
Vol.:(0123456789)

Algorithmica (2021) 83:387–412
https://doi.org/10.1007/s00453-020-00761-z

1 3

CADbots: Algorithmic Aspects of Manipulating 
Programmable Matter with Finite Automata

Sándor P. Fekete1   · Robert Gmyr2 · Sabrina Hugo1 · Phillip Keldenich1 · 
Christian Scheffer1 · Arne Schmidt1

Received: 9 July 2019 / Accepted: 17 August 2020 / Published online: 4 September 2020 
© The Author(s) 2020

Abstract
We contribute results for a set of fundamental problems in the context of program-
mable matter by presenting algorithmic methods for evaluating and manipulat-
ing a collective of particles by a finite automaton that can neither store significant 
amounts of data, nor perform complex computations, and is limited to a handful 
of possible physical operations. We provide a toolbox for carrying out fundamental 
tasks on a given arrangement of particles, using the arrangement itself as a storage 
device, similar to a higher-dimensional Turing machine with geometric properties. 
Specific results include time- and space-efficient procedures for bounding, counting, 
copying, reflecting, rotating or scaling a complex given shape.

Keywords  Programmable matter · Finite automata · Robots · Geometry · Turing 
machines · CAD operations

 *	 Sándor P. Fekete 
	 fekete@ibr.cs.tu‑bs.de

	 Robert Gmyr 
	 robert@gmyr.net

	 Sabrina Hugo 
	 hugo@ibr.cs.tu‑bs.de

	 Phillip Keldenich 
	 keldenich@ibr.cs.tu‑bs.de

	 Christian Scheffer 
	 scheffer@ibr.cs.tu‑bs.de

	 Arne Schmidt 
	 aschmidt@ibr.cs.tu‑bs.de

1	 Department of Computer Science, TU Braunschweig, Braunschweig, Germany
2	 Department of Computer Science, University of Paderborn, Paderborn, Germany

http://orcid.org/0000-0002-9062-4241
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00761-z&domain=pdf


388	 Algorithmica (2021) 83:387–412

1 3

1  Introduction

When dealing with classic challenges of robotics, such as exploration, evaluation 
and manipulation of objects, traditional robot models are based on relatively pow-
erful capabilities, such as the ability (1) to collect and store significant amounts of 
data, (2) perform intricate computations, and (3) execute complex physical opera-
tions. With the ongoing progress in miniaturization of devices, new possibilities 
emerge for exploration, evaluation and manipulation. However, dealing with small 
dimensions (as present in the context of micro-robots and even programmable mat-
ter) or large dimensions (as in the construction of large-scale structures in space) 
introduces a vast spectrum of new difficulties and constraints. These include signifi-
cant limitations to all three of the mentioned capabilities; challenges get even more 
pronounced in the context of complex small-scale or far-away systems, where there 
is a significant threshold between “internal” objects and sensors, and “external” con-
trol entities [2]. that can evaluate gathered data, extract important information, and 
provide guidance.

In this paper, we present algorithmic methods for evaluating and manipulating 
a collective of particles by agents of the most basic possible type: finite automata 
that can neither store significant amounts of data, nor perform complex computa-
tions, and are limited to a handful of possible physical operations. The objective is 
to provide a toolbox for carrying out fundamental tasks on a given arrangement of 
particles, such as bounding, counting, copying, reflecting, rotating or scaling a large 
given shape. A key idea is to use the arrangement itself as a storage device, similar 
to a higher-dimensional Turing machine with geometric properties.

1.1 � Our Results

We consider an arrangement P of N square-shaped particles, on which a single 
finite-state robot can perform a limited set of operations; see Sect. 2 for a precise 
model description. Our goal is to develop first approaches for evaluating and modi-
fying the arrangement by defining sequences of transformations and providing met-
rics for such sequences. In particular, we present the following; a full technical over-
view is given in Table 1.

•	 We give a time- and space-efficient method for determining the bounding box of 
P, i.e., the smallest axis-aligned box containing P.

•	 We show that we can simulate a Turing machine in our model.
•	 We provide a counter for evaluating the number N of particles forming P, as well 

as the number of corner pixels of P.
•	 We develop time- and space-efficient algorithms for higher-level operations also 

used in computer-aided design (CAD), such as copying, reflecting, rotating or 
scaling P.



389

1 3

Algorithmica (2021) 83:387–412	

1.2 � Related Work

Practical motivation for our work arises both at very small and very large dimen-
sions. See the overview in [2] for a discussion of work on particle computation 
and programmable matter, and [1, 24] for a description of possible applications for 
building large-scale structures in space.

There have also been a number of different, related basic models. Derakhshandeh 
et al. [9] introduced a fundamental concept for studying algorithmic approaches for 
extremely simple robots, called the Amoebot model. In this model, active particles 
move on hexagonal cells by expanding (and thus occupying two cells) and contract-
ing. With only a few rules governing how the particles have to move, the particles 
can form shapes like lines, triangles or hexagons [11]. By first performing a leader 
election, further operations are possible [6, 14]. An algorithm for universal shapes 
formation was presented by Di Luna et al.  [15] and by Derakhshandeh et al.  [12]. 
The problem of coating an arbitrarily shaped object by particles was solved by 

Table 1   Results of this paper

N is the number of particles in the given shape P, w and h its width and height, and �P denotes the 
boundary of P. ( ∗ ) is the particle complexity after constructing the bounding box. Particle Complexity 
denotes the maximum number of particles placed on the grid minus N during construction, time com-
plexity denotes the total number of steps needed, space complexity denotes the total number of visited 
pixels outside the bounding box of P, and dimension complexity denotes the total number of rows and 
column visited outside the bounding box of P

Problem Particle complexity Time complexity

Bounding box O(|�P|) O(whmax(w, h))

Counting
 N particles O(logN)∗ O(max(w, h) logN + Nmin(w, h))

 k Corners O(log k)∗ O(max(w, h) log k + kmin(w, h) + wh)

Function
 Copy O(N)∗ O(wh2)

 Reflect O(max(w, h))∗ O((w + h)wh)

 Rotate O(w + h)∗ O((w + h)wh)

 Scaling by c O(cN) O((w2 + h2)c2N)

 Problem Space complexity Dimension complexity

Bounding box O(w + h) O(1)

Counting
 N particles O(max(w, h)) O(1)

 k Corners O(max(w, h)) O(1)

Function
 Copy O(wh) O(h)

 Reflect O(w + h) O(1)

 Rotate O(w + h + |w − h|max(w, h)) O(|w − h| + 1)

 Scaling by c O(c2wh) O(c(w + h))



390	 Algorithmica (2021) 83:387–412

1 3

Derakhshandeh et  al.  [13] and analyzed in  [10]. Further models involving active 
particles only were introduced by Woods et al. [35] (Nubot model) and by Hurtado 
et al. [20] (modular robots). Other related work includes shape formation in a num-
ber of different models, such as agents walking on DNA-based shapes [28, 32, 34], 
or variants of population protocols [23].

The setting of a finite-automaton robot (as an active particle) operating on a set 
of passive particles in a grid, called the hybrid model, was introduced in [19], where 
the objective is to arrange a given set of particles into an equilateral triangle. An 
extension studies the problem of recognizing certain shapes [18]. We use a simpli-
fied variant of the model underlying this line of research that exhibits three main 
differences: First, for ease of presentation we consider a square grid instead of a 
triangular grid. Second, our model is less restrictive in that the robot can create and 
destroy particles at will instead of only being able to transport particles from one 
position to another. It appears straightforward to adapt all our algorithms to the case 
where a robot has to bring a particle to and from a location from and to a particle 
depot, albeit at potentially considerable overhead for additional travel time. Finally, 
we allow the robot to move freely throughout the grid instead of restricting it to 
move along the particle structure. As shown in [24], we are able to adapt all our pre-
sented algorithms to maintain connectivity during the runtime, provided that we are 
allowed to use at least two robots or one robot and a special marker.

Models based on automate and movable objects have also been studied in the 
context of one-dimensional arrays, e.g., pebble automata [29]. Work focusing on a 
setting of robots on graphs includes network exploration [5], maze exploration [3], 
rendezvous search [27], intruder caption and graph searching [4, 17], and black hole 
search [22]. For a connection to other approaches to agents moving tiles, e.g., see [7, 
31].

Another widely considered model considers self-assembling DNA tiles (e.g., [8, 
26]) that form complex shapes based on the interaction of different glues along their 
edges; however, no active agents are involved, and composition is the result of chem-
ical and physical diffusion. Although the complexity of our model is very restricted, 
actually realizing such a system, for example using complex DNA nanomachines, 
is currently still a challenging task. However, on the practical side, recent years 
have seen significant progress towards realizing systems with the capabilities of our 
model. For example, it has been shown that nanomachines have the ability to act 
like the head of a finite automaton on an input tape [28], to walk on a one- or two-
dimensional surface [21, 25, 34], and to transport cargo [30, 32, 33].

2 � Preliminaries

We consider a single robot that acts as a deterministic finite automaton. The robot 
moves on the (infinite) grid G = (ℤ2,E) with edges between all pairs of nodes that 
are within unit distance using Manhattan metric. The nodes of G are called pixels. 
Each pixel is in one of two states: It is either empty or occupied. A particle denotes 
an occupied pixel. A diagonal pair is a pair of two pixels (x1, y1), (x2, y2) with 
|x1 − x2| = |y1 − y2| = 1 (see Fig. 1, left and middle). A polyomino is a connected 



391

1 3

Algorithmica (2021) 83:387–412	

set of particles P ⊂ ℤ
2 such that for all diagonal pairs p1, p2 ∈ P there is another 

particle p ∈ P that is adjacent to p1 and adjacent to p2 (see Fig. 1 middle and right). 
We say that P is simple if it has no holes, i.e., if G ⧵ P is connected. Otherwise, P is 
non-simple.

The a-row of P is the set of all pixels (x, a) ∈ P . We say that P is y-monotone if 
the a-row of P is connected in G for each a ∈ ℤ (see Fig. 1 right). Analogously, the 
a-column of P is the set of all pixels (a, y) ∈ P and P is called x-monotone if the 
a-column of P is connected in G for each a ∈ ℤ . The boundary �P of P is the set 
of all particles of P that are adjacent to an empty pixel or that build a diagonal pair 
with an empty pixel (see Fig. 1 right). The bounding box of a given polyomino P is 
defined as the smallest axis-aligned rectangle enclosing P.

A configuration consists of the states of all pixels and the robot’s location and 
state. Initially, the robot is placed on a particle. We assume that the robot uses a 
local compass to distinguish the four directions the robot can move to. Because 
we are only using one robot, we may assume that this local compass matches the 
global compass. The robot can transform a configuration into another configuration 
using a sequence of look-compute-move steps as follows. In each step, the robot 
acts according to a transition function � . This transition function maps a pair (p, b) 
containing the state of the robot and the state of the current pixel to a triple (q, c, d), 
where q is the new state of the robot, c is the new state of the current pixel, and 
d ∈ {up, down, left, right} is the direction the robot moves in. In other words, in 
each step, the robot checks its state p and the state of the current pixel b, computes 
(q, c, d) = �(p, b) , changes into state q, changes the state of the current pixel to c if 
c ≠ b , and moves one step into direction d.

Our goal is to develop robots transforming an unknown initial configuration P 
into a target configuration T(P) by moving, creating, and deleting particles. We 
assess the efficiency of a robot by several metrics:

•	 Time complexity The total number of steps performed by the robot until termina-
tion.

•	 Dimension complexity The number of rows and columns we visit outside the 
bounding box of P. (Having this complexity can help having multiple robots 
working on different polyominoes at the same time, e.g. by separating the poly-
ominoes by enough space so the robots do not use workspace of other robots.)

q

p p

q

1-row

4

3

2

1

1 2 3 4 5 6
0

0

Fig. 1   Left: an illegal diagonal pair (p, q). Middle: An allowed diagonal pair (p, q). Right: a polyomino 
P with its boundary �P (particles with bold outline). P is x-monotone but not y-monotone, because the 
1-row is not connected. Particles at position (2,2) and (4,2) are both building a diagonal pair with an 
empty pixel at position (3,1) and therefore also belong to �P



392	 Algorithmica (2021) 83:387–412

1 3

•	 Space complexity the total number of visited pixels outside the bounding box of 
the input polyomino P. (This gives a slightly more precise analysis of the used 
space, e.g., if we need only O(1) extra rows and columns.)

•	 Particle complexity The maximum number of particles on the grid minus the 
number of particles in the input polyomino P at any given time. (The idea is that, 
once created, particles can be stored at some place, where robots can pick up 
and store particles whenever needed, and thus, already created particles can be 
reused. Carrying out these operations efficiently is a separate algorithmic prob-
lem that is not at the heart of our presented work and will be dealt with sepa-
rately.)

3 � Basic Tools

A robot can check the states of all pixels within a constant distance by performing a 
tour of constant length. Thus, from now on we assume that a robot can check within 
a single step all eight pixels that are adjacent to the current pixel p or build a diago-
nal pair with p.

3.1 � Bounding Box Construction

Because the bounding box and the polyomino are comprised of identical tiles, we 
need a gap between both to differentiate the two structures. We describe how to con-
struct a bounding box of a given, not necessarily simple polyomino P in the check-
ered pattern shown in Fig. 2. We can split the bounding box into an outer lane and 
an inner lane (see Fig. 2). This allows distinguishing particles of P and particles of 
the bounding box. We assume that the robot starts anywhere on P.

Our construction proceeds in three phases. (i) We search for an appropriate start-
ing position. (ii) We wrap a checkered path around P. (iii) We finalize this path to 
obtain the bounding box.

For phase (i), we simply search for a local minimum in the y-direction: 

Fig. 2   A Polyomino P (gray) 
surrounded by a bounding box 
of particles (black) on the inner 
lane (solid line) and particles on 
the outer lane (dashed line)



393

1 3

Algorithmica (2021) 83:387–412	

1.	 Move to the leftmost particle, i.e., move left until the next pixel is empty.
2.	 Move to the right until there is a particle to the bottom. If there is no such particle 

move back to the leftmost particle, i.e., the leftmost local minimum, and end this 
search.

3.	 Move down until there is no more particle below the current position. Go back to 
step 1.

From the local minimum, we go two steps further to the left. If we land on a particle, 
this particle belongs to P and we restart phase (i) from this particle. Otherwise we 
have found a possible starting position.

In phase (ii), we start constructing a path that will wrap around P. We start plac-
ing particles in a checkered pattern in the upwards direction. While constructing the 
path, three cases may occur. 

1.	 At some point we lose contact with P, i.e., there is no particle at distance two 
from the inner lane. In this case, we do a right turn and continue our construction 
in the new direction.

2.	 Placing a new particle produces a conflict, i.e., the particle shares a corner or a 
side with a particle of P. In this case, we shift the currently constructed side of the 
bounding box outwards until no more conflict occurs. This shifting process may 
lead to further conflicts, i.e., we may not be able to further shift the current side 
outwards. If this happens, we deconstruct the path until we can shift it outwards 
again (see Fig. 3). In this process, we may be forced to deconstruct the entire 
bounding box we have built so far, i.e., we remove all particles of the bounding 
box including the particle in the starting position. In this case we know that there 
must be a particle of P to the left of the start position; we move to the left until 
we reach such a particle and restart phase (i).

3.	 Placing a new particle closes the path, i.e., we reach a particle of the bounding 
box we have created so far. We proceed with phase (iii).

Phase (iii) Let t be the particle that we reached at the end of phase (ii). We 
can distinguish two cases: (i) At t, the bounding box splits into three different 

Fig. 3   Left: further construction is not possible. Therefore, we shift the line upwards (see light gray par-
ticles). Right: a further shift produces a conflict with the polyomino. Thus, we remove particles (diagonal 
stripes) and proceed with the shift (light gray) when there is no more conflict



394	 Algorithmica (2021) 83:387–412

1 3

directions (shown as the particle with black-and-white diagonal stripes in Fig. 4), 
and (ii) the bounding box splits into two different directions. In the latter case we 
are done, because we can only reach the bottom or left side of the bounding box. 
In the first case, we can move from t to the particle where we started the bound-
ing box construction by doing a right turn and following the checkered path, 
and remove the bounding box parts until we reach t again. Now the bounding 
box splits in two directions at t. However, we may not have built a convex shape 
around P (see Fig. 4 left). This can be dealt with by straightening the bounding 
box in an analogous fashion like shifting in phase (2), e.g., by pushing the line to 
the right of t down.

Theorem 1  The described strategy builds a bounding box that encloses the given 
polyomino P of width w and height h. Moreover, the strategy terminates after 
O(max(w, h) ⋅ wh) steps, using at most O(|�P|) auxiliary particles and O(w + h) of 
additional space in O(1) extra columns and rows. The running time in the best case 
is O(wh).

Proof  Correctness We show that (a) the bounding box will enclose P, and (b) 
whenever we make a turn or shift a side of the bounding box, we find a particle with 
distance two from the bounding box, i.e., we will not build an infinite line.

First note that we only make a turn after encountering a particle with distance two 
to the inner lane. This means that we will “gift wrap” the polyomino until we reach 
the start. When there is a conflict (i.e., we would hit a particle of P with the current 
line), we shift the current line. Thus, we again find a particle with distance two to the 
inner lane. This also happens when we remove the current line and extend the previ-
ous one. After a short extension we make a turn and find a particle with distance two 
to the inner lane, meaning that we make another turn at some point. Therefore, we 
do not construct an infinite line, and eventually close the loop at some point.

s

t

Fig. 4   Left: during construction, starting in s, we reach a particle t (diagonal stripes) at which the bound-
ing box is split into three directions. The part between s and t (dark gray particles) can be removed, fol-
lowed by straightening the bounding box along the dashed line. Right: the final bounding box



395

1 3

Algorithmica (2021) 83:387–412	

Time Every time we enter phase (1), we visit each particle of P at most O(1) 
times. When comparing to runs of phase (1), we observe that no particle of P is 
visited in both runs. Therefore, phase (1) costs O(N) time for the whole algorithm.

To establish a runtime of O(wh) for phase (2), we show that each pixel lying in 
the final bounding box is visited only a constant number of times. Consider a par-
ticle t that is visited for the first time. We know that t gets revisited again if the 
line through gets shifted or removed. When t is no longer on the bounding box, we 
can visit t again while searching for the start particle. Thus, t is visited at most four 
times by the robot, implying a running time of O(wh) unit steps. However, it may 
happen that we have to remove the bounding box completely and have to restart the 
local minimum search. In this case, there may be particles that can be visited up to 
max(w, h) times (see Fig. 5). Therefore, the running time is O(max(w, h) ⋅ wh) in the 
worst-case.

In phase (3), removing the path from the starting position and the particle t costs 
O(�P) time. Making the bounding box convex can cost at most O(wh) time.

In total, the strategy has a runtime of O(max(w, h) ⋅ wh) in the worst case, and 
O(wh) in the best case.

Auxiliary particles We now show that we need at most O(|�P|) many auxiliary 
particles at any time. Consider a particle t of �P from which we can shoot a ray to 
a particle of the bounding box (or the intermediate construction), such that no other 
particle of P is hit. For each particle t of �P , there are at most four particles t1,… , t4 
of the bounding box. We can charge the cost of t1,… , t4 to t, which is constant. 
Thus, each particle in �P has been charged by O(1) . However, there are still particles 
on the bounding box that have not been charged to a particle of �P , i.e., particles 
that lie in a curve of the bounding box.

Consider a locally convex particle t, i.e., a particle at which we can place a 2 × 2 
square solely containing t. Because the current bounding box only does a turn if a 
convex particle of P has been found, each turn of the bounding box can be charged 
to a locally convex particle. Note that for a locally convex particle there can be at 
most four turns. Due to the checkered shape of the bounding box, there are at most 

f

p1
p2

p3
p4

Fig. 5   A worst-case example for building a bounding box. The positions p
1
 to p

4
 denote the first, second, 

third and fourth starting position of the robot during bounding box construction. With each restart, the 
pixel f is visited at least once. Therefore, f can be visited �(w) times



396	 Algorithmica (2021) 83:387–412

1 3

four particles that are charged to a locally convex particle for each turn. Therefore, 
each locally convex particle gets charged by O(1) implying that each particle of �P 
has constant cost, i.e., we need at most O(�P) auxiliary particles.

Because we never move further away from the polyomino than the resulting bound-
ing box, we need O(w + h) additional space in O(1) extra rows and columns. 	�  ◻

Even if the starting configuration P contains a forbidden configuration, i.e., 
there is a diagonal pair of particles having no common adjacent particle, we 
can construct the bounding box in the same way. However, the test if a particle 
belongs to P or to the bounding box is slightly different: Let p1 , p2 be a diagonal 
pair with no common adjacent tile. Then, p1 and p2 have at least one adjacent par-
ticle p3 and p4 , resp. Therefore, the robot can perform a local lookup if one of p3 
or p4 exists and we get the following observation.

Observation 2  We can build a bounding box that encloses a given connected start-
ing configuration P of width w and height h, i.e., a polyomino that allows forbid-
den configurations. Moreover, the strategy terminates after O(max(w, h) ⋅ wh) steps, 
using at most O(|�P|) auxiliary particles and O(w + h) of additional space in O(1) 
extra columns and rows. The running time in the best case is O(wh).

3.2 � Binary Counter

For counting problems, a particle-based binary counter is indispensable, because 
the robot is not able to store non-constant numbers. The binary counter for stor-
ing an n-bit number consists of a base-line of n particles. Above each particle of 
the base-line there is either a particle denoting a 1, or an empty pixel denoting 0 
(see Fig. 6). Given an n-bit counter we can increase and decrease the counter by 
1 (or by any constant c), and extend the counter by one bit. The latter operation 
will only be used in an increase operation.

In order to perform an increase operation, we firstly move to the least signifi-
cant bit, and secondly start flipping 1s to 0s we flip a 0 to a 1. If we have run 
through the counter, we extend the counter by one bit.

For the decrease operation we again start at the least significant bit, and start 
flipping 0s to 1s until we flip a 1 to a 0. Note that this operation only works cor-
rectly if the counter contains at least one bit set to 1.

8 4 2 1 8 4 2 1 8 4 2 1

Fig. 6   Left: a 4-bit counter with decimal value 10 (1010 in binary). Middle: the binary counter increased 
by one. Right: The binary counter decreased by one



397

1 3

Algorithmica (2021) 83:387–412	

4 � Counting Problems

The constant memory of our robot poses several challenges when we want to count 
certain elements of our polyomino, such as particles or corners. Because these 
counts can be arbitrarily large, we cannot store them in the state space of our robot. 
Instead, we have to make use of a binary counter. This requires us to move back and 
forth between the polyomino and the counter. Therefore, we must be able to find 
and identify the counter coming from the polyomino and to find the way back to the 
position where we stopped counting.

This motivates the following strategy for counting problems. We start by con-
structing a slightly extended bounding box and moving the robot to its bottom-left 
corner. From there, we perform the actual counting by shifting the polyomino two 
units downwards or to the left, one particle at a time. After moving each particle, 
we return to the counter, increasing it if necessary. We describe further details in the 
next two sections, where we present algorithms for counting the number of particles 
or corners in a polyomino.

4.1 � Counting Particles

The total number of particles in our polyomino can be counted using the strategy 
outlined above, increasing the counter by one after each moved particle.

Theorem  3  Let P be a polyomino of width w and height h with N particles for 
which the bounding box has already been created. Counting the number of particles 
in P can be done in O(max(w, h) logN + Nmin(w, h)) steps using O(max(w, h)) of 
additional space in O(1) extra rows and columns and O(logN) auxiliary particles.

Proof  In a first step, we determine whether the polyomino’s width is greater than 
its height or vice versa. We can do this by starting from the lower left corner of the 
bounding box and then alternatingly moving up and right one step until we meet the 
bounding box again. We can recognize the bounding box by a local lookup based on 
its zig-zag shape that contains particles only connected by a corner, which cannot 
occur in a polyomino. The height is at least as high as the width if we end up on the 
right side of the bounding box. In the following, we describe our counting procedure 
for the case that the polyomino is higher than it is wide; the other case is analogous.

We start by extending the bounding box by shifting its bottom line down by two 
units. Afterwards we create a vertical binary counter to the left of the bounding box. 
We begin counting particles in the bottom row of the polyomino. We keep our coun-
ter in a column to the left of the bounding box such that the least significant bit 
at the bottom of the counter is in the row in which we are currently counting. We 
move to the right into the current row until we find the first particle. If this particle 
is part of the bounding box, the current row is done. In this case, we move back to 
the counter, shift it upwards and continue with the next row until all rows are done. 



398	 Algorithmica (2021) 83:387–412

1 3

Otherwise, we simply move the current particle down two units, return to the coun-
ter and increment it. For an example of this procedure, refer to Fig. 7.

For each particle in the polyomino, we use O(min(w, h)) steps to move to 
the particle, shift it and return to the counter; incrementing the counter itself 
only takes O(1) amortized time per particle. For each empty pixel we have cost 
O(1) . In addition, we have to shift the counter max(w, h) times. Thus, we need 
O(max(w, h) logN +min(w, h)N + wh) = O(max(w, h) logN +min(w, h)N) unit 
steps. We only use O(logN) auxiliary particles in the counter, in addition to the 
bounding box.

In order to achieve O(1) extra rows and columns, we modify the procedure as fol-
lows. Whenever we move our counter, we check whether it extends into the space 
above the bounding box. If it does, we reflect the counter vertically, such that the 
least significant bit is at the top in the row, in which we are currently counting. This 
requires O(log2 N) extra steps and avoids using O(logN) additional rows above the 
polyomino. 	�  ◻

4.2 � Counting Corners

The counting approach described in the previous section is not restricted to count-
ing particles. Various other features of the polyomino can be counted using the same 
(asymptotic) number of steps, extra particles, space and rows or columns. Essen-
tially, the only precondition is that we must be able to identify the feature based on a 
local lookup. For instance, we make the following observation.

Observation 4  Let P be a polyomino of width w and height h with k convex (reflex) 
corners for which the bounding box has already been created. Counting the number 
of convex (reflex) corners in P can be done in O(max(w, h) log k + kmin(w, h)+ wh) 
steps, using O(max(w, h)) of additional space in O(1) extra rows and columns, and 
O(log k) auxiliary particles.

Counter
P

t

Counter

P

t

8421

8
4

2
1

Fig. 7   An 8 × 8 square P in a bounding box, being counted row-by-row (left) or column-by-column 
(right). The robot has already counted 14 particles of P and stored this information in the binary counter. 
The arrow shows how the robot ( ○ ) moves to count the next particle t 



399

1 3

Algorithmica (2021) 83:387–412	

Proof  We use the same strategy as for counting particles in Theorem 3 and retain 
the same asymptotic bounds on running time, auxiliary particles and additional 
space and rows or columns. It remains to describe how we recognize convex and 
reflex corners.

Whenever we reach a particle t that we have not yet considered so far, we exam-
ine its neighbors x1,… , x6 , as shown in Fig. 8. The particle t has one convex corner 
for each pair (x1, x2) , (x2, x3) , (x3, x5) , (x5, x1) that does not contain a particle, and no 
convex corner is contained in more than one particle of the polyomino. As there are 
at most four convex corners per particle, we can simply store this number in the state 
space of our robot, return to the counter, and increment it accordingly.

A reflex corner is shared by exactly three particles of the polyomino, so we have 
to ensure that each corner is counted exactly once. We achieve this by only counting 
a reflex corner if it is on top of our current particle t and was not already counted 
with the previous particle x1 . In other words, we count the upper right corner of t as 
a reflex corner if exactly two of x3, x4, x5 are occupied; we count the upper left cor-
ner of t as reflex corner if x6 and x5 are present and x1 is not. In this way, we count all 
reflex corners exactly once. 	�  ◻

5 � Transformations with Turing Machines

In this section we develop a robot that transforms a polyomino P1 into a required 
target polyomino P2 . In particular, we encode P1 and P2 by strings S(P1) and S(P2) 
whose characters are from {0, 1,⊔} (see Fig. 9 left and Definition 1). If there is a 
Turing machine transforming S(P1) into S(P2) , we can give a strategy that trans-
forms P1 into P2 (see Theorem 5).

Note that while it may be intuitively plausible that such a relationship exists, a 
Turing machine itself (which works in a one-dimensional environment) does not 
encounter some of the issues of two-dimensional geometry, such as the more com-
plex topology involved in determining location and boundaries. Our Theorem  5 
shows that these geometric issues can be handled, paving the way for the power of 

empty

empty

x1

x2

t

x5 x4

x3

x6

Fig. 8   Left: a polyomino and its convex corners ( ◦ ) and reflex corners ( × ). Right: after reaching a new 
particle t, we have to know which of the pixels x

1
 to x

6
 are occupied to decide how many convex (reflex) 

corners t has



400	 Algorithmica (2021) 83:387–412

1 3

Turing Machines. For a visualization of the basic approach, see our video  [1], in 
particular, the part starting at 5:04.

Also note that the Turing Machine emulation described in this section course also 
could be used, e.g., to copy polyominoes, instead of the algorithm from the next 
section. In practice, many applications would require a very large transition table 
which may not fit into the robots limited memory despite being of constant size; in 
these applications it is reasonable to assume that it would be more efficient w.r.t. 
both memory and time to use counters—and thus O(log n) space—or, if the input is 
too large, a specialized algorithm such as the algorithms from the following Sect. 6.

We start with the definition of the encodings S(P1) and S(P2).

Definition 1  Let R ∶= R(P) be the polyomino forming the smallest rectangle 
containing a given polyomino P (see Fig. 9). We represent P by the concatenation 
S(P) ∶= S1 ⊔ S2 ⊔ S3 of three bit strings S1 , S2 , and S3 separated by blanks ⊔ . In par-
ticular, S1 and S2 are the height and width of R. Furthermore, we label each pixel of 
R by its rank in the lexicographic decreasing order w.r.t. y- and x-coordinates with 
higher priority to y-coordinates (see Fig. 9). Finally, S3 is an |R|-bit string b1,… , b|R| 
with bi = 1 if and only if the ith pixel in R is a particle of P.

Theorem  5  Let P1 and P2 be two polyominoes with |P1| = |P2| = N . There is a 
strategy transforming P1 into P2 if there is a Turing machine transforming S(P1) into 
S(P2) . The robot needs O(�P1 + �P2 + STM) auxiliary particles, O(N4 + TTM) steps, 
and Θ(N2 + STM) of additional space, where TTM and STM are the number of steps 
and additional space needed by the Turing machine.

Proof  Our strategy works in five phases: Phase (1) constructs a slightly modified 
bounding box of P1 (see Fig. 10a). Phase (2) constructs a shape representing S(P1) . 
In particular, the robot writes S(P1) onto an auxiliary line �2 in a bit-by-bit fashion 
(see Fig.  10b). In order to remember the position, to which the previous bit was 

Fig. 9   An example showing how to encode a polyomino of height h = 3 ( S
1
= 11 in binary) and width 

w = 6 ( S
2
= 110 in binary) by S(P) = S

1
⊔ S

2
⊔ S

3
= 11 ⊔ 110 ⊔ 100100101111111011 , where S

3
 is 

the string of 18 bits that represent particles (black, 1 in binary) and empty pixel (white, 0 in binary), 
proceeding from high bits to low bits

R

y

x
1 2 3 4 50

1

2

P

0

123456

789101112

131415161718



401

1 3

Algorithmica (2021) 83:387–412	

1 1 1 1 0 ��

↑

column
binary

counter counter

binary
line

blank tiles separating different binary strings

position tile indicating current writing position

123456
789101112
131415161718

binary representation of the black polyomino
to be filled by the

modified bounding
box containing the

that contains the
polyomino P

smallest rectangle R

auxiliary
line �2

line �3

line �1

auxiliary

auxiliary

(a) State after counting numbers of lines and columns.

1 1 1 1 0 �� 1 1 1 10 0 0 0 0

1 2 3 4 5 6 7 8 9

↑

(b) Intermediate state of Phase (2) while writing the string
representation S(P1) of the input polyomino P1 by placing
R line by line onto �1.

1 1 1 1 0 �� 1 1 1 10 0 0 0 1 1 1 1 1 100 1 1

1 2 3 4 5 6 7 8 9 101112131415161718

↑

(c) Final state of Phase (2) after writing the binary represen-
tation of the input polyomino.

Fig. 10   Phase (2) of transforming a (black) polyomino by simulating a Turing Machine



402	 Algorithmica (2021) 83:387–412

1 3

written, we use an additional particle called position particle which is not part of P1 
and placed onto another auxiliary line �3 . Phase (3) simulates the Turing machine 
that transforms S(P1) into S(P2) . Phase (4) is the reversed version of Phase (2), and 
Phase (5) is the reversed version of Phase (1), so we only need to discuss how to 
realize Phases (1), (2), and (3).

Phase (1) We apply a slightly modified version of the approach of Theorem 1. 
In particular, let R be the smallest rectangle enclosing the polyomino. First, we fill 
all pixels that lie not inside R and adjacent to the boundary of R by auxiliary parti-
cles whose union we call shell. Second, we construct the bounding box as described 
above around the previously constructed shell. This results in a third additional layer 
of the bounding box (see Fig. 10a). Note that the robot recognizes that the particles 
of the third layer do not belong to the input polyomino P, because these particles of 
the third layer lie adjacent to the original bounding box.

Phase (2) Initially, we construct a vertical auxiliary line �1 of constant length, 
seeding two horizontal auxiliary lines �2 and �3 that are simultaneously constructed 
by the robot during Phase (2). The robot constructs the representation of S(P1) itera-
tively bit-by-bit on �2 and stores on �3 a “position particle” indicating the next pixel 
on �2 to which the robot has to write the next bit of the representation of S(P1).

Next we apply the approach of Theorem  3 twice in order to successively con-
struct on �2 the binary representations of the numbers of lines and the number of 
columns of which R is made up (see Fig. 10).

Finally, the robot places consecutively and in decreasing order w.r.t. y-coordinates 
all lines of R onto �2 . In particular, the pixel of the current line � of R are processed 
from right to left as follows. For each pixel t ∈ � , the robot alternates between � and 
the auxiliary lines �2 and �3 in order to check whether t belongs to P1 or not.

In order to reach the first pixel of the topmost line, the robot moves in a vertical 
direction on the lane induced by the vertical line �1 to the topmost line of R and then 
to the rightmost pixel t of the topmost line (see Fig. 10b). In order to ensure that in 
the next iteration of Phase (2), the next pixel of R is reached, the robot deletes a par-
ticle from t if there is a particle on pixel t from R and shrinks the modified bounding 
box such that it is the modified bounding box of R ⧵ {t} (see Fig. 10b). This involves 
only a constant-sized neighborhood of t and thus can be realized by a robot with 
constant memory. Next, the robot moves to the first free position of auxiliary line �2 
by searching for the position particle on auxiliary line �3 . As the vertical distances 
of �2 and �3 to the lowest line of the bounding box are of constant values, the robot 
can change vertically between �2 and �3 by simply remembering the robot’s verti-
cal distance to the lowest line of the bounding box. The robot concludes the current 
iteration of Phase (2) by moving the position particle one step to the right.

The approach of Phase (2) is repeated until all particles of P1 are removed from R. 
In order to recognize that all pixels from R are removed, the robot checks whether 
R = � in each iteration of Phase (2). This check can simply be done by checking 
whether the entire extended bounding box lies inside a 6 × 6-rectangle, as illustrated 
in Fig. 10c. Hence, the robot simply has to scan an environment of constant size.

Phase (3) We simply apply the algorithm of the Turing machine by moving the 
robot correspondingly to the movement of the head of the Turing machine.



403

1 3

Algorithmica (2021) 83:387–412	

Finally, we analyze the entire approach of simulating a Turing machine as 
described above. From the discussion of Phase (2) we conclude that the construction 
of the auxiliary lines �1 , �2 , and �3 are not necessary, because the vertical length of 
the entire construction below the bounding is a constant, i.e., in each iteration when 
the robot approaches the current writing position, the robot moves to the right until 
it arrives at the current writing position. Thus, the horizontal length of �2,�3 do not 
have an influence on the memory needed by the robot.

Furthermore, the current writing position on �2 is indicated by a single position 
particle on �3 . As no auxiliary particles are needed for �1,�2,�3 , the only auxiliary 
particles needed are the current position particle and the particles needed for the 
modified bounding box which lie in O(�P1 + �P2) . Hence, the sizes of the bounding 
boxes needed in Phase (2) and Phase  (4) and the additional space O(STM) needed 
by the Turing machine dominate the number of used auxiliary particles, which is in 
O(�P1 + �P2 + STM).

Furthermore, Phase (2) and Phase (4) need O(N4) steps, and Phase (1) needs 
O(N3) steps. In particular, counting the number of rows and counting the numbers of 
columns of the polyominoes can be done in O(N logN + N2) by using the approach 
of Theorem 3 because the polyominoes P1 and P2 may be single lines of width or 
height N. Furthermore, scanning a pixel, walking a distance of O(N2) to the current 
writing position on �2 , writing the current pixel, and walking to the next pixel inside 
the modified bounding box takes O(N2) time. Hence, writing wh ∈ O(N2) pixels 
takes O(N4) time. Moreover, Phase (3) needs O(TTM) steps, where TTM is the num-
ber of steps needed by the Turing machine. Thus, the total time needed in the entire 
approach is in O(N4 + TTM) . Finally, the additional space is in Θ(N2 + STM) . This 
concludes the proof of Theorem 5. 	� ◻

6 � Custom‑Made Functions

As already seen, we can transform a given polyomino by any computable func-
tion by simulating a Turing machine. However, this requires a considerable amount 
of space. In this section, we present realizations of common operations in a more 
space-efficient manner, reflecting the idea that a usable toolbox for such transforma-
tions is analogous to the functions in a software package for computer-aided design 
(CAD).

6.1 � Copying a Polyomino

Copying a polyomino P has many applications. For example, we can reproduce a 
given shape, or apply algorithms that may destroy P after copying P into free space. 
In the following, we describe the copy function that copies P below the bounding 
box in a column-wise fashion, as seen in Fig. 12 (a row-wise copy can be described 
analogously).



404	 Algorithmica (2021) 83:387–412

1 3

To copy a polyomino P we proceed in two phases: (1) A preprocessing step 
that includes building the bounding box and extending the left side of the bound-
ing box by three units. (2) Copying pixels column-wise below the bounding box. 
Note that P is contained in the first w + 1 columns within the bounding box from 
the right. Therefore, we only need to start the copy procedure from the fifth col-
umn from the left.

After phase (1), we can split the bounding box into components that will be 
maintained by the robot: The first k + 1 columns c0,… , ck of the bounding box 
from the left contain the first k columns of P already copied, then two columns 
ck+1, ck+2 are used to process the next column of P, and after an empty column, 
the next w − k columns ck+4,… cw+4 contain the rest of P that still needs to be 
copied (see Fig. 11). 

We now describe how to copy the (k + 1)-st column of P. A problem we have 
to deal with is that the connected components of the intersection of one column 
with P may be several units apart (e.g., in Fig. 11 column c3 has three components 
with one and two units space between them), and/or that the distance from the 
first/last particle of P to the bounding box can be arbitrarily large (e.g., in Fig. 11, 
column c7 has several empty pixel until the first particle of P). Thus, we need an 
auxiliary structure for determining whether a pixel is empty.

We solve this by using bridges, i.e., auxiliary particles denoting empty pixels. 
To distinguish between particles of P and bridges, we use column ck+1 to denote 
particles of P, and column ck+2 to denote bridge particles (see Fig. 12).

To copy an empty pixel, we place a particle two unit steps to the left, i.e., in 
column ck+2 . Then we move straight down and search for the first position, at 

c1 c2 c3c0 c4 c5 c7 c16c10 c13

Fig. 11   Left: a polyomino P. Right: intermediate situation during the copy process. Columns c
1
 to c

3
 con-

tain the first three columns of P that are already copied below the bounding box. c
4
 and c

5
 will be used to 

copy the fourth column of P. Columns c
7
 to c

16
 contain particles of P that still need to be copied



405

1 3

Algorithmica (2021) 83:387–412	

which there is no copied particle of P to the left, nor a bridge particle. When this 
position is found, we place a particle, denoting an empty position.

To copy a particle t of P, we pick up and move this particle three unit steps to 
the left, i.e., to column ck+1 . Afterwards, we move straight down following the 
particles and bridges until we reach a free position, i.e., there is no bridge particle 
to the right nor a copied polyomino particle, and place a particle, denoting a copy 
of t.

After placing the copy of a pixel, we move straight up until we find the 
first particle in ck+1 or ck+2 . From there we move two or three steps to the right 
(depending on whether we placed a bridge particle or not) and start to copy the 
next pixel. In case we reached the bottom of a column, we remove any parti-
cle representing a bridge particle and proceed with the next column (see Fig. 12 
right).

Theorem 6  Copying a polyomino P column-wise can be done within O(wh2) unit 
steps using O(N) of auxiliary particles and O(wh) additional space in O(h) extra 
rows and columns.

Proof  Consider the strategy described above. Because the robot copies occupied 
pixels and empty pixels by using bridges, the robot is always able to find the next 
position to place the next particle (either a copied particle of P or a bridge particle). 
Thus, at the end of the algorithm, we obtain a valid copy of P.

As there are O(wh) many pixels that we have to copy with cost of O(h) per pixel, 
the strategy needs O(wh2) unit steps to terminate.

Now, consider the number of auxiliary particles. We need N particles for the copy 
and O(h) particles for bridges, which are reused for each column. Thus, we need 
O(N) auxiliary particles in total.

Bridge Tiles

Fig. 12   Left: intermediate step while copying the third column of a polyomino (gray particles) with bridges 
(dark gray particles). The robot ( ○ ) moves to next pixel along the black line. Right: when the column is 
copied the bridges get removed and the robot proceeds with the next column. In this case the robot finds an 
empty pixel, places a bridge particle two steps to the left and a bridge particle below the bounding box



406	 Algorithmica (2021) 83:387–412

1 3

Because we place the copied version of P beneath P, we need O(wh) additional 
space in O(h) extra rows and columns. 	�  ◻

6.2 � Reflecting a Polyomino

In this section, we show how to perform a horizontal reflection on a polyomino 
P (see Fig. 13; a vertical reflection is done analogously). Assume that we already 
built the bounding box. Then we shift the bottom side of the bounding box one 
unit down, such that we have two units of space between the bounding box and 
P. We start with the bottom-most row r and built r in reversed order beneath the 
bounding box using bridges, as seen in the previous section. To do so, we use the 
row below r to mark empty pixels with bridge particles (see Fig. 14).

To copy the state of a pixel p, we pick up the particle (from P or from the bridge), 
move to the right until we reach the bounding box, move two or three steps below 
the bounding box (depending on whether we place a bridge particle next or not) and 
move to the first position where no copied particle of P nor a bridge particle exists.

To find the next pixel to copy, we move back to the right until we reach the 
end (i.e., the next column has no particle from P nor a bridge particle), move two 
steps upwards within bounding box, and search for the leftmost pixel we have not 

Fig. 13   Left: a polyomino P. Middle: vertical reflection of P. Right: horizontal reflection of P 

Current row{for polyomino tiles
and bridge tiles

Fig. 14   Left: beginning of reflecting the second row. Because the current pixel is occupied, the robot 
moves the particle to the right below the bounding box (particle with dotted border). Note that the extra 
space between P and the bounding box is used by bridge particles (dark gray) to denote empty pixels 
above. Right: intermediate step of reflecting the second row. The next position is empty, thus, the robot 
will move the corresponding bridge particle next



407

1 3

Algorithmica (2021) 83:387–412	

copied yet. Again, this pixel is identified, when a further step has no particle from 
P nor a bridge particle.

After the reflection of r, we shift the bottom side of the bounding box one unit 
up and remove bridge particles. The rows that were reflected so far are not moved 
upwards, so we have again two units space below the bounding box. Also note that 
we again have two units of space between the bounding box and the rest of P. We 
can therefore repeat the process until no particle is left.

Theorem  7  Reflecting a polyomino P horizontally can be done in O(w2h) unit 
steps, using O(w) of additional space and O(w) auxiliary particles.

Proof  For each pixel within the bounding box we have to copy this pixel to the 
desired position. This costs O(w) steps, i.e., we have to move to the right side of 
the boundary, move a constant number of steps down and move O(w) to the desired 
position. These are O(w) steps per pixel, thus, O(w2h) unit steps in total.

It can be seen in the described strategy that we only need a constant amount of 
additional space in one dimension because we are overwriting the space that was 
occupied by P. This implies a space complexity of O(w) . Following the same argu-
mentation of Theorem 6, we can see that we need O(w) auxiliary particles. 	�  ◻

Corollary 1  Reflecting a polyomino P vertically and horizontally can be done in 
O(wh(w + h)) unit steps, using O(w + h) additional space in O(1) extra rows and 
columns and O(w + h) auxiliary particles.

6.3 � Rotating a Polyomino

Rotating a polyomino by ± �

2
 presents some additional difficulties, because the 

dimension of the resulting polyomino has dimensions h × w instead of w × h . Thus, 
we may need non-constant additional space in one dimension, e.g., if one dimension 
is large compared to the other dimension. A simple approach is to copy the rows 
of P bottom-up to the right of P. This allows us to rotate P with O(wh) additional 
space. For now, we assume that h ≥ w.

We propose a strategy that is more compact. The strategy consists of two phases: 
First, reflect P over the x = y line. Then do a second reflection over the y-axis, i.e., a 
horizontal reflection. Because

we effectively perform a clockwise rotation by �
2
 (to perform a counter-clockwise 

rotation we do a vertical reflection instead of a horizontal reflection).
After constructing the bounding box, we place a particle t1 in the bottom-left cor-

ner of the bounding box, which marks the bottom-left corner of P (see Fig. 15a left). 
We further add two more particles tc outside the bounding box marking the position 

(
−1 0

0 1

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Reflection over

y-axis

(
0 1

1 0

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Reflection over

x=y line

P =

(
0 − 1

1 0

)

P,



408	 Algorithmica (2021) 83:387–412

1 3

tc

t2

t1

tc

t2

t1
7

7

tc

t2

t1

5

tc

t2t1

tc

t2t1

1
2

3
4

5
6

7 8 9 1011

123456

7
8
9
10
11

tc

t2t1

1
2
3
4
5
6

7
8
9 101112

123456789

10
11
12

tc

t2

t1

(a) Left: Intermediate construction before expanding the bounding box. Markers t1, t2
and tc are already placed. Middle: Construction after expanding the bounding box. Right:
Intermediate step while reflecting the first column over the x = y line. Note that we start
the column with distance five to the bounding box. This is needed to build the row upwards
without hitting P if w is close to h.

(b) Left: Intermediate step while building the first reflected row. Note that the left side of
the bounding box has been extended to make more space. Right: Intermediate step after
reflecting the first column and row (original column and row are marked in light gray).
Numbers show the matching between original position and new position of particles.

(c) Left: First row and column have been moved down and left to make space for the next
row and column. Right: Merging the first two columns and rows.

Fig. 15   Intermediate steps of reflecting a polyomino over the x = y line



409

1 3

Algorithmica (2021) 83:387–412	

of the leftmost column of P, and t2 inside the bounding box marking the topmost 
row of P (see Fig.  15a). Afterwards, we extend the bounding box at the left side 
and the bottom side by six units without moving t1 , t2 or tc . This gives us a width of 
seven units between the polyomino and the bounding box at the left and bottom side 
(see Fig. 15a). Now we can move the first column rotated in clockwise direction five 
units below P (which is two units above the bounding box), as follows.

To find the next pixel whose state we want to copy, we move along the bounding box 
until we find tc . Then we move down until we reach t2 , i.e., the robot finds a particle to 
the west. After storing the state sp of the pixel p and removing its particle (if it exists), we 
move t2 one position down. (If t2 reached t1 , i.e., we would place t2 on t1 , then we know 
that we have finished the column and proceed with the row by moving t2 to the right of t1 
in the next iteration.) To place a particle denoting sp , we move over t1 to the right side of 
the bounding box and three units down and then six units to the left. From there, we can 
follow bridge particles and particles from P, until we reach a free position. We place a 
particle on this position if p was empty, or a particle below if p was occupied. In case we 
copy a row-pixel, we do a turn upwards and follow bridges and particles of P again. See 
Fig. 15. Note that we cannot place the row directly on top of the column or else we may 
get conflicts with bridges. We therefore build the row one unit to the left and above the 
column. Also note that during construction of the first column we may hit the left side of 
the bounding box. In this case we extend this side by one unit (see Fig. 15b).

After constructing a column and a row, we move the constructed row one unit to 
the left and two units down, we move the column one unit down and two units left, 
and delete the bridge particles on the fly. This gives us enough space to construct 
the next column and row in the same way (see Fig. 15c). Then we move t1 one unit 
upwards and one unit to the right, we move t2 four units below tc (i.e., to the topmost 
row of P), and tc one unit to the right.

When all columns and rows are constructed, we obtain a polyomino that is a reflected 
version of our desired polyomino. It is left to reflect vertically to obtain a polyomino 
rotated in counter-clockwise direction, or horizontally to obtain a polyomino that is 
rotated in clockwise direction. This can be done with the strategy described in Sect. 6.2.

Theorem 8  There is a strategy to rotate a polyomino P by ± �

2
 within O((w + h)wh) 

unit steps, using O(w + h + |w − h|h) of additional space in O(|w − h| + 1) extra 
rows and columns and O(w + h) auxiliary particles.

Proof  Like in our other algorithms, the number of steps to copy the state of a pixel to 
the desired position is bounded by O(w + h) . Shifting the constructed row and col-
umn also takes the same number of steps. Therefore, constructing the reflected ver-
sion of our desired polyomino needs O((w + h)wh) unit steps. Additionally we may 
have to extend one side of the bounding box. This can happen at most O(|w − h|) 
times, with each event needing O(h) unit steps. Because O(|w − h|) can be bounded 
by O(w + h) , this does not change the total time complexity.

Because the width of the working space increases by O(|w − h|) and the height 
only increases by O(1) , we need O(|w − h|h) of additional space. For the num-
ber of auxiliary particles, consider the number of particles used for the bound-
ing box, for bridges, and marker particles. The bounding box is made from 



410	 Algorithmica (2021) 83:387–412

1 3

O(w + h + |w − h|) = O(w + h) particles, and there are only O(w + h) bridge parti-
cles. As there are only O(1) marker particles, we need in total O(w + h) auxiliary 
particles. 	�  ◻

6.4 � Scaling a Polyomino

Scaling a polyomino P by a factor c replaces each particle by a c × c square. This 
can easily be handled by our robot.

Theorem  9  Given a constant c, the robot can scale the polyomino by c within 
O((w2 + h2)c2N) unit steps using O(c2wh) of additional space in O(c(w + h)) addi-
tional rows and columns, using O(c2N) auxiliary particles.

Proof  After constructing the bounding box, we place a particle denoting the current 
column. Suppose we are in the i-th column Ci . Then we shift all columns that lie to 
the right of Ci by c units to the right with cost of O((w − i) ⋅

∑h

j=i+1
cNCj

) ⊆ O(wcN) , 
where NCj

 is the number of particles in the jth column. Because c is a constant, we 
can always find the next column to shift. Afterwards, we copy Ci exactly c − 1 times 
to the right of Ci , which costs O(NCi

c) unit steps. Thus, extending a single column 
costs O(c ⋅ (wN + NCi

)) and hence extending all columns costs O(cw2N) unit steps in 
total.

Extending each row is done analogously. However, because each particle has 
already been copied c times, we obtain a running time of O(c2h2N) . This implies 
a total running time of O((w2 + h2)c2N) . The proof for the particle and space com-
plexity is straightforward. 	� ◻

7 � Conclusion

We have given a number of tools and functions for manipulating an arrangement of 
particles by a single robotic automaton with constant memory.

In our work, we focused on arrangements of square-shaped particles; it seems 
straightforward to apply our ideas to other arrangements, such as hexagonal par-
ticles. There are various further challenges, including more complex operations, 
explicitly dealing with the logistics of obtaining and moving new tiles from depots 
to their final destinations, as well as methods for sharing the work between multiple 
robots. Another extension is to consider three-dimensional arrangements of voxels, 
with robots restricted to motions over the surface, or being able to move through 
the interior. An additional set of problems arises by requiring the set of tiles and 
the robot location to stay connected; this is motivated by scenarios in which discon-
nected pieces may drift apart, e.g., in space. These and other questions are left for 
future work.



411

1 3

Algorithmica (2021) 83:387–412	

Acknowledgements  A preliminary extended abstract appears in the Proceedings of the 13th Workshop 
on Algorithmic Foundations of Robotics (WAFR), 2018 [16]. Phillip Keldenich was supported by the 
DFG Research Unit “Controlling Concurrent Change”, funding number FOR 1800, project FE407/17-2, 
“Conflict Resolution and Optimization”.

Funding  Open Access funding provided by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Abdel-Rahman, A., Becker, A.T., Biediger, D.E., Cheung, K.C., Fekete, S.P., Gershenfeld, N.A., 
Hugo, S., Jenett, B., Keldenich, P., Niehs, E., Rieck, C., Schmidt, A., Scheffer, C., Yannuzzi, 
M.: Space ants: constructing and reconfiguring large-scale structures with finite automata. In: 
Symposium on Computations Geometry (SoCG), pp. 73:1–73:7 (2020). Video at https​://www.
ibr.cs.tu-bs.de/users​/feket​e/Video​s/SoCG/2020/Space​_final​.mp4

	 2.	 Becker, A.T., Demaine, E.D., Fekete, S.P., Lonsford, J., Morris-Wright, R.: Particle computa-
tion: complexity, algorithms, and logic. Nat. Comput. 18(1), 181–201 (2019)

	 3.	 Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than 
graphs). In: Symposium on Foundations of Computer Science (FOCS), pp. 132–142 (1978)

	 4.	 Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. AMS, Providence 
(2011)

	 5.	 Das, S.: Mobile agents in distributed computing: network exploration. Bull. Eur. Assoc. Theor. 
Comput. Sci. 109, 54–69 (2013)

	 6.	 Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved leader elec-
tion for self-organizing programmable matter. In: International Symposium on Algorithms and 
Experiments for Wireless Sensor Networks (ALGOSENSORS), pp. 127–140 (2017)

	 7.	 Demaine, E., Demaine, M., Hoffmann, M., O’Rourke, J.: Pushing blocks is hard. Comput. Geom. 
26(1), 21–36 (2003)

	 8.	 Demaine, E.D., Fekete, S.P., Scheffer, C., Schmidt, A.: New geometric algorithms for fully con-
nected staged self-assembly. Theoret. Comput. Sci. 671, 4–18 (2017)

	 9.	 Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Brief 
announcement: Amoebot—a new model for programmable matter. In: ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA), pp. 220–222 (2014)

	10.	 Derakhshandeh, Z., Gmyr, R., Porter, A., Richa, A.W., Scheideler, C., Strothmann, T.: On the 
runtime of universal coating for programmable matter. In: International Conference on DNA 
Computing and Molecular Programming (DNA), pp. 148–164 (2016)

	11.	 Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: An algorithmic 
framework for shape formation problems in self-organizing particle systems. In: International 
Conference on Nanoscale Computing and Communication (NANOCOM), pp. 21 (2015)

	12.	 Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal shape for-
mation for programmable matter. In: ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pp. 289–299 (2016)

	13.	 Derakhshandeh, Z., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Universal coating for 
programmable matter. Theoret. Comput. Sci. 671, 56–68 (2017)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/Space_final.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/SoCG/2020/Space_final.mp4


412	 Algorithmica (2021) 83:387–412

1 3

	14.	 Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler, C.: Leader elec-
tion and shape formation with self-organizing programmable matter. In: International Conference 
on DNA Computing and Molecular Programming (DNA), pp. 117–132 (2015)

	15.	 Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape formation by program-
mable particles. Distrib. Comput. 33, 1–33 (2019)

	16.	 Fekete, S.P., Gmyr, R., Hugo, S., Keldenich, P., Scheffer, C., Schmidt, A.: CADbots: algorithmic 
aspects of manipulating porgrammable matter with finite automata. In: Algorithmic Foundations of 
Robotics XIII (WAFR 2018), Springer Proceedings in Advanced Robotics, pp. 725–743 (2020)

	17.	 Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theoret. 
Comput. Sci. 399(3), 236–245 (2008)

	18.	 Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., Scheideler, C.: Shape recognition 
by a finite automaton robot. In: International Symposium on Mathematical Foundations of Com-
puter Science (MFCS), pp. 52:1–52:15 (2018)

	19.	 Gmyr, R., Hinnenthal, K., Kostitsyna, I., Kuhn, F., Rudolph, D., Scheideler, C., Strothmann, T.: 
Forming tile shapes with simple robots. In: International Conference on DNA Computing and 
Molecular Programming (DNA), pp. 122–138 (2018)

	20.	 Hurtado, F., Molina, E., Ramaswami, S., Sacristán, V.: Distributed reconfiguraiton of 2D lattice-
based modular robotic systems. Auton. Robots 38(4), 383–413 (2015)

	21.	 Lund, K., Manzo, A., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, 
R., Stojanovic, M., Walter, N., Winfree, E.: Molecular robots guided by prescriptive landscapes. 
Nature 465(7295), 206–210 (2010)

	22.	 Markou, E.: Identifying hostile nodes in networks using mobile agents. Bull. Eur. Assoc. Theor. 
Comput. Sci. 108, 93–129 (2012)

	23.	 Michail, O., Spirakis, P.G.: Simple and efficient local codes for distributed stable network construc-
tion. Distrib. Comput. 29(3), 207–237 (2016)

	24.	 Niehs, E., Schmidt, A., Scheffer, C., Biediger, D.E., Yannuzzi, M., Jenett, B., Abdel-Rahman, A., 
Cheung, K.C., Becker, A.T., Fekete, S.P.: Recognition and reconfiguration of lattice-based cellu-
lar structures by simple robots. In: International Conference on Robotics and Automation (ICRA) 
(2020) (to appear)

	25.	 Omabegho, T., Sha, R., Seeman, N.: A bipedal DNA Brownian motor with coordinated legs. Sci-
ence 324(5923), 67–71 (2009)

	26.	 Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 
13(2), 195–224 (2014)

	27.	 Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59(3), 331–347 
(2012)

	28.	 Reif, J.H., Sahu, S.: Autonomous programmable DNA nanorobotic devices using dnazymes. Theo-
ret. Comput. Sci. 410, 1428–1439 (2009)

	29.	 Shah, A.N.: Pebble automata on arrays. Comput. Graph. Image Process. 3(3), 236–246 (1974)
	30.	 Shin, J., Pierce, N.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 4903–

4911 (2004)
	31.	 Terada, Y., Murata, S.: Automatic modular assembly system and its distributed control. Int. J. Robot. 

Res. 27(3–4), 445–462 (2008)
	32.	 Thubagere, A., Li, W., Johnson, R., Chen, Z., Doroudi, S., Lee, Y., Izatt, G., Wittman, S., Srinivas, 

N., Woods, D., Winfree, E., Qian, L.: A cargo-sorting DNA robot. Science 357(6356), eaan6558 
(2017)

	33.	 Wang, Z., Elbaz, J., Willner, I.: A dynamically programmed DNA transporter. Angew. Chem. Int. 
Ed. 51(48), 4322–4326 (2012)

	34.	 Wickham, S., Bath, J., Katsuda, Y., Endo, M., Hidaka, K., Sugiyama, H., Turberfield, A.: A DNA-
based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7(3), 169–173 
(2012)

	35.	 Woods, D., Chen, H., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algo-
rithmic shapes and patterns in polylogarithmic time. In: Innovations in Theoretical Computer Sci-
ence (ITCS), pp. 353–354 (2013)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	CADbots: Algorithmic Aspects of Manipulating Programmable Matter with Finite Automata
	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Basic Tools
	3.1 Bounding Box Construction
	3.2 Binary Counter

	4 Counting Problems
	4.1 Counting Particles
	4.2 Counting Corners

	5 Transformations with Turing Machines
	6 Custom-Made Functions
	6.1 Copying a Polyomino
	6.2 Reflecting a Polyomino
	6.3 Rotating a Polyomino
	6.4 Scaling a Polyomino

	7 Conclusion
	Acknowledgements 
	References




