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Abstract
A subgraph complement of the graph G is a graph obtained from G by complement-
ing all the edges in one of its induced subgraphs. We study the following algorithmic 
question: for a given graph G and graph class G  , is there a subgraph complement of 
G which is in G  ? We show that this problem can be solved in polynomial time for 
various choices of the graphs class G  , such as bipartite, d-degenerate, or cographs. 
We complement these results by proving that the problem is NP-complete when G  is 
the class of regular graphs.

Keywords Subgraph complementation · Graph editing · Graph classes
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1 Introduction

One of the most important questions in graph theory concerns the efficiency of rec-
ognition of a graph class G  . For example, how fast we can decide whether a graph 
is chordal, 2-connected, triangle-free, of bounded treewidth, bipartite, 3-color-
able, or excludes some fixed graph as a minor? In particular, the recent develop-
ments in parameterized algorithms are partially driven by the problems of recog-
nizing of graph classes which differ only up to a “small disturbance” from graph 
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classes recognizable in polynomial time. The amount of disturbance is quantified in 
“atomic” operations required for modifying an input graph into the “well-behaving” 
graph class G  . The standard operations could be edge/vertex deletions, additions or 
edge contractions. Many problems in graph algorithms fall into this graph modifica-
tion category: is it possible to add at most k edges to make a graph 2-edge connected 
or to make it chordal? Or is it possible to delete at most k vertices such that the 
resulting graph has no edges or contains no cycles?

A rich subclass of modification problems concerns edge editing problems. Here 
the “atomic” operation is the change of adjacency, i.e. for a pair of vertices u, v, we 
can either add an edge uv or delete the edge uv. For example, the Cluster editing 
problem asks to transform an input graph into a cluster graph—that is, a disjoint 
union of cliques—by flipping at most k adjacency relations.

Besides the basic edge editing, it is natural to consider problems where the set of 
removed and added edges should satisfy some structural constraints. In particular, 
such problems were considered for complementation problems. Recall that the com-
plement of a graph G is a graph H on the same vertices such that two distinct verti-
ces of H are adjacent if and only if they are not adjacent in G. Seidel (see [22–24]) 
introduced the operation that is now known as the Seidel switch. For a vertex v of 
a graph G, this operation complements the adjacencies of v, that is, it removes the 
edges incident to v and makes v adjacent to the non-neighbors of v in G. Seidel 
switching a set of vertices U entails consecutively switching each vertex in the set. 
The result is that all adjacencies between U and its complement V(G)⧵U are flipped. 
The study of the algorithmic question whether it is possible to obtain a graph from 
a given graph class by the Seidel switch was initiated by Ehrenfeucht et al. [7]. Fur-
ther results were established in [14–16, 18, 19].

Another important operation of this type is the local complementation. For a ver-
tex v of a graph G, the local complementation of G at v is the graph obtained from G 
by replacing G[N(v)] by its complement. This operation plays crucial role in the def-
inition of vertex-minors [20] and was investigated in this context (see, e.g. [6, 21]). 
See also [2, 17] for some algorithmic results concerning local complementations.

In this paper we study the subgraph complement of a graph, which was intro-
duced by Kamiński et al. [17] in their study of the clique-width of a graph. A sub-
graph complement of a graph G is a graph obtained from G by complementing 
all the edges of one of its induced subgraphs. More formally, for a graph G and 
S ⊆ V(G) , we define G⊕ S as the graph with the vertex set V(G) whose edge set is 
defined as follows: a pair of distinct vertices u, v is an edge of G⊕ S if and only if 
one of the following holds:

• uv ∈ E(G) ∧ (u ∉ S ∨ v ∉ S) , or
• uv ∉ E(G) ∧ u ∈ S ∧ v ∈ S.

Thus when the set S consists only of two vertices {u, v} , the operation simply 
changes the adjacency between u and v, and for a larger set S, G⊕ S changes the 
adjacency relations for all pairs of vertices of S.

We say that a graph H is a subgraph complement of the graph G if H is isomor-
phic to G⊕ S for some S ⊆ V(G) . For a graph class G  and a graph G, we say that 
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there is a subgraph complement of G to G  if for some S ⊆ V(G) , we have G⊕ S ∈ G  . 
We denote by G(1) the class of graphs such that its members can be subgraph com-
plemented to G .

Let G  be a graph class. We consider the following generic algorithmic problem.

In other words, how difficult is it to recognize the class G(1) ? In this paper we 
show that there are many well-known graph classes G  such that G(1) is recognizable 
in polynomial time. We show that

• subgraph Complement to G  is solvable in O(f (n) ⋅ n4 + n6) time when G  is a 
triangle-free graph class recognizable in f(n) time. For example, this implies that 
when G  is the class of bipartite graphs, the class G(1) is recognizable in polyno-
mial time. This result is found in Sect. 3.

• subgraph Complement to G  is solvable in f (n) ⋅ n2O(d) time when G  is a d-degen-
erate graph class recognizable in f(n) time. Thus when G  is the class of planar 
graphs, class of cubic graphs, class of graph of bounded treewidth, or class of 
H-minor free graphs, then the class G(1) is recognizable in polynomial time. This 
result is found in Sect. 4.

• subgraph Complement to G  is solvable in polynomial time when G  is a class of 
bounded clique-width expressible in monadic second-order logic (with no edge 
set quantification). In particular, if G  is the class of P4-free graphs (cographs), 
then G(1) is recognizable in polynomial time. This result is found in Sect. 6.

• subgraph Complement to G  is solvable in polynomial time when G  can be 
described by a 2 × 2 M-partition matrix. Therefore G(1) is recognizable in polyno-
mial time when G  is the class of split graphs, as they can be described by such a 
matrix. This result is found in Sect. 5.

There are nevertheless cases when the problem is NP-hard. In particular, we prove 
that this holds when G  is the class of regular graphs. This result is found in Sect. 7.

2  Preliminaries

We let ℕ∶={0, 1, 2 …} be the set of the natural numbers, and we let ℕ+∶=ℕ⧵{0} be 
the set of positive integers. For a set A and a non-negative integer k ∈ ℕ , we denote 

the family of all subsets of A of size k as 
(
A

k

)
∶={A� ⊆ A ∣ |A�| = k}.

Simple Graph A (simple) graph is a pair G∶=(V ,E) , where V is a set of vertices 

and E ⊆

(
V

2

)
 is a set of edges. For an edge {u, v} ∈ E(G) we use the shorthand uv 
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(or equivalently, vu). For a given graph G, we refer to its vertex set as V(G), and its 
edge set as E(G). For a set of edges F ⊆ E(G) , we denote by V(F) the set of vertices 
that are contained in the edges of F, i.e. V(F)∶=

⋃
uv∈F{u, v}.

(Induced) Subgraph For graphs G and H we say that H is a subgraph of G, 
denoted by H ⊆ G if V(H) ⊆ V(G) and E(H) ⊆ E(G) . For a set of vertices A ⊆ V(G) , 

we denote by G[A] the subgraph of G induced by A, i.e. G[A]∶=(A,E(G) ∩
(
A

2

)
) . 

We use the notation G − X∶=G[V(G)⧵X] and for a set of edges F ⊆ E(G) , 
G − F∶=(V(G),E(G)⧵F) . For a vertex v ∈ V(G) (or an edge e ∈ E(G) ), we use the 
shorthand G − x∶=G − {x} (or G − e∶=G − {e} , respectively).

Neighborhood Let G be a graph. For a vertex v ∈ V(G) , we denote by NG(v) the 
open neighborhood of v, i.e. NG(v)∶={w ∣ vw ∈ E(G)} , and by NG[v] the closed 
neighborhood of v, i.e. NG[v]∶={v} ∪ NG(v) . The degree of v is the size of its 
open neighborhood, i.e. degG(v)∶=|NG(v)| . For a set of vertices X ⊆ V(G) , we let 
NG(X)∶=

⋃
v∈X NG(v)⧵X and NG[X]∶=NG(X) ∪ X . We use the shorthand notations 

‘N’ and ‘ deg ’ for ‘ NG ’ and ‘ degG ’, respectively, if G is clear from the context.
Monadic Second Order Logic ���1 is a restricted version of of ���2 (Monadic 

Second Order Logic) without quantifications over edge subsets. More precisely, the 
syntax of ���1 of graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables 
for vertices and sets of vertices, the quantifiers ∀, ∃ that can be applied to these vari-
ables, and the following binary relations: 

1. u ∈ U where u is a vertex variable and U is a vertex set variable;
2. ���(u, v), where u and v are vertex variables and the interpretation is that u and v 

are adjacent;
3. equality of variables representing vertices and sets of vertices.

We refer to [3] for more information on ���1 and ���2.

3  Subgraph Complementation to Triangle‑Free Graph Classes

A triangle is a complete graph on three vertices. Many graph classes do not allow 
the triangle as a subgraph, for instance trees, forests, or graphs with large girth. In 
this section we show that subgraph complementation to triangle-free graphs can be 
decided in polynomial time.

More precisely, we show that if a graph class G  can be recognized in polynomial 
time and it is triangle-free, then we can also solve subgraph Complement to G  in 
polynomial time. Our algorithm is constructive, and returns a solution S ⊆ V(G) , 
that is a set S such that G⊕ S is in G  . We say that a solution hits an edge uv (or a 
non-edge uv) , if both u and v are contained in S.

Our algorithm considers each of the following cases. 

 (i) There is a solution S containing two vertices that are non-adjacent in G.
 (ii) There is a solution S such that it forms a clique of size at least 2 in G.
 (iii) G is a no-instance.
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We start from analyzing the structure of a solution in Case (i). We need the follow-
ing observation.

Observation 1 Let G  be a class of triangle-free graphs and let G be an instance of 
subgraph Complement to G  , where S ⊆ V(G) is a valid solution. Then

(a) G[S] does not contain an independent set of size 3, and
(b) for every triangle {u, v,w} ⊆ V(G) , at least two vertices are in S.

Because all non-edges between vertices in G[S] become edges in G⊕ S and vice 
versa, whereas all (non-) edges with an endpoint outside S remain untouched, we see 
that the observation holds.

Before delving into the analysis of Case (i) any further, let us recall that a graph 
G is a split graph if its vertex set can be partitioned into V(G) = C ∪ I , where C is 
a clique and I is an independent set. Let us note that the vertex set of a split graph 
can have several split partitions, i.e. partitions into a clique and independent set. 
However, the number of split partitions of an n-vertex split graphs is at most n + 1 , 
and they can be enumerated in linear time. This builds on the result of Hammer and 
Simone [12] (see also [11]), for completeness we provide a proof.

Lemma 2 Let G be a split graph on n vertices. Then G has at most n + 1 split parti-
tions. Moreover, they can be enumerated in linear time.

Proof Let � denote the cardinality of a maximum clique in G. It is known that every 
split partition has a clique of size � or � − 1 [12]. We will show that there are at most 
n partitions where the clique has cardinality � , and that these can be enumerated in 
linear time—since the split partitions in G and its complement G are the same up to 
swapping the clique and independent set, this is enough to prove the lemma with a 
bound of 2n. We will strengthen the bound at the end of the proof.

Let V≥� ⊆ V(G) denote the set of vertices whose degree is at least � . We observe 
that in every split partition, these vertices need to be in the clique; otherwise there is 
either an edge between two vertices of the independent set, or it is possible to find a 
clique of size � + 1.

Similarly, let V≤�−2 ⊆ V(G) denote the set of vertices whose degree is at most 
� − 2 . We observe that every vertex of V≤�−2 must be in the independent set of a 
split partition where the clique has size �.

It remains to partition the set of vertices V
�−1 ⊆ V(G) whose degrees are � − 1 . 

We claim that every vertex of V
�−1 must have V≥� contained in its neighborhood, or 

else there is a unique split partition whose clique of size � is exactly V≥� . Assume 
that there is a vertex u ∈ V

�−1 whose neighborhood does not include a vertex 
v ∈ V≥� . Since v is in every clique of size � , u can never be in the clique, implying 
that all of u’s neighbors must be—but then those neighbors have degree at least � , 
implying that |V≥�| ≥ �.

We proceed with the case when |V≥�| < � . Consider some subset U ⊆ V
�−1 such 

that U ∪ V≥� is a clique of size � . Then U is a clique, and vertices of U have no 
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neighbors in V
�−1⧵U . Thus G[V

�−1] is a collection of cliques, each of size � − |V≥�| . 
Each split partition of size � will include exactly one of these cliques in addition to 
V≥� . However, observe that this implies that there is either exactly one clique, or the 
cliques must have size 1—otherwise there would be an edge between two vertices 
in the independent set. This shows that there are at most n distinct split partitions 
whose clique has size �.

In order to enumerate the partitions in linear time, we first analyze the degree 
sequence to find � using the result of Hammer and Simone [12] (sorting vertices by 
degree can be done in O(n) time using bucket sort). We then find the sets V≥� and 
V
�−1 . If |V≥�| = � , we have a unique partition; if |V≥� ∪ V

�−1| = � we also have a 
unique partition; otherwise |V≥�| = � − 1 , and V

�−1 is an independent set—the split 
partitions with a clique of size � have one pick of vertex from V

�−1 each.
It remains to tighten the bound on the number of split partitions to n + 1 . We 

show that if there is more than one split partition with a clique of size � , then there 
is a single split partition with a clique of size � − 1 . In more detail: if there is more 
than one split partition with a clique of maximum size, we know from the above par-
agraph that V

�−1 is an independent set of size at least two, and V≥� is a clique of size 
� − 1 . We claim that every clique of size � − 1 in a split partition contains V≥� , thus 
making the split partition unique. Assume for the sake of contradiction that u ∈ V≥� 
is not in the clique. Recall that u is in the neighborhood of every vertex in V

�−1 , so a 
split partition placing u in the independent set in must place V

�−1 in the clique. But 
V
�−1 is an independent set of size at least two, so this is impossible.

We remark that the bound is tight, and can be obtained by an edgeless graph.   ◻

Returning to the problem of subgraph complement to triangle free graph 
classes, we are now ready for the analysis of Case (i): when there is a solution S 
containing two vertices that are non-adjacent in G.

Lemma 3 Let G  be a class of triangle-free graphs and let G be an instance of sub-
graph Complement to G  . Let S ⊆ V(G) be a valid solution which is not a clique, 
and let u, v ∈ S be distinct vertices such that uv ∉ E(G) . Then

(a) the solution S is a subset of the union of the closed neighborhoods of u and v, 
that is S ⊆ NG[u] ∪ NG[v];

(b) every common neighbor of u and v must be contained in the solution S, that is 
NG(u) ∩ NG(v) ⊆ S;

(c) the graph G[N(u)⧵N(v)] is a split graph. Moreover, (N(u)⧵N(v)) ∩ S is a clique 
and (N(u)⧵N(v))⧵S is an independent set.

Proof We will prove each point separately, and in order. 

(a) Assume for the sake of contradiction that the solution S contains a vertex 
w ∉ NG[u] ∪ NG[v] . But then {u, v,w} is an independent set in G, which contra-
dicts Observation 1a.
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(b) Assume for the sake of contradiction that the solution S does not contain a vertex 
w ∈ NG(u) ∩ NG(v) . Then the edges uw and vw will both be present in G⊕ S , as 
well as the edge uv. Together, these form a triangle.

(c) We first claim that the solution S is a vertex cover for G[N(u)⧵N(v)] . If it was 
not, then there would exist an edge u1u2 of G[N(u)⧵N(v)] such that both end-
points u1, u2 ∉ S , yet u1, u2 would form a triangle with u in G⊕ S , which would 
be a contradiction. Hence (N(u)⧵N(v))⧵S is an independent set. Secondly, 
we claim that (N(u)⧵N(v)) ∩ S forms a clique. If not, then there would exist 
u1, u2 ∈ (N(u)⧵N(v)) ∩ S which are nonadjacent. In this case {u1, u2, v} is an 
independent set, which contradicts Observation 1a. Taken together, these claims 
imply the last item of the lemma.

  ◻

We now move on to examine the structure of a solution for Case  (ii), when 
there exists a solution which is a clique. Note that we can assume the clique has 
size at least two, since if |S| ≤ 1 then subgraph complementation does not alter 
the graph.

Lemma 4 Let G  be a class of triangle-free graphs and let G be an instance of sub-
graph Complement to G  . Let S ⊆ V(G) be a solution such that |S| ≥ 2 and G[S] is a 
clique. Let u, v ∈ S be distinct. Then

(a) the solution S is contained in their common neighborhood, that is 
S ⊆ NG[u] ∩ NG[v] , and

(b) the graph G[NG[u] ∩ NG[v]] is a split graph where (NG[u] ∩ NG[v])⧵S is an inde-
pendent set.

Proof We prove each point separately, and in order. 

(a) Assume for the sake of contradiction that the solution S contains a vertex w 
which is not in the neighborhood of both u and v. This contradicts that S is a 
clique.

(b) We claim that S is a vertex cover of G[NG[u] ∩ NG[v]] . Because S is also a clique, 
the statement of the lemma will then follow immediately. Assume for the sake 
of contradiction that S is not a vertex cover. Then there exist an uncovered edge 
w1w2 , where w1,w2 ∈ NG[u] ∩ NG[v] , and also w1,w2 ∉ S . Since {u,w1,w2} form 
a triangle, we have by Observation 1b that at least two of these vertices are in S. 
That is a contradiction, so our claim holds. ◻

We now have everything in place to present the algorithm.

Algorithm 5 (subgraph Complement to Gwhere G  is triangle-free)
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Input: An instance G of sC G  where G  is a triangle-free graph class recognizable 
in f(n) time for some function f.

Output: A set S ⊆ V(G) such that G⊕ S is in G  , or a correct report that no such 
set exists. 

1. For every non-edge uv of G: 

(a) If either G[N(u)⧵N(v)] or G[N(u)⧵N(v)] is not a split graph, skip this itera-
tion and try the next non-edge.

(b) Let (Iu,Cu) and (Iv,Cv) denote a split partition of G[NG(u)⧵NG(v)] 
and G[NG(v)⧵NG(u)] respectively. For each pair of split partitions 
(Iu,Cu), (Iv,Cv) : 

 (i) Construct solution candidate S�∶={u, v} ∪ (NG(u) ∩ NG(v)) ∪ Cu ∪ Cv

 (ii) If G⊕ S′ is a member of G  , return S′

2. For each edge uv ∈ E(G) : 

(a) If G[NG[u] ∩ NG[v]] is not a split graph, skip this iteration and try the next 
edge.

(b) For each possible split partition (I, C) of G[NG[u] ∩ NG[v]] : 

 (i) Construct solution candidate S�∶={u, v} ∪ C

 (ii) If G⊕ S′ is a member of G  , return S′

3. Return ‘none’

Theorem 6 Let G  be a class of triangle-free graphs such that deciding whether an 
n-vertex graph is in G  is solvable in f(n) time for some function f. Then subgraph 
Complement to G  is solvable in O(n6 + n4 ⋅ f (n)) time.

Proof We will prove that Algorithm  5 is correct, and that its running time is 
O(n4 ⋅ (n2 + f (n))) . We begin by proving correctness. We have three cases to con-
sider: (i) There exists a solution which hits a non-edge, (ii) there is a solution S such 
that it forms a clique of size at least two in G, and (iii) no solution exists.

In the case that there exists a solution S hitting a non-edge uv, we will at some 
point guess this non-edge in Step 1 of the algorithm. By Lemma  3, we have (by 
symmetry) that both G[NG(u)⧵NG(v)] and G[NG(v)⧵NG(u)] are split graphs, so we do 
not miss the solution S in Step 1a. Since we try every possible combination of split 
partitions in Step 1b, we will by Lemma 3 at some point construct S′ correctly such 
that S� = S.

In the case that there exist only solutions which hit exactly a clique, we first find 
some edge uv ∈ E(G) . At some point we guess uv such that both endpoints are in the 
same solution S. By Lemma 4b we know that G[NG(u) ∩ NG(v)] is a split graph, so 
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we will not miss S in Step 2a. Since we try every split partition in Step 2b, we will 
by Lemma 4 at some point construct S′ correctly such that S� = S.

Lastly, in the case that there is no solution, we know that there neither exists a 
solution which hits a non-edge, nor a solution which hits a clique. Since these three 
cases exhaust the possibilities, we can correctly report that there is no solution when 
none was found in the previous steps.

For the runtime, recall that determining whether a graph is split can be done in 
O(n) time given the degree sequence [12], and Lemma 2 establish that enumerating 
all split partitions can also be done in linear time.

The sub-procedure of Step 1 is performed at most O(n2) times, where Step  1a 
takes O(n) time and Step  1b takes at most O(n2 ⋅ (n2 + f (n)) time. In total, Step 
1 will take no longer than O(n4 ⋅ (n2 + f (n))) time. The sub-procedure of Step 
2 is performed at most O(n2) times. Step 2a is done in O(n) time, and step 2b is 
done in O(n ⋅ (n2 + f (n)) time; hence the asymptotic runtime of the entire step 2 is 
O(n3 ⋅ (n2 + f (n))) . The worst running time among these steps is Step 1, and as such 
the runtime of Algorithm 5 is O(n4 ⋅ (n2 + f (n))) .   ◻

4  Complement to d‑Degenerate Graphs

For a constant integer d > 0 , we say that a graph G is d-degenerate, if every (not 
necessarily proper) subgraph of G has a vertex of degree at most d. For example, 
trees are 1-degenerate, while planar graphs are 5-degenerate.

Theorem 7 Let G  be a class of d-degenerate graphs such that deciding whether an 
n-vertex graph is in G  is solvable in f(n) time for some function f. Then subgraph 
Complement to G  is solvable in f (n) ⋅ nO∗(4d) time.

Proof Let G be an n-vertex graph. We are looking for a vertex subset S of G such 
that G⊕ S ∈ G .

We start from trying all vertex subsets of G of size at most 2d as a candidate for 
S. Thus, in O(n2d ⋅ f (n)) time we either find a solution or conclude that a solution, if 
it exists, should be of size more than 2d.

Now we assume that |S| > 2d . We try all subsets of V(G) of size 2d + 1 . Then if 
G can be complemented to G  , at least one of these sets, say X, is a subset of S. In 

total, we enumerate 
(

n

2d + 1

)
 sets.

For each guess of X we consider the set Y of all vertices in V(G)⧵X with at least 
d + 1 neighbors in X. The observation here is that most vertices from Y are in S. For 
every size d + 1 subset X′ ⊆ X , there can be at most d vertices of Y⧵S who have X′ 
contained in their neighborhood—otherwise there remains a Kd+1,d+1 not killed by S. 
Because every vertex of Y has at least d + 1 neighbors in X, it follows that if more than

� =

( |X|
d + 1

)
⋅ d =

(
2d + 1

d + 1

)
⋅ d
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vertices of Y are not in S, then G⊕ S contains a complete bipartite graph Kd+1,d+1 as 

a subgraph, and hence G⊕ S is not d-degenerate. Thus, we make at most 
(
n

�

)
 

guesses on which subset of Y is (not) in S.
Similarly, let the set Z contain all vertices from V(G)⧵X with at most d neighbors 

in X—we observe that most vertices of Z must be outside S. Analogous to before, for 
any particular size d + 1 subset X′ ⊆ X , at most d vertices of Z ∩ S can avoid X′ 
entirely in their neighborhood. Since every vertex in Z have at least d + 1 non-neigh-
bors in X, it follows that at most � of vertices from Z could belong to S. We make at 

most 
(
n

�

)
 guesses of which vertices of Z are in S. Since V(G) = X ∪ Y ∪ Z , if there 

is a solution S, it will be found in one from at most

guesses. Since for each set S we can check in f(n) time whether G⊕ S ∈ G  , this con-
cludes the proof.   ◻

5  Complement to M‑partition

Many graph classes can be defined by whether it is possible to partition the vertices 
of graphs in the class such that certain constraints at met. For instance, a complete 
bipartite graph is one which can be partitioned into two vertex sets such that every 
edge between the two sets is present, and no edge exists within any of the partitions. 
Other graph classes which can be described in a similar manner are split graphs 
and k-colorable graphs. Feder et al. [8] formalized such partition properties of graph 
classes by making use of a symmetric matrix over {0, 1,⋆} , called an M-partition.

Definition 8 (M-partition) For a symmetric k × k matrix M over {0, 1,⋆} , we say 
that a graph G belongs to the graph class GM if its vertices can be partitioned into k 
(possibly empty) sets X1,X2,… ,Xk such that, for every i ∈ [k]:

• if M[i, i] = 1 , then Xi is a clique, and
• if M[i, i] = 0 , then Xi is an independent set, and

for every i, j ∈ [k] , i ≠ j,

• if M[i, j] = 1 , then every vertex of Xi is adjacent to all vertices of Xj , and
• if M[i, j] = 0 , then there is no edge between Xi and Xj.

Note that if M[i, j] = ⋆ , then there is no restriction on the edges between vertices 
from Xi and Xj . For example, for matrix

(
n

2d + 1

)
⋅

(
n

�

)2

= nO
∗(4d)
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the corresponding class of graphs is the class of bipartite graphs, while matrix

identifies the class of split graphs.
In this section we prove the following theorem.

Theorem 9 Let G = GM be a graph class described by an M-partition matrix of size 
2 × 2 . Then subgraph Complement to G is solvable in polynomial time.

In particular, Theorem 9 yields polynomial-time algorithms for subgraph Com-
plement to G  when G  is the class of split graphs or (complete) bipartite graphs. 
The proof of our theorem is based on the following beautiful dichotomy result of 
Feder et al. [8] on the recognition of classes GM described by 4 × 4 matrices. Note 
that a symmetric k × k matrix M is said to contain another symmetric matrix M′ if 
there exists a set of indices X ⊆ [k] such that removing both rows an columns cor-
responding to X from M yields M′.

Proposition 10 [8, Corollary  6.3] Suppose M is a symmetric 4 × 4 matrix over 
{0, 1,⋆} . Then the recognition problem for GM is

• NP-complete when M contains the matrix for 3-coloring or its complement, 
and no diagonal entry is ⋆.

• Polynomial time solvable otherwise.

Lemma 11 Let M be a symmetric k × k matrix giving rise to the graph class 
GM = G  . Then there exists a symmetric 2k × 2k matrix M′ such that for any input G 
to subgraph Complement to G  , it is a yes-instance if and only if G belongs to GM′ . 
Moreover, M′ can be constructed in linear time such that there are equally many 1’s 
as 0’s on its diagonal.

Proof Given M, we construct a matrix M′ in linear time. We let M′ be a matrix of 
dimension 2k × 2k , where entry M�[i, j] is defined as M[⌈ i

2
⌉, ⌈ j

2
⌉] if at least one of 

i, j is even, and ¬M[
i+1

2
,
j+1

2
] if i, j are both odd. Here, ¬1 = 0 , ¬0 = 1 , and ¬⋆ = ⋆ . 

For example, for matrix

the above construction results in

M =

(
0 ⋆

⋆ 0

)

M =

(
0 ⋆

⋆ 1

)

M =

(
0 ⋆

⋆ 1

)



1870 Algorithmica (2020) 82:1859–1880

1 3

Observe that for each non-⋆ diagonal entry in M, two diagonal entries are created in 
M′ : one 1 and one 0.

It remains to show that an instance G to subgraph Complement to G  is a yes-
instance if and only if G belongs to GM′ . We prove the two directions of the claim 
separately.

(⇒) Assume there is a subgraph complementation G⊕ S into G = GM . Let 
X1,X2,… ,Xk be an M-partition of G⊕ S . We define partition X�

1
,X�

2
,… ,X�

2k
 of G 

as follows: for every vertex v ∈ Xi , 1 ≤ i ≤ k , we assign v to X�
2i−1

 if v ∈ S and to X′
2i

 
otherwise.

We now show that every edge of G respects the requirements of M′ . Let 
uv ∈ E(G) be an edge, and let u ∈ Xi and v ∈ Xj . If at least one vertex from {u, v} , 
say v, is not in S, then uv is also an edge in G⊕ S , thus M[i, j] ≠ 0 . Since v ∉ S , it 
belongs to set v ∈ X�

2j
 . Vertex u is assigned to set X′

�
 , where � is either 2i or 2i − 1 , 

depending whether u belongs to S or not. But because 2j is even irrespectively of � , 
M�[�, 2j] = M[i, j] ≠ 0.

Now consider the case when both u, v ∈ S . Then the edge does not persist after 
the subgraph complementation by S, and thus M[i, j] ≠ 1 . We further know that u is 
assigned to X�

2i−1
 and v to X�

2j−1
 . Both 2i − 1 and 2j − 1 are odd, and by the construc-

tion of M′ , we have that M�[2i − 1, 2j − 1] ≠ 0 , and again the edge uv respects M′ . 
An analogous argument shows that also all non-edges respect M′.

(⇐) Assume that there is a partition X�
1
,X�

2
,… ,X�

2k
 of G according to M′ . Let the 

set S consist of all vertices in odd-indexed parts of the partition. We now show that 
G⊕ S can be partitioned according to M. We define partition X1,X2,… ,Xk by 
assigning each vertex u ∈ X�

i
 to X⌈ i

2
⌉ . It remains to show that X1,X2,… ,Xk is an 

M-partition of G⊕ S.
Let u ∈ Xi , v ∈ Xj . Suppose first that uv ∈ E(G⊕ S) . If at least one of u, v is not 

in S, we assume without loss of generality that v ∉ S . Then uv ∈ E(G) and v ∈ X�
2j

 . 
For vertex u ∈ X�

�
 , irrespectively, whether � is 2i or 2i − 1 , we have that 

M�[�, 2j] = M[i, j] ≠ 0 . Otherwise we have u, v ∈ S . Then uv is a non-edge in G, 
and thus M�[2i − 1, 2j − 1] ≠ 1 . But by the construction of M′ , we have that 
M[i, j] ≠ 0 , and there is no violation of M. An analogous argument shows that if u 
and v are not adjacent in G⊕ S , it holds that M[i, j] ≠ 1 . Thus X1,X2,… ,Xk is an 
M-partition of G⊕ S , which concludes the proof.   ◻

Now we are ready to prove Theorem 9.

Proof of Theorem 9 For a given 2 × 2 matrix M, we use Lemma 11 to construct a 
matrix M′ . Since M′ has equally many 1’s as 0’s on its diagonal, it can not contain 
the 3-coloring matrix. Then by Proposition 10, the recognition of whether G admits 

M� =

⎛
⎜⎜⎜⎝

1 0 ⋆ ⋆

0 0 ⋆ ⋆

⋆ ⋆ 0 1

⋆ ⋆ 1 1

⎞
⎟⎟⎟⎠
.
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M′-partition is in P. Thus, subgraph Complement to G  is solvable in polynomial 
time.   ◻

6  Subgraph Complementation to Graph Classes of Bounded 
Clique‑Width

We show that subgraph Complement to G  can be solved in polynomial time when 
G  has bounded clique-width and can be expressed by an ���1 property. We refer 
to the book [3] for the basic definitions. We will use the following result of Hliněný 
and Oum [13].

Proposition 12 [13] There is an algorithm that for every integer k and graph G in 
time O(|V(G)|3) either computes a (2k+1 − 1) expression for a graph G or correctly 
concludes that the clique-width of G is more than k.

Note that the algorithm of Hliněný and Oum only approximates the clique-width 
but does not provide an algorithm to construct an optimal k-expression tree for a 
graph G of clique-width at most k. But this approximation is usually sufficient for 
algorithmic purposes.

Courcelle et  al. [4] proved that every graph property that can be expressed in 
���1 can be recognized in linear time for graphs of bounded clique-width when 
given a k-expression.

Proposition 13 [4, Theorem  4] Let G  be a class of graphs with clique-width 
bounded by constant k such that for each graph G ∈ G  , a corresponding k-expres-
sion can be found in O(f (|V(G)|, |E(G)|)) time. Then every ���1 property � on G  
can be recognized in O(f (|V(G)|, |E(G)|) ⋅ g(�, k))) time, for some function g.

The nice property of graphs with bounded clique-width is that their subgraph 
complementation has also bounded clique-width. In particular, Kamiński, Lozin, 
and Milanič [17] observed that if G is a graph of clique-width k, then any subgraph 
complementation of G is of clique-width at most g(k) for some computable function 
g. For completeness, we here provide a more accurate upper bound.

Lemma 14 Let G be a graph, S ⊆ V(G) . Then CWD(G⊕ S) ≤ 3CWD(G).

Proof Let CWD(G) = k . To show the bound, it is more convenient to use expression 
trees instead of k-expressions. An expression tree of a graph G is a rooted tree T 
with nodes of four types i, ∪̇ , � and � such that:

• Introduce nodes i(v) are leaves of T. For i ∈ [k] and a vertex v ∈ V(G) , i(v) is 
associated to the singleton graph where vertex v is labeled by i.

• Union node ∪̇ stands for a disjoint union of k-graphs associated with its children.
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• Relabel node �i→j has one child and is associated with the k-graph obtained by 
applying of the relabeling operation to the graph corresponding to its child.

• Join node �i,j has one child and is associated with the k-graph resulting by apply-
ing the join operation on the graph represented by its child: every vertex labeled 
with i is made adjacent to every vertex labeled by j.

• The graph G is isomorphic to the graph associated with the root of T (with all 
labels removed).

The width of the tree T is the number of different labels appearing in T. If G is of 
clique-width k, then by parsing the corresponding k-expression, one can construct 
an expression tree of width k and, vise versa, given an expression tree of width k, it 
is straightforward to construct a k-expression. Throughout the proof we call the ele-
ments of V(T) nodes to distinguish them from the vertices of G. Given a node x of an 
expression tree, Tx denotes the subtree of T rooted in x and the graph Gx represents 
the k-graph formed by Tx.

An expression tree T is irredundant if for any join node �i,j , the vertices labeled 
by i and j are not adjacent in the graph associated with its child. It was shown by 
Courcelle and Olariu [5] that every expression tree T of G can be transformed into 
an irredundant expression tree T ′ of the same width in time linear in the size of T.

Let T be an irredundant expression tree of G of width k rooted in r. We construct 
the expression tree T ′ for G� = G⊕ S by modifying T.

Recall that the vertices of the graphs Gx for x ∈ V(T) are labeled 1,… , k . We 
introduce three groups of distinct labels �1,… , �k , �1,… , �k and �1,… , �k . The 
labels �1,… , �k and �1,… , �k correspond the the labels 1,… , k for the vertices in S 
and V(G)⧵S respectively. The labels �1,… , �k are auxiliary. Then for every node x of 
T we construct T ′

x
 using Tx starting the process from the leaves. We denote by G′

x
 the 

k-graph corresponding to the root x of T ′
x
.

For every introduce node i(v), we construct an introduce node �i(v) if v ∈ S and 
an introduce node �i(v) if v ∉ S . Let x be a non-leaf node of T and assume that we 
already constructed the modified expression trees of the children of x.

Let x be a union node ∪̇ of T and let y and z be its children.
We construct k relabel nodes ��i,�i for i ∈ {1,… , k} that form a path, make one 

end-node of the path adjacent to y in T ′
y
 and make the other end-node denoted by y′ 

the root of T ′
y′
 constructed from T ′

y
 . Notice that in the corresponding graph G′

y′
 all the 

vertices of S are now labeled by �1,… , �k instead of �1,… , �k.
Next, we construct a union node ∪̇ denoted by x(1) with the children y′ and z. This 

way we construct the disjoint union of G′
y′
 and G′

z
.

Notice that vertices which are labeled by the same label in Gy and Gz are not adja-
cent in G. In other words, we should make the vertices of V(Gx) ∩ S and V(Gy) ∩ S 
with the same label adjacent in G′ . We achieve it by adding k join nodes ��i,�i for 
i ∈ {1,… , k} , forming a path out of them and making one end-node of the path 
adjacent to x(1) . We declare the other end-node of the path denoted by x(2) the new 
root.

Observe now that for the set of vertices Yi of Gy labeled i and the set of vertices Zj 
of Gz labeled by j where i, j ∈ {1,… , k} are distinct, it holds that the vertices of Yi 
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and Zj are either pairwise adjacent in G or pairwise nonadjacent. More precisely, on 
this stage of construction we ensure that if the vertices of Yi are not adjacent to the 
vertices of Zj , then the vertices of Yi ∩ S and Zj ∩ S are made adjacent in G′ . To do it, 
for every two distinct i, j ∈ {1,… , k} such that the vertices of Yi and Zj are not adja-
cent in G, construct a new join node ��i,�j and form a path with all these nodes whose 
one end-node is adjacent to x(2) and the other end-node x(3) is the new root (we 
assume that x(3) = x(2) if have no new constructed nodes).

Finally, we add k relabel nodes ��i,�i for i ∈ {1,… , k} that form a path, make one 
end-node of the path adjacent to x(3) and make the other end-node denoted by x the 
root of the obtained T ′

x
 . Clearly, all the vertices of S in G′

x
 are labeled by �1,… , �k.

Let x be a relabel node �i→j of T and let y be its child. We construct two relabel 
nodes ��i→�j

 and ��i→�j
 denoted by x and x′ respectively. We make x′ the child of x 

and we make the root y of T ′
y
 the child of x′.

Now, let x be a join node �i→j of T and let y be its child. Recall that T is irredun-
dant, that is, the vertices labeled by i and j in Gy are not adjacent. Clearly, we should 
avoid making adjacent the vertices in S in the construction of G′ . We do it by con-
structing three new join nodes ��i→�j

 , ��j→�i
 and ��i→�j

 denoted by x, x′, x′′ respec-
tively. We make x′ the child of x, x′′ the child of x′ and the node y of T ′

y
 is made the 

child of x′′.
This completes the description of the construction of T ′ . Using standard inductive 

arguments, it is straightforward to verify that G′ is isomorphic to the graph associ-
ated with the root of T ′ , that is, CWD(G�) ≤ 3k .   ◻

Lemma 15 Let � be an ���1 property describing the graph class G  . Then there 
exists an ���1 property � describing the graph class G(1) of size |�| ∈ O(|�|).

Proof We will construct � from � in the following way: We start by prepending 
∃S ⊆ V(G) . Then for each assessment of the existence of an edge in � , say uv ∈ E(G) , 
replace that term with ((u ∉ S ∨ v ∉ S) ∧ uv ∈ E(G)) ∨ (u ∈ S ∧ v ∈ S ∧ uv ∉ E(G)) . 
Symmetrically, for each assessment of the non-existence of an edge uv ∉ E(G) , 
replace that term with ((u ∉ S ∨ v ∉ S) ∧ uv ∉ E(G)) ∨ (u ∈ S ∧ v ∈ S ∧ uv ∈ E(G)).

We observe that if � is satisfiable for some graph G, then for every S ⊆ V(G) , 
the subgraph complementation G⊕ S will yield a satisfying assignment to � . Con-
versely, if � is satisfiable for a graph G, then there exist some S such that � is satis-
fied for G⊕ S . For the size, we note that each existence check for edges blows up by 
a constant factor.   ◻

We are ready to prove the main result of this section.

Theorem 16 Let G  be a graph class expressible in ���1 which has clique-width 
bounded by constant k. Then subgraph Complement to G is solvable in polynomial 
time.

Proof Let � be the ���1 formula which describes G  , and let G be an n-vertex input 
graph. We apply Proposition 12 for G and in O(n3) time either obtain a k� ≤ 23k+1 − 1 



1874 Algorithmica (2020) 82:1859–1880

1 3

-expression for G or conclude that the clique-width of G is more than 3k. In the lat-
ter case, by Lemma 14, G cannot be subgraph complemented to G .

We then obtain an ���1 formula � from Lemma 15, and apply Proposition 13, 
which works in O(n3 ⋅ g(�, k�)) time for some function g. As � and k′ depend only on 
constants � and k, the runtime of the algorithm is O(n3) .   ◻

We remark that if clique-width expression is provided along with the input graphs, 
and G  can be expressed in ���1 , then there is a linear time algorithm for subgraph 
Complement to G  . This follows directly from Lemma 15 and Proposition 13.

Theorem  16 implies that for every class of graphs G  of bounded clique-width 
characterized by a finite set of finite forbidden induced subgraphs, e.g. P4-free 
graphs (also known as cographs) or classes of graphs discussed in [1], the subgraph 
Complement to G  problem is solvable in polynomial time. However, Theorem 16 
does not imply that subgraph Complement to G  is solvable in polynomial time for 
G  being of the class of graphs having clique-width at most k. This is because such a 
class G  cannot be described by ���1 . Interestingly, for the related class G  of graphs 
of bounded rank-width (see [5] for the definition) at most k, the result of Oum and 
Courcelle [6] combined with Theorem 16 implies that subgraph Complement to G  
is solvable in polynomial time.

7  Hardness of Subgraph Complementation to Regular Graphs

Let us remind that a graph G is regular if all its vertices have the same degree. We 
consider subgraph Complement to G  where G  is the class of regular graphs, which 
we call subgraph Complement to regular graph (sCr). In this section, we show 
that this problem is NP-complete by a reduction from Clique in regular graph.

We will need the following well-known proposition.

Proposition 17 [10] Clique in regular graph is NP-complete.

We remark that the above proposition follows because the independent set prob-
lem is NP-complete for cubic graphs [10]; finding an independent set is equivalent 
to finding a clique in the complement graph, and the complement of a regular graph 
is also regular.

We are now ready to prove that Clique in regular graph is many-one reducible 
to subgraph Complement to regular graph . We begin by defining a gadget which 
we will use in the reduction.
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Definition 18 (Gadget Hk,r ) For integers k ≥ 2 and r ≥ k such that r − k is even, 
we build the gadget graph Hk,r as follows. Initially, we let Hk,r consist of one clique 
on k − 1 vertices, as well as k − 1 distinct copies of Kr,r . These are all the vertices of 
the gadget, which is a total of (k − 1) + 2r ⋅ (k − 1) vertices. We denote the vertices 
of the clique c1, c2,… , ck−1 , and we let the complete bipartite graphs be denoted 
by K1

r,r
,K2

r,r
,… ,Kk−1

r,r
 . For a bipartite graph Ki

r,r
 , let the vertices of the two parts be 

denoted by ai
1
, ai

2
,… , ai

r
 and bi

1
, bi

2
,… , bi

r
 respectively.

If r = k , then the construction is already complete. Otherwise, we will now do 
some rewiring of the edges to complete the construction of Hk,r . Recall that r − k is 
even. For each vertex ci of the clique, add one edge from ci to each of ai

1
, ai

2
,… , ai

r−k

2

 . 

Similarly, add an edge from ci to each of bi
1
, bi

2
,… , bi

r−k

2

 . Now remove the edges 

ai
1
bi
1
, ai

2
bi
2
,… , ai

r−k

2

bi
r−k

2

 . Once this is done for every i ∈ [k − 1] , the construction is 

complete. See Fig. 1.

We observe the following property of vertices ai
j
 , bi

j
 , and ci of Hk,r.

Observation 19 For every i ∈ [k − 1] and j ∈ [r] , it holds that the degrees of ai
j
 

and bi
j
 in Hk,r are both exactly r, whereas the degree of ci is r − 2.

We now present our reduction in the form of an algorithm.

Algorithm  20 (Reduction Kr to sCr) Input: An instance (G,  k) of Kr. Let r 
denote the regularity of G (the degree of its vertices).

Output: An instance G′ of sCr such that it is a yes-instance if and only if (G, k) is 
a yes-instance of Kr. 

1. If k < 7 or k > r , solve the instance of Kr by brute force. If it is a yes-instance, 
return a trivial yes-instance to sCr, if it is a no-instance, return a trivial no-
instance to sCr.

2. If r − k is odd, modify G by taking two copies of G which are joined by a perfect 
matching between corresponding vertices. Then r increases by one, whereas k 
remains the same. Going forth, we assume G (and r) have already undergone this 
transformation if required.

3. Construct the graph G′ by taking the disjoint union of G and the gadget Hk,r . 
Return G′.

Fig. 1  The gadget graph H
k,r

 is 
built of k parts, namely a clique 
K
k−1 , and k − 1 complete bipar-

tite graphs K1

r,r
,… ,K

k−1
r,r

 with 
some rewiring
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Let n = |V(G)| . We observe that the number of vertices in the returned instance 
is at most 2n + (k − 1) + 2r ⋅ (k − 1) , which is O(n2) . The running time of the algo-
rithm is O(n7) and thus is polynomial.

Correctness of the reduction follows from the following two lemmata.

Lemma 21 Let (G, k) be the input of Algorithm 20, and let G′ be the returned result. 
If (G, k) is a yes-instance to Clique in regular graph, then G′ is a yes-instance of 
subgraph Complement to regular graph .

Proof Let C ⊆ V(G) be a clique of size k in G. If the clique is found in step 1, then 
G′ is a trivial yes-instance, so the claim holds. Thus, we can assume that the graph 
G′ was constructed in step 3. If G was altered in step 2, we let C be the clique in one 
of the two copies that was created. Let S ⊆ V(G�) consist of the vertices of C as well 
as the vertices of the clique Kk−1 of the gadget Hk,r . We claim that S is a valid solu-
tion to G′.

We show that G′ ⊕ S is r-regular. Any vertex not in S will have the same number 
of neighbors as it had in G′ . Since the only vertices that weren’t originally of degree 
r were those in the gadget clique Kk−1 , all vertices outside S also have degree r in 
G′ ⊕ S . What remains is to examine the degrees of vertices of C and of Kk−1.

Let ci be a vertex of Kk−1 in G′ . Then ci lost its k − 2 neighbors from Kk−1 , gained 
k neighbors from C, and kept r − k neighbors in Ki

r,r
 . We see that its new neighbor-

hood has size k + r − k = r.
Let u ∈ C be a vertex of the clique from G. Then u lost k − 1 neighbors from C, 

gained k − 1 neighbors from Kk−1 , and kept r − (k − 1) neighbors from G − C . In 
total, u will have r − (k − 1) + (k − 1) = r neighbors in G′ ⊕ S . Since every vertex 
of G′ ⊕ S has degree r, it is r-regular, and thus G′ is a yes-instance.   ◻

Lemma 22 Let (G, k) be the input of Algorithm 20, and let G′ be the returned result. 
If G′ is a yes-instance to subgraph Complement to regular graph , then (G, k) is a 
yes-instance of Clique in regular graph.

Proof Let S ⊆ V(G�) be a solution witnessing that G′ is a yes-instance. If G′ was the 
trivial yes-instance returned in step 1 of Algorithm 20, the statement trivially holds. 
Going forward we may thus assume G′ was returned in step 3, and that k ≥ 7.

Our first claim is that G′ ⊕ S is regular with regularity r. Assume for the sake of 
contradiction it is regular with regularity r′ ≠ r . Note that if r′ is any other value than 
r − 2 , then every vertex of G′ must be in S, as degrees of vertices outside S do not 
change under subgraph complementation; but then G′ ⊕ S is simply the complement 
of G′ , and it is not regular. So r′ must be r − 2 . Then every vertex except those in the 
gadget clique Kk−1 must be in S. Consider a vertex in one of the complete bipartite 
graphs from the gadget—it will have at least n new incident edges (from the graph 
G). Since n > r , the vertex will not have r − 2 neighbors in G′ ⊕ S , a contradiction.

We have established that G′ ⊕ S is r-regular. It must thus be the case that every 
vertex of the gadget clique Kk−1 is in S, since these vertices do not have degree r in 
G′.
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Our second claim is that |S| = 2k − 1 , and moreover, that no neighbor of Kk−1 
is from S in G′ . To show this, we let p = |S⧵Kk−1| , and proceed to show that 
p = k . Towards this end, consider a vertex ci ∈ Kk−1 . This vertex has some num-
ber of neighbors in S⧵Kk−1 , denoted xi = |NG� (ci) ∩ (S⧵Kk−1)| . We know that ci 
has r neighbors in G′ ⊕ S . Let us count them: some neighbors are preserved by 
the subgraph complementation, namely r − k − xi of its neighbors, found in Ki

r,r
 . 

Some neighbors are gained, namely p − xi of the vertices in S. Thus, we have that 
r = r − k − xi + p − xi . The r’s cancel, and we get xi =

p−k

2
 . This is true for every 

i ∈ [k − 1] , so we simply denote the number by x = xi , and get p = k + 2x.
Towards the claim, it remains to show that x = 0 . Because the neighborhoods of 

distinct ci and cj are disjoint outside Kk−1 in G′ , we get that p ≥ (k − 1) ⋅ x . We sub-
stitute p, and get

Recalling that k ≥ 7 , we have that x is either 1 or 0. Assume for the sake of contra-
diction that x = 1 . Then without loss of generality, each ci has some neighbor ai

j
 

which is in S. Since ai
j
 had degree r in G′ , it must hold that ai

j
 has equally many 

neighbors as non-neighbors in S. At most one of ai
j
 ’s neighbors in S is from Ki

r,r
 in 

G′ , this means that at least |S|−3
2

 vertices of Ki
r,r

 are in S. Because k ≥ 7 and the Ki
r,r

 ’s 
are completely disjoint in G′ for different values of i ∈ [k − 1] , we get that

Seeing that |S| ≥ k − 1 ≥ 6 , this is a contradiction. Thus, x must be 0, so 
p = k + 2x = k and the second claim holds.

We now show that S⧵Kk−1 is a clique in G′ . Assume for the sake of contradiction 
it is not, and let u, v ∈ S⧵Kk−1 be vertices such that uv ∉ E(G�) . Consider the vertex 
u. By the second claim above we know that u does not have a neighbor from Kk−1 in 
G′ . It will thus gain at least k edges going to Kk−1 ∪ {v} , and lose at most k − 2 edges 
going to S⧵(Kk−1 ∪ {u, v}) . Because u was of degree r in G′ yet gained more edges 
than it lost by the subgraph complementation, its degree is strictly greater than r in 
G′ ⊕ S . This is a contradiction, hence S⧵Kk−1 is a clique in G′.

Because k ≥ 3 , the clique S⧵Kk−1 can not be contained in the gadget Hk,r nor span 
across both copies of G created in step 2 of the reduction (if that step was applied). 
It must therefore be contained in the original G. Thus, G has a clique of size k, and 
(G, k) is a yes-instance of Clique in regular graph.   ◻

k + 2x ≥(k − 1) ⋅ x

k ≥(k − 3) ⋅ x

k

k − 3
≥x

|S| ≥ |S| − 3

2
⋅ (k − 1) ≥

|S| − 3

2
⋅ 6

|S| ≥3 ⋅ |S| − 9

9 ≥2 ⋅ |S|
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Theorem 23 subgraph Complement to regular graphis NP-complete.

Proof Lemmata 21 and  22 together with Proposition 17 conclude the proof of NP-
hardness. Membership in NP is trivial, so NP-completeness holds.   ◻

We remark that if the regularity r is a constant, the problem becomes polynomial 
time solvable by Theorem 7.

8  Conclusion and Open Problems

In this paper we initiated the study of subgraph Complement to G  . Many interesting 
questions remain open. In particular, what is the complexity of the problem when G  is

• the class of chordal graphs,
• the class of interval graphs,
• the class of graph excluding a path P5 as an induced subgraph,
• the class of graphs with min degree ≥ r for some constant r.

Another natural question is to consider a class C  , such that C(1) can be recognized in 
polynomial time. Let C  denote the class of complement graphs to C  . Is it then also 
possible to recognize C

(1)
 in polynomial time?

More broadly, it is also interesting to see what happens as we allow more than 
one subgraph complementation; how quickly can we recognize the class G(k) for 
some class G  ? It will also be interesting to investigate what happens if we com-
bine subgraph complementation with other graph modifications, such as the Seidel 
switch.
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