most two ray-
pairs, each one originating from another chain (but possibly a bounding chain). We say
that these at most four chains determine the chain-trapezoid. Let 7*(L) be the set of all
chain-trapezoids determined by L, that is, those chain-trapezoids determined by a subset
of at most four chainsin L (but note that some other chainsin L can conflict with such
chain-trapezoids). Let 7¢(K ) bethe set of all candidate chain-trapezoids determined by
K and with empty conflict listswith respect to K . Notethat 7¢(K) is bigger than 7 (K )
as there are candidate chain-trapezoids determined by K that were not chosen in our
construction of 7 (K). For A € 7*(L), let §(A) < L denote the set of those up to four
chains that determine A. For A e 7*(L), we have the following locality property:

AeTYK) iff S(A)SK and LznK=4. ©)

Though our chain-trapezoidation lacks locality, or even monotonicity, the following
lemma states that we choose it out of arelatively small “pool” of candidates that satisfy
the locality property.

Lemma5.1. Let K be a set of chains each of length at most 1. Then |7¢(K)| =
O(IK|A?).

Proof. In 7(K), let a region be the union of the trapezoids corresponding to a
connected subgraph of the adjacency graph of 7 (K). For each A € 7(K) consider
the maximum region R; of 7 (K) that contains A and is bounded by the same one or
two chains that bound A. Note that R may not be conformal. Any candidate chain-
trapezoid is a subregion of Rx for some A. Since clearly the number of subregions of
any R; isO(1?), and thesize of 7(K) is O(|K |), then it follows that the size of 7°(K)
isO(|K|A?). O

We use this result now to prove bounds for the chain-conflict list sizes in the chain-
trapezoidal decomposition of arandom sample of chains.

Lemmab.2. LetL beasetof i chainsof length A, and let n = An be the total number
of edges. Let K € L bea p-sanple, let f = pii be its expected size, and let 7 (K) be
its chain-trapezoidal decomposition. For A T(K), we write Az =Ll Let f bea
positive nondecreasing function such that f (O(x)) = O(f (x)). Then

E{ > f(pﬁp} = O(pii - f(logh)). )

AeT (K)
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Proof. Let K’ C L bea(p/2)-sample. Recall that T¢(K) isthe set of candidate chain-
trapezoids for K, and that for these chain-trapezoids the locality property in (3) holds.
Thus,

Prob{A € 7°(K)} = p®(1— p)s

_ ) (11%‘;/32) b (p/2’® (1 — p/2)ts

16 - e P"a/2. Prob{A € T%(K")}, ©)

A

using8(A) <4and (1— p)/(1— p/2) <1— p/2 < e P/2, Using (5) and Lemma 5.1,
we obtain

AeTe(K) AeT=(L)

E|: > f(pﬁﬁ)} = Y f(phz) Prob{A e 7°(K)}

o( Z Prob{ A eTC(K’)})

AeT*(L)
O(E[ITS(K)I])
= O(FA2), (6)

using Lemmab5.1. Let > O be aparameter. Then, using again (5),

E| > f(phy) > f(phz) - Prob{A e T°(K))

AeTC(K) AeT*(L)
ﬁA 2(logt)/p ﬁA>2(|Ogr)/p
< 16-)  f(pfiz) - e P52 Prob{A e T°(K")}
AeT*(L)
fiz>2(ogr)/p

16 >~ f(piiz) - Prob{A e T%(K")}
t AeT*(L)

16 -
?-E{ > f(pn;)}

AeTe(K")

IA

o(1 - A2
o -E[IT°(K")[] =0 (F . —>,
T T

where K” isa (p/4)-sample and we have used the bound in (6). Finally, using t = A?,

E[Z f(pﬁA):|:E DOty [+E[ Y f(piy)

AeT (K) AeT (K) AeT(K)
iz >2(ogr)/p fiz=2(log7)/p
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< E| ) f(piy) |+ flogr) - E[T(K)[]
AeTC(K)
iz >2(ogr)/p
)"2
= O(f-?>+O(f(2|ogr)-r~)=O(f(logk)~r~). O

We have not tried to determine the weakest (less stringent) conditionsfor the function
f under which the lemma holds.

For the analysis of the query time of the ray-shooting data structure, we also need a
bound for the expectation of the conflict list size of the chain-trapezoid that contains a
fixed point x. Thisis established in the following lemma.

Lemma5.3. LetK C L bea p-sample, and for a fixed point x, let Ax be the chain-
trapezoid in 7 (K) that contains x. Then

E[lLzl]=0 <—;-Iogk> =0 (? : Iogk).

Proof.  Theproof isanalogousto the onefor the previouslemmaand we only present an
outline. First, note that the number of candidate chain-trapezoidsin 7°(K) that contain
x is O(A?), and so

Z Prob{A € T¢(K)} = E[|{A € T%(K): x € A}|] = O(X?).
AeT*(L)
Then, using (5) and following derivations similar to those in the previous lemma, we
obtain the sequence of bounds:

~ N )\‘2
Bl 2 piz =005 E| >  piy|=0 <7> ’
AE:;A(K) ﬁAAiZ;I?(g?)p
E[pfiz,] = O(logh). B

6. Running Time Analysis

First, wenotethat thesampling bound of Lemmab.2 holdsfor K;* eventhoughit contains,
in addition to the true random p;-sample K;, all the subchains of previous samples K,
j < i.Thisisbecause, as noted in Section 4, the size is dominated by K; and so, from
the proof of the lemma, the right-hand side of (4) is not affected.

In the analysis below, two specific sums appear that can be bounded using (4):

E|: Z ﬁ{| = O(fi - log 1), (7)

AeT (K)
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andfor «, 8 > 0,

E |: Z (aefiz + B) log((efiy) + ,3):|

AeT (K)
=o(m(“'%gk+ﬂ).|og<“'(;gk+ﬂ>>. ®)

6.1. Preprocessing Phase

First we verify the query time. The expected query time Q(A;) is the sum of the time
needed for a point location query, plus the expected time needed for al the recursive
gueries. Thus, we have

Q(i—p)

Odlogi_1) + O (pi logxi) Q)

= O(logri-1) + O((logri-1)3logai) - Q(xi)
= O(log®** A1),

where e isany positive fraction. We have used Lemma 5.3 to bound the expected number
of chain-conflicts as O((1/pi) log ;). Note that it is valid to use the bound for a fixed
point, as the random choices in the i th and later rounds are independent of the random
choicesin earlier rounds. Next, we estimate the expected construction time for £ € L;.
From the previous description, using (7), the expected time is

Ai_
O ((Pi Ai—p)log(pii—1) + (/\—1 |09)»i) - Qi ))

Aic1 Aic1 A1 5 e o )
=0 lo + -log(log?ai_1) -log>+¢ (log? i -
(|093Ai1 g(log3ki1> |ng)»i,l g(log”2i-1) -log™ (log”2i 1)

o)
log A1
wherethefirst term accountsfor the construction of 7 ( Ki‘), and the second term accounts
for O(1) portal-chain intersection queries per chain-conflict. Adding over al ¢ € Lj_1,

the construction timein the (i — 1)st level is O(n/log Ai_1), and adding over al i, the
total constructiontimeis O(n).

6.2. Construction Phase

Consider the ith round, and let A € T (K{"). For the purpose of analysis, we write
Mz = ILjzl and ;3 = |K;z|- Recal that il = |Li| = n/;i. Note that the expected
value of T; ; isbounded by p; - f;_; 3 - (Ai—1/Ai). In Step 1.a, for each £ € L; 43,
checking whether ¢ € L N K; intersects A takes expected time O(log>™ 1;_1), using
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the data structure D for the chains bounding A. Thus, using (7), the total expected time
for this step is at most proportional to

N Ai—
E<i—1|: Z pi .nil’A.;\__.|093+£)ni_1:|
i

AeT(K'))

_ Ai—1 3 n
=O . -_| A —l +8)\'._ :O ).
(pl (Ni—1log2i—1) Iy o9 ! l) (|Ogl£ Ail)

(Here, the term log®** ;_1 could be reduced to log A _1 + log®* A;, if we construct a
point location data structure for each A € 7 (K{_p).) In Step 1.b, T; is computed using
an agorithm with running time O(r, ; logr; ;) wherer; ; = O((f; z + 1Ai). Using
(8), the total expected timeis at most proportional to

E<[ > ri,A|Ogri,A:|
)
1

AeT (K"

:Egil|: Z (pi')\il'ﬁi1’A+)»i)'|09(pi')\i1'ﬁi1,5+)\i)i|

AeT (K )

_0 (pi_l.ﬁi_l. (% Hi) log (% Hi))
Pi-1 Pi—1

Ai n
=0(n-(ploghr_ i_1—— ) -logiri_1 ) =0 .
(n <p. OgAi—1+ B 1)“1) Og Ai 1) <|09)»i1)

The conformal decomposition in Step 3 is constructed as described in Section 3 and
requires expected time at most proportional to

)1 = R L) = n
ESi[|T(Ki )|] = O(pi - i - Ai) o) <|Ogs)wi1> .

In Step 4 the conflict lists for regions A T(Kr) with subchainsin L; are found using
the data structures D, O(1) queries per conflict determined, so the expected timeis

A . . o (. Claedte s ) _|094+8)»i . n
O(f; - log A Q()L.))_O<ki log 2 -log A.>_O<n x =0 ogi )

The sum of al these contributions over al the roundsis O(n).

7. Concluding Remarks

We have presented arandomized a gorithm for computing the trapezoidation of asimple
polygon, and hence atriangulation, that runsin expected timethat islinear in the number
of edges. The algorithm is considerably simpler than Chazell€'s algorithm. On the other
hand, it is comparatively more complicated than the nonoptimal randomized algorithms
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and, since for any practical value of n, log* n is a small constant, our algorithm is not
likely to be of practical value. Anincremental version of our algorithm (like Seidel’s) is
possible. In such aversion, the edges are added one by oneto the previoustrapezoidation
according to arandom permutation which is somewhat modified according to the chain
sampling. Inthisway somegainin simplicity isachieved. Also, we point out that, unlike
Seidel’s algorithm, the number of rounds does not have to be O (log* n).

We conclude by mentioning some questions that remain open. Is the conjectured
tighter sampling bound for our conformal decomposition true? Is it possible, as con-
jectured by Chazelle, to combine our polygon trapezoidation algorithm with a segment
i ntersection algorithm to obtain an al gorithm that can report the k intersections of achain
of n segmentsintime O (n+Kk)?Can our linear timeal gorithm be parallelized? (Goodrich
[13] has given afast and work optimal implementation of Chazelle's algorithm in a par-
alel computation model.) Can the approach of sampling on subchains lead to efficient
algorithms for other problems on simple polygons? Finally, do ssmpler deterministic or
randomized algorithms for the polygon triangulation problem exist?
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